
certainty calculations often produces poor uncer- 
tainty estimations. 

A copy of the compiled SDSD program can be 
obtained from the author by sending $15 to cover 
the costs of handling and mailing (specify 3l/2- or 
5%-in. disk). 
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Examining the Shapes of Atomic Orbitals 
Using Mathcad 

B. Ramachandran 
Louisiana Tech University 
Ruston, LA71272 

One of the  more difficult aspects of atomic 
structure theory a t  the undergraduate level lies 
in  understanding the specific roles played by the 
radial and angular parts of hydrogenic wave 
functions in  giving the  atomic orbitals their  
three-dimensional shapes. We recently described 
a way to generate three-dimensional contour sur- 
faces of atomic orbitals using Mathematica (6). 
However, Mathematica is  a rather expensive 
package that runs on expensive hardware, and 
its user interface may seem somewhat intimidat- 
ing to the first-time user. 

This article describes how three-dimensional 
contour plots of spherical harmonics, that is, sur- 
faces on which I Y L ~  I is constant, may be gener- 
ated using Mathcad, versions 4.0 or higher. 
Mathcad is relatively inexpensive, runs on inex- 
pensive P a ,  and has a very intuitive user inter- 
face. Not surprisingly, several applications of 
Mathcad in teaching Chemistry have appeared 
in this Journal (7-10). 

The Roles of Spherical Harmonics and Radial 
Functions 

The three-dimensional plots of the real spheri- 
cal harmonics (formed by superpositions of the 
complex ones where necessary) are very closely 
re la ted to t h e  three-dimensional shapes  of 
atomic orbitals that do not have radial nodes, 
that is, the i s ,  2p, 3d, etc. Therefore, this exercise 
will clarify the role of the spherical harmonics in 
determining the shapes of the atomic orbitals. 
The role of the radial functions can then be intro- 
duced ( ~ e r h a o s  using Mathematical to com~lete  - 
the picture. 

Figure 7 shows a typical exercise in  graphing a 
three-dimensional surface using the absolute 
value of the anmlar  part of the 2pZ orbital, that 

We generate the three s$ hybrid orbitals and represent them graphically. 

The twop orbitals are represented by the corresponding spherical 
harmonics The s orbital can be represented simply by a constant: 

pxi,j = S ~ ~ ( ~ ~ ) . C O S ( $ ~ )  py 1.J . = s in (~~) . s in (+~)  

Define the three hybrid orbitals, using the 5 orbital radius to be In: 

The s t  hybrid orbital, ( I )  sp2l 1,J . = 1 f + lpxi,j 1 
0.333 1 

The second hybrid orbital, s$(2): sp22. . = - - -. 1 
px. . - -.py . 

I J  6 Ji " 1  
The third hybrid orbital, sp2(3): 

1 
px..  -. 

Define the x, y, z coordinates for the parametric plots: 

:1. 1.J . = sp21. 1.1 . .~in(0~).eos($~) ~2. 1.J . = sp22i,j~sin(8i)~cos(+j) 

,I. 1.1 . = ~ ~ 2 1 .  I.J ..sin(ei)-sin(,) , y2  I.J . = ~ p 2 2 ~ , ~ s i n ( e ~ ) s i n ( + . )  J 

:I. 1.J . = ~ ~ 2 1 -  1.J . .cos(~. 1 1  2. 1.J . = ~ ~ 2 2 .  . 1.J . c o s ( ~ ~ )  

Now plot (x l ,  yl, zl) for the first hybrid orbital. (x2, y2, 22) for the second, and 
(x3, y3, 23) for the third. By keeping the ''tilt" and "rotations" the same for ail 
three, their relative orientations are clearly observable. 

- 
Figure 9. Use of Mathcad to generate the shapes of the three sp2 hybrid atomic 
orbitals. 

The notes, which can be placed anywhere in the document, This is a particularly useful exercise because the role of the 

can make the exercise and self-explanatory, supemsitions of atomic orbitals in  giving the hybrid orb- 

~h~ -live  document^^ feature o f ~ a t h c a d  allows one to gen. tals their shapes and orientation is rather nonintuitive. 
crate a different atomic orbital simDlv bv the Figure 9 illustrates one such exercise, where the three sp2 . "  " 
array Ern; .. For example, Figure 8 shows the surface on hybrid orbitals are generated using the linear combina- 
which I (=  1, obtained by redefining Ylmij in  Figure 7. tions of the 2s, 2pz, and 2p, orbitals. All three are plotted 

One may also use the ideas outlined above and in the two a t  0" rotation and 45" tilt (see the graph menu of Mathcad) 
figures to generate the shapes of hybrid atomic orbitals. so that their relative orientations are due to sp2(1), sp2(2), 

1082 Journal of Chemical Education 



and sp2(3), whereas their shapes are due entirely to the 
superpositions used to form the constructive and destruc- 
tive interference of the spherical harmonics. 

In the superpositions, the 2s orbital is represented by the 
constant 0.333. Because all contour surfaces are for I Y1, I 
= 1, the maximum radius of the spheroidal surface is 1 in 
all cases. However, the  shapes of the  hybrid orbitals 
formed by linear combinations of atomic orbitals depend 
crucially on the relative spatial extents of the orbitals, 
which are controlled by the radial parts of the wave func- 
tions. In forming the sp2 hybrids shown in Figure 9, we 
have limited the radius of the 2s orbital to 113, whereas the 
2p orbitals have a maximum radius of 1. This ratio of the 
relative radii was chosen because the ratio of 

2 
is exactly 1:3 a t  the radius where 4~r~I'£'~,1 reaches its 
maximum value. This choice is, howevel! r i ther  arbitrary, 
and one could choose anv other value. For ueda~oeic rea- 
sons, however, i t  is better to limit the r a g o f  p ~ ~ -  
sihle values so that the resulting hybrid orbitals bear some 
resemblance to the sketches shown in  the textbooks. 

There is no provision in Mathcad to display the Carte- 
sian axes in  parametric surface plots. There also appears 
to be no easy way to superimpose two or more parametric 
plots so that all three hybrid orbitals may be shown in a 
single plot. 
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Computation of Vapor Pressure 
Ravinder Abrol 
Indian Institute of Technology 
Kanpur - 208 016 India 

Maxwell (11) has suggested a means for determining the 
vapor pressures from the isotherms of the analytical cubic 
equations of state. A typical isotherm is shown in Figure 
10. The vapor pressure is indicated by the dashed line AE. 
When 1 mol of the liquid is transformed into its vapor, the 
change in the Gibbs free energy (AG) is given by 

Here the  integration is  along ABCDE, the  S-shaped 
curve. Under the equilibrium conditions, Gvapor equals 

Gliquid, SO the integral in eq 1 is zero. This requires the 
tie-line AE to be chosen so t h a t  a rea  I of t h e  region 
bounded by the line AC and the curve ABC is equal to area 
I1 bounded by the line CE and the curve CDE. 

A Simple FORTRAN Program for PC's 
We have used the above idea to develop a simple compu- 

tational program in FORTRAN 77 that computes the va- 
por pressures for any cubic equation of state using the ex- 
act Cardan's solution of a cubic polynomial. Students can 
learn a lot about analytical equations of state and phase 
equilibrium by doing such computations; they can compare 
the accuracy of different cubic equations of state for vari- 
ous temperature ranges. The program is very easy to use 
and can he run on relatively inexpensive hardware (PC 
with a 486SX processor). I t  requires only the temperature 
of interest and the gas constants a s  inputs. Noggle and 
Wood (12) proposed a n  approach using Mathematica; i t  
used compiled programs and was just a blackbox to the 
student. 

Algorithm 
First, we take a n  equation of state, for example, the van 

der Waals (VDW) equation, 

-, " 
We differentiate P in e q 2  with respect to Vand equate i t  

to zero to find the Pmax and Pmin values D and B in Figure 
10. So we get the following cubic equation in  V. 

Equation 3 is solved for V using Cardan's solution of a 
cubic polynomial, which gives exact roots. The three com- 
puted values of V are used in eq 2 to give three values of 
pressure; only the higher two correspond to points D and B 
in Figure 10 (i.e., P,,, and Pmin), and the lowest must be 
ignored always. 

Equation 2 is rewritten a s  

p I ' - @ b + ~ ~ ) ~ ~ + a ~ - a b = o  (4) 

Equation 4 is solved for pressures in  the range P,,, to 
Pmin, using Cardan's solution. The three values of V thus 
obtained (i.e., Vi, Vz, V3) are used to compute area I and 
area I1 (refer to Fig. 101, given by 

V o l u m e  
Figure 10. A typical isotherm, 

area I1 
ratio = ------ 

area I 

The pressure for which the ratio becomes very 
close to unity is reported as the equilibrium vapor 
pressure a t  the temperature of the isotherm. 

Results and Discussion 

For various gases like COz, Hz, 02, HzO, etc., 
treated as VDW gases, the percentage error has 
been around 0 4 %  for the temperatures close to 
the critical temueratures (T,l. For examole. for H7 
s t  32 K the computed valueis 1120.8 k ~ a ,  rind the 
rxnwimmtul w l u r  i s  1119.7 kl'a. This shows that 
the VDW equation is a good equation of state a t  
temperatures close to the T,, and the boiling point 
can also be predicted with very good accuracy. 
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