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The adiabatic switching technique is adapted to the calculation of expectation values for chaotic
systems. Semiclassical results obtained in this manner are compared to accurate quantum expecta-
tion values for the Henon-Heiles system at high energy. Although good agreement is found for
most states, the incidence of discrepancies grows as the energy increases. Almost all such

discrepancies can be attributed to either quantum trapping effects for states with extreme values of
quantum numbers or tunneling effects associated with the avoided crossings of energy curves as a
function of a parameter in the Hamiltonian. As the energy is raised and the system becomes more

chaotic, the increased strength of the avoided crossings leads to more frequent and stronger tunnel-

ing. The possible generality of this result and its implications for statistical quantum behavior are
discussed.

I. INTRODUCTION

The relationship between classical and quantum
mechanics in the domain where the classical motion is
chaotic has been a subject of intense scrutiny for many
years. ' Some of the similarities and differences between
chaotic classical systems and their quantum analogs are
now becoming established. This work seeks to con-
tribute to this emerging picture by comparing properties
of the quantizing trajectories to the analogous quantum
properties for a familiar two-dimensional system in the
chaotic regime.

The problem of relating quantum and classical behav-
ior has proved to be more challenging for classically
chaotic systems than for regular systems. In the regular
domain, well-defined constants of motion, i.e., the classi-
cal actions, exist and the Einstein-Brillouin-Keller (EBK)
quantization rules connect the two forms of dynamics. In
the chaotic regime, well-defined actions do not exist, and
so these rules are not, strictly speaking, applicable. The
problem of quantization in the chaotic regime has been
addressed by many workers, and as a result, several
methods have become available. Among these, many
recent applications have been based on a class of tech-
niques generally known as adiabatic switching
methods. These techniques rely on the assumption
of adiabatic invariance of actions as a nonintegrable per-
turbation is "turned on" infinitesimally slowly. In the
present work, we use the time-dependent version of the
adiabatic switching method (hereafter referred to
simply as adiabatic switching or AS) to generate quantiz-
ing trajectories in the chaotic regime.

The successes of semiclassical quantization methods in
the chaotic regime are widely attributed to the existence
of "vague tori, "' which are regions of phase space

characterized by "approximate" actions and enclosed by
temporary dynamical barriers. These dynamical barriers
are generally "porous, " at least in some places, so that,
given suScient time, some of the trajectories leak out of
the bounded regions. ' Thus the vague tori are short-
lived entities in phase space. As time progresses, the
dynamical barriers become increasingly ineffective, and
the ensuring exponential divergence of trajectories erases
all vestiges of the phase-space structures. Theories that
quantitatively estimate the flux across such barriers have
been developed recently, ' and have generated consid-
erable interest in the chemical physics community.

Dynamical barriers that temporarily confine a quan-
tum wave packet to certain regions of phase space have
also been observed in quantum systems. ' ' Some of
the bounded quantum regions can be related to the vague
tori of the analogous classical systems. However, the be-
havior of a quantum system initially confined to such
bounded regions may be strikingly different from the
analogous classical behavior: if tunneling is disregarded,
a quantum wave packet may remain forever localized in a
bounded region of phase space, unless the classical flux
across the dynamical barriers is at least on the order of A.

This means that, even when nonlinearity is large enough
to destroy classical barriers to an extent that large-scale
classical chaos has emerged, a quantum system may
behave as if the barriers were more or less intact. The re-
sulting quantum suppression of classical chaos has pro-
found implications for any trajectory-based approach
that hopes to gain insight into the quantum behavior of a
system. In the present work, we shall see that, in order to
describe quantum states in the chaotic regime by classical
means, it is crucial to mimic somehow the suppression of
chaos.

The primary objective of this paper is to compare the
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quantum and classical descriptions of states for a classi-
cally chaotic system. To accomplish this, we develop a
version of the AS method that simulates the quantum
suppression of chaos and apply it to calculate semiclassi-
cal analogs of quantum expectation values for a set of
dynamical properties. Comparisons of these expectation
values with the exact quantum results reveal the existence
of important quantum effects that limit the applicability
of classical mechanics to the quantum analogs of chaotic
systems. These effects therefore, have important implica-
tions for the ability of quantum systems to exhibit statist-
ical behavior (i.e., ergodicity).

The remainder of this paper is based on the following
plan. In Sec. II we discuss our approach to the calcula-
tion of semiclassical expectation values in the chaotic re-
gime, in Sec. III, we compare the resulting semiclassical
quantities to the exact quantum expectation values and
discuss the significance of the results, and finally, in Sec.
IV, we present a summary of our work.

II. SEMICLASSICAL EXPECTATION VALUES
IN THE CHAOTIC REGIME

A. Semiclassical analogs of expectation values

According to the Heisenberg correspondence princi-
ple, the classical analog & A ) of the quantum ex-
pectation value & A )~ =

& m~ A ~m ) is given by

f dp f dq5(J(p, q) —J )A(p, q)
&A) = (1)f dp fdq5(J(p, q) —J )

where J is the vector containing the quantized values of
the actions corresponding to quantum numbers m, J(p, q)
is the vector containing the N action variables as func-
tions of canonical coordinates q and momenta p, and
A(p, q) is the classical function corresponding to the
operator A. The semiclassical expectation value & A ) is
thus a phase-space average of the property A (p, q) over a
torus characterized by the quantizing actions Jm.

We are interested in identifying the semiclassical ana-
logs & A ) in the chaotic regime of classical dynamics
where well-defined actions do not exist. Strictly speak-
ing, this would mean that Eq. (1) cannot be applied.
However, Uague tori do exist in the chaotic regime so that
a set of actions is approximately conserved for a finite
period of time. Thus we may attempt to adapt Eq. (1) to
this case in the hope that there exist vague tori in the
chaotic regime that are characterized by approximate ac-
tions that satisfy quantization conditions. To do this, we
replace the 5 function in Eq. (1}with a density function
p(J —J ) which is identically equal to zero everywhere in
phase space except on a vague torus characterized by the
approximate actions J . Thus, in the chaotic regime, we
identify the semiclassical expectation value of property A
over a state ~m) as

f dp fdqp(J(p, q) —J )A(p, q)
&A) =

f dp fdqp(J(p, q) —J )

In the present work, we generate well-defined, local-

ized, quantizing vague tori in the chaotic regime and
compute & A ) as averages of A(p, q) over this region.
This procedure eliminates the need for an explicit expres-
sion for p(J(p, q) —J ). The restriction of the classical
density to quantizing vague tori is intended to mimic the
quantum suppression of chaos, which confines the quan-
turn density associated with energy eigenstates to specific
regions of phase space even when the classical density ul-

timately spreads over much of the energy surface. The
generation of quantizing vague tori that are localized in
specific portions of phase space therefore forms an impor-
tant part of the present investigation. %'e discuss how
this is accomplished in Sec. II B.

B. Generation of quantizing tori

We use the method of adiabatic switching to generate
quantizing trajectories and vague tori for the system we
wish to study. To motivate the discussion below and es-
tablish our terminology, we now briefiy review the AS
method 2

Consider a system described by a Hamiltonian H (p, q},
which can be written as

H(p, q) =Ho(p, q)+ H'(p, q),
where Ko is rigorously integrable and H' is a nonsepar-
able perturbation that renders H nonintegrable. By
definition then, the dynamics of Ho is regular and all tra-
jectories generated by this Hamiltonian are confined to
well-defined tori. Thus EBK quantization rules can be
applied to Ho to obtain a set of quantizing tori, charac-
terized by actions J. The adiabatic switching method as-
sumes that if the perturbation is "turned on" infinitely
slowly, the set of zeroth-order actions J remains invari-
ant, while the energies of the trajectories change from the
quantized energies of the integrable system to those of
the fully coupled system. The basis for this expectation is
the classical adiabatic theorem. Although the theorem
can be rigorously proved only in the one-dimensional
case, a comparison of the results obtained from adiabatic
switching with exact quantum results shows that the
assumption is often satisfied to a high level of accuracy by
multidimensional systems. In practical implementations
of the method, the perturbation is, of course, turned on
within a finite interval T, with the aid of a switching
function s ( t), as follows:

H(p, q, t)=H(t)=HO+s(t)H' for 0& t & T,
s(0)=0, s(T)=1 .

Existing studies of the method shows that a careful
choice of Ho, s(t), and T leads to reliably accurate semi-
classical energies even in the chaotic regime.

The success of the adiabatic switching method in quan-
tizing the chaotic part of phase space has been attributed
to the existence of tori for a significant part of the switch-
ing process. Even when tori break down as the coupling
K' becomes stronger, dynamical barriers or
"bottlenecks" tend to confine trajectories to regions in
the close vicinity of the destroyed tori, thus approximate-
ly conserving the actions J. The degree of conservation
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Ho =
—,
' (p„+x+p 2+y 2),

L =xp —yp„,
L =(xp —yp„)
D —1 (p2+x2 p2 y2)

spy +&3'

(3)

The Henon-Heiles potential belongs to the C3, point
group. In the regular regime of this system (low energy),
trajectories are confined mainly to two types of tori: the
librating type and the precessing type. The librating tori
occur in sets of three, bear trajectories of low angular
momentum, and are confined to regions close to the three
C2 symmetry axes of the potential. The precessing tori,
on the other hand, bear trajectories of higher angular
momentum, and occur in pairs corresponding to clock-
wise and counterclockwise motion around the potential
well. The adiabatic switching method requires two
different Ho's to generate the librating and precessing
tori. To form the librating tori, we choose

Ho= —,'(p„+0.81x +p +y ), (4)

so that H'=Ax(y x /3)+0. 19x,—and quantize the
zeroth-order actions

J„=(2m) 'fp„dx,
J =(2n) 'fp dy

by requiring that

J„=(n„+-,') (n„=0,1,2, . . .),
J =(n~+ —,') (n~ =0, 1,2, . . . ) .

(6)

Two other topological equivalents of the librating torus
generated from these initial conditions are obtained by

of these actions in the adiabatic switching calculation of a
particular energy level can be estimated by examining
SE,

„

the root-mean-square deviation in the final energy
for an ensemble of initial points distributed over the torus
of the zeroth-order system. The less accurate conserva-
tion of the J for chaotic systems is re6ected in the larger
values hE, , for the computed energies in the chaotic re-
gime. However, as long as the hE, , are smaller than
the spacings between adjacent quantized energy levels,
the method succeeds in resolving these levels in chaotic
systems. In this paper we use the AS technique to com-
pute semiclassical expectation values of certain dynami-
cal properties in a chaotic system.

The system that we choose for the present investiga-
tions is the Henon-Heiles system. ' The Hamiltonian for
this system is given by

H= ,'(p„+x—+p„+y)+Ax(y x /3)—,

where the value of the perturbation parameter A, is set at
0.08. This system possesses 380 (quasi)bound levels below
the dissociation energy 1/6A, i=26.04. The dynamical
properties A for which we calculate expectation values
( A ) in this system are

and quantize the zeroth-order actions

J„=m 'gp„dr+(2m) '(t)psd8,

J, =(2n) '(t)psde,

by requiring that

J„=n+1 (n=0, 1,2, . . . ),
J&=l (1=+n, +(n —2), . . . ) .

(8)

(9)

Here, r and 0 are conventional polar coordinates. The
direction of the motion of trajectories on the final pre-
cessing torus generated by AS from these initial condi-
tions is determined by the sign of pz. Thus, if the torus
generated by AS bears trajectories that travel in the
clockwise sense, the torus bearing trajectories that pre-
cess in the counterclockwise sense can be generated by
simply reversing the sign of JI.

To calculate the classical expectation value ( A ), the
average in Eq. (2) is evaluated by the Monte Carlo
method as

N

(&) =N'g A—(p q, ), (10)

where the summation runs over N points randomly distri-
buted over the vague torus. These points are generated
by applying the AS method to an ensemble of points on
the zeroth-order torus with action variables as described
above and angle variables randomly and uniformly distri-
buted on the interval (0, 2n ]. That this procedure
indeed results in the formation of a uniformly weighted,
random distribution of points on the evolved vague torus
follows from the work of Skodje and Borondo.

C. Quantum calculation and assignment of quantum states

To form quantum expectation values, the energy eigen-
functions and eigenvalues for the Henon-Heiles system
are calculated by diagonalization of the Hamiltonian in a
basis of isotropic harmonic oscillators f„&which includes
all functions with n 75. This basis is substantially
larger than the one used in the previous investigation of
this system ' and yields energy eigenva1ues that are con-
verged to at least five significant figures for all levels in-
vestigated in this paper.

The energy eigenstates of the system are classified as
belonging to the A, , A2, or E irreducible representations
of the C3, point group. The vague tori obtained by the
AS procedure, however, are labeled by either [n„,n~]
quantum numbers (in the case of librating tori) or (n, l)
quantum numbers (in the case of precessing tori). To
compare the results of the quantum and AS calculations,
it is necessary to identify quantum states with AS tori,
i.e., to assign [n„,n ] or (n, l) quantum numbers to the
quantum states. We accomplish this in an ad hoc

rotating the switched torus through 120 and 240, re-
spectively.

To form the precessing tori we choose

Ho= —,'(p„+x+p +y ),
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manner by associating each quantum state with the AS
torus having the most similar values for the energy and
the ( A &. The resulting quantum number assignments
are somewhat different than those previously reported
due to the use of a larger basis in the current calculations.
These assignments are presented in Sec. III.

The assignment of zeroth-order quantum numbers to
the states of our system is problematic for energy levels
that undergo avoided crossings as functions of A, near
A, =0.08. This complication is discussed in Sec. III.
Another complication arises from dynamic tunneling be-
tween tori located in symmetrically related regions of
phase space. ' ' ' It is well-known that such tunneling
causes the energy eigenstates to be delocalized among the
symmetry-related tori and at least partly lifts the degen-
eracy of their energy levels. To form quantum states that
are localized in regions occupied by the tori, it is thus
necessary to form superpositions ' of the energy eigen-
states involved in the tunneling process. The quantum
expectation values computed over such superposition
states are obviously the most appropriate quantities to be
compared with the semiclassical expectation values com-
puted over the quantizing tori. It is clear that these argu-
ments can be extended to the chaotic regime by relating
quantum superposition states to quantizing vague tori.
We now describe the theoretical considerations which
determine these superpositions.

The following characteristics of the Henon-Heiles sys-
tem are well known. Certain pairs of A

&
and A2 states

are separated by relatively small energy differences. Such
pairs of states generally have intermediate to high values
of the zeroth-order quantum number l and are assigned
the same n and l quantum numbers. Previous studies"
have shown that these states are analogous to the precess-
ing (vague) tori. The semiclassical degeneracy of the two
precessing tori bearing trajectories that travel in the
clockwise and counterclockwise senses is lifted in the
quantum mechanical system by dynamical tunneling be-
tween the two tori. ' It seems reasonable, then, for the
present purposes, to combine such A, -A z pairs to form
superpositions that correspond to the semiclassical tori.
The doubly degenerate E states can be represented as
complex states or as real states formed by superposing
the complex states. Examination of the expectation
values suggests that some of the doubly degenerate com-
plex E states which are assigned intermediate to high
values of the ~l~ quantum number also correspond to pre-
cessing tori. The states corresponding to the precessing
tori in the semiclassical limit are therefore

( la, &+t la &
)/2''

(fa, &
—i]a, &)/2'",

Similarly, certain states of A symmetry (A
&

or A2) occur
very close in energy to states of E symmetry. In these
cases, the expectation values suggest that the A state as
well as the degenerate E states be assigned low values of
the angular momentum quantum number I. In an earlier
investigation of the AS method, Grozdanov, Saini, and

Taylor observed that the semiclassical analogs of such
sets of states seem to be the three librating tori. The en-
ergy splitting between the states of A and E symmetry,
then, arises from dynamical tunneling among the three
symmetrically equivalent tori. It therefore seems reason-
able to combine these sets of three states to form three
superposition states that are topologically similar to the
classical librators. The appropriate superpositions are of
the type~

(
1 )1/2~a &+c( 2 )I/2~e

(-,')'"~a] &
—c(-,')'"le„&+c(-,')'"ley &,

( )/2~a & c( )//2~e
& c( )1/2~e

or

( —')' ~a2 &+c(—')' ~e &,

(
] )I/2~a

& (
] )1/2~

& + (
] )1/2~

(-,')'"~a &,
—c(-,')'"~e, &-c(-,')'"~e, &,

where c =+1, (e„&=[)e &+ ~e" &]/2', and ~e~ &

=[[e &
—[e'&]/(2' 'i).

It is useful, for our discussion below, to describe the re-
lationship between the (n, ~l~) assignments for states with
low values of ~l~ and the more appropriate [n„,n ] quan-
tum numbers that label the librating tori obtained from
AS. For states with an even value of n, the l quantum
number assumes the values 0, +2, +4, . . . , +n, while for
odd values of n, the allowed l values are +1,+3, . . . , +n.
States of A symmetry are labeled by values of ~1~ that are
0 or multiples of 3. The [n„,n ] quantum numbers satis-
fy the condition n„+n =n, and the progression of the
quantum numbers is given by [n„,n ]=[n,O], [n —1, 1],
[n —2, 2], . . . . Indicating the states in a superposition by
enclosing them in braces, the relations between the as-
signments (n, ~l~) (denoted by parentheses) and the [n„,n~]
(denoted by square brackets) are given by

[(n, 0), (n, +2) ) [n, O],

I (n, +4), (n, +6) ] [n —1, 1],
I(n, +6), (n, +8) I

~ [n —2, 2],
for even n, and

t (n, +1),(n, +3) I [n,O],

[(n, +3),(n, +5) j [n —1, 1],
I(n, +7),(n, +9)] [n —2, 2],

for odd n Note that th.e states labeled by ~1~ that are
multiples of 3 correspond to pairs of A

&
and A2 states.

Since only one member of this pair is involved in a cer-
tain librating type superposition, the other can be used in
another superposition. Thus each of the states labeled
(n, +3) and (n, +6) appears in two superpositions. We do
not form librating-type superpositions with ny &2 since
trajectories corresponding to the higher values of n are
no longer confined to the librating regions of phase space
in our system. Generation of such tori by AS using the
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initial conditions of Eqs. (5) and (6) would therefore in-
volve a change in the topology of the evolving torus at
some state during the switching. This would correspond
to a crossing of the precessor-librator separatrix and
would result in a breakdown of the adiabatic assump-
tion. The quantizing tori with n & 2 are, therefore, gen-
erated by the precessing-type initial conditions of Eqs. (8)
and (9), and are labeled by (n, I) quantum numbers.

D. The s~itching process

We now turn to the practical aspects of implementing
the AS method. The switching function s(t) is chosen to
have the form

s (t)= t /T —sin(2m t /T)/2n .

This switching function has been used in several previous
studies. ' ' ' It has been shown to yield semiclassical
energies of good accuracy and small values of hE „pro-
vided that the switching time T is chosen appropriately.

The choice of T must take into account two conflicting
requirements. First, T must not be so long that the
evolving trajectories are significantly influenced by chaos,
causing the large-scale destruction of tori. Under such
circumstances (i) actions are obviously not conserved so
that the theoretical basis of the AS method breaks down,
and (ii) the classical calculations fail to mimic the quan-
tum suppression of chaos which should confine state den-
sity to phase-space regions resembling intact tori. On the
other hand, T must not be chosen so small that nonadia-
baticity becomes severe, causing poor conservation of the
actions, and large values of hE, . Under these cir-
cumstances, the final trajectories will not lie on accurate

tori or vague tori and the semiclassical calculations will
be subject to large errors.

To illustrate these points, we apply the AS method to
the zeroth-order tori labeled by [22,2] and (24, 12). These
tori evolve into vague tori that are typical of those in the
chaotic regime of the fully coupled system. The value of
T we use for the switching process is 300, which is small-
er than the value of 400 used by Skodje, Borondo, and
Reinhardt and others * in applications of the AS
method to the Henon-Heiles Hamiltonian with
A, =0.1118 but large enough to ensure that the hE, ,
values are reasonably small. The final average energies of
the trajectories and the ensemble averages of the six
properties for the two states are presented in the first
column of Table I, while the exact quantum results, com-
puted over superposition states, are presented in the
second column. It is immediately apparent from Table I
that the semiclassical ensemble averages are in very poor
agreement with the quantum expectation values. The
semiclassical energy of the state [22,2] is also considered
to be in error, since the exact quantum energy does not
fall within +hE, , of the AS energy.

Figure 1, which shows the Poincare surfaces compiled
at the end of the switching, helps explain these results.
Figure 1(a}shows the final Poincare surface of state [22,2]
using the s ( t }of Eq. (11). It is clear from this figure that,
although some vestiges of a librating vague torus are
identifiable, many trajectories have already wandered
away from the phase-space region associated with it. The
poor conservation of actions due to this disintegration of
the vague torus is refiected in the inaccuracies in the
semiclassical energies and expectation values.

Figure 1(b) shows the Poincare surface of state (24, 12).
We see that the precessing vague torus corresponding to

TABLE I. Comparison of the exact quantum expectation values ( A )~ to the semiclassica11y expec-
tation values ( A }generated by different switching functions.

Property s(t)' Quantumb s(u)'

Hp
L
L
D
p

Hp
L
L
D
p

23.420*0.034'
27.35+0.36
0.95+0.70

159+9
—2.23+0.95
—1.63+ 1.02

23.700+0.038d

27.58+0.38
2.77+0.73

177+9
0.67+ 1.03

—1.15+0.95

State [22,2)

State (24, 12)

23.464
27.01
0.0

178
—9.02

—15.62

23.724
27.04
7.13

202
0.0
0.0

23.474+0.034
26.95+0.30
0.22+0.77

191+9
—9.26+0.94

—15.66+0.96

23.718%0.039
26.97+0.31
7.67+0.68

208+9
0.97+0.95
0.82+0.91

'Semiclassical expectation values obtained by using the switching function s(t).
Quantum expectation values.
Semiclassical expectation values obtained by using the switching function s (u).
The errors reported in these cases are 6E, values. The errors for the other properties are Monte

Carlo errors p&.
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—8
I l

—6 —4 —2 0 10

this state is also in the process of disintegrating, although
it is somewhat better preserved that that of Fig. 1(a). Not
too surprisingly, the exact quantum energy of this state
falls within the standard deviation hE, , of the semiclas-

sical energy. However, the ensemble averages of proper-
ties A for this state, especially those of I. and L, do not
agree well with the exact quantum results. This suggests
that the semiclassical expectation values (A ) are far
more sensitive to the influence of chaos on the s~itched
trajectories than are the semiclassical energies.

From our discussions above concerning the choice of
T; it would seem that a smaller T might reduce the
influence of chaos on the trajectories. We have, indeed,
found this to be the case. However, the values of T re-
quired to bring the ensemble averages even into approxi-
mate agreement with the exact quantum expectation
values for chaotic states are so small that the bE assume
unacceptably large values.

There is, however, an alternative to the above method
for reducing the influence of chaos, which has the advan-
tage of maintaining acceptably small values for the
bE, , This technique is suggested by two observations:
(i) the symptoms of chaos on an evolving torus become
detectable only towards the end of the switching process,
when the perturbation due to H' becomes sufficiently
large, i.e., when the switching function s(t) becomes
larger than a certain value, which we denote by s, ; and
(ii) for regular states and sufficiently long switching times
T, the nonadiabaticity in the switching process (as mea-
sured by b,E, ,) is largely a function of the rate of the
switching process and the smoothness of the switching
function. This implies that we should be able to mini-
mize the efl'ects of chaos on the switched tori while main-
taining a high level of adiabaticity by using a smooth "ac-
celerated" switching function that slowly increases with
time t from s(0)=0 to the chaotic threshold s„and then
more rapidly traverses the range from s, to 1, at which
point the switching ends. Obviously, such a switching
function can be defined in many ways. We choose the
function to be s(u (t)), where s is the function defined in

Eq. (11)and

u (t) =t [1+af(t —r)],
where

(12)

~ p f (x)= 1/[1+exp( —Px) ] . (13)

~ ~

~ y

~ ~

—6—

—8 —~——
[ I I

—6 —4 —2 0 8 10

FIG. 1. Poincare surfaces of section generated at the end of
adiabatic switching using the switching function s(t) for (a)
state [22,2], and (b) state (24, 12). Only the last intersection be-
fore completion of s~itching is plotted for each of 320 trajec-
tories.

The parameters a, p, and r in Eqs. (12) and (13) merit
some discussion. The "acceleration" in the switching
process begins in the neighborhood of t =~, so that
s(u(r)) can be identified with s, . The magnitude of the
acceleration [i.e., ~s(u) —s(r)~ for t )r] is determined by
the parameter a (u = t if a =0) and the "suddenness" of
the acceleration is determined by the parameter p. Adia-
batic switching using s(u) ends when s(u) reaches the
value of 1, which occurs at some time t & T. Numerical
values for the parameters a, p, and 7 are chosen to yield
trajectories that are relatively uninfluenced by chaos dur-
ing the switching process and that yield AS energies with
srna11 b,E, , By trial and error, we have found that these
conditions are satisfied for the system investigated here
by P~0. 15, 0.75T~r~0. 85T, and a wide range of
values of a (see below).

As an illustration of the use of s (u ) in adiabatic switch-
ing, we compute the quantized energies and the ensemble



1763

parison of the columns in this table that the semiclassical
energy of the state [22,2] is now in much better agree-
ment with the exact quantum energy. The improvement
in the agreement between the semiclassical ( A ) and the
quantum ( A ) for this state and for the state (24, 12) is
also significant.

Poincare surfaces for states [22,2] and (24, 12) obtained
at the end of the switching process using s(u), are
presented in Figs. 2(a) and 2(b), respectively. It is clear
from a cotnparison of Fig. 2(a) to Fig. 1(a) and Fig. 2(b)
to Fig. 1(b) that the vague tori are much better preserved
when s (u) is used instead of s (t} for the switching. The
differences between Figs. 1 and 2 translate into the large
diff'erences between the ( A ) listed in columns 1 and 3 of
Table I. This confirms our earlier observation that the
properties ( A ) are highly sensitive to the influence of
chaos on the vague tori.

We now examine the sensitivity of the AS results to the
"acceleration" parameter a in the switching function.
Setting P=0. 10, ~=245, and T =300, we compute the
( A ) for a set of a values in the range 0~ a ~ 20 for
states [22,2] and (24, 12). Recall that the case a=0 is
equivalent to using s (t) for the switching. The results for
these two states are summarized in Fig. 3. The values of

averages of the properties in Eq. (6) for the same two
states examined above. The results of adiabatic switching
for these states using s(u) instead of s(t} (with a=10,
P=0.10, v=245, and T =300) are presented in the third
column of Table I. It is immediately clear from a com-

(a)

(a)
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I I I I

—6 —4 —2 0
20-
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o o o 80p p

0
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A 10-
V
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25-
o

o o p p
20- o

o

15-
A

v
10-

0 0 0 0 0
0—8

I I

—6 —4 —2

0
0 2 6 8 10 12 14 16 18 20

FIG. 2. Poincare surfaces of section generated at the end of
adiabatic switching using the switching function s(u), for (a)
state [22,2] and (b) state (24, 12). Only the last intersection be-
fore completion of switching is plotted for each of 320 trajec-
tories.

FIG. 3. The semiclassical expectation values as a function of
the switching parameter a for (a) state [22,2] and (b) state
(24, 12). o, (L); H, (L'); 6, (D); 0, (P). (L') has been
multiplied by a factor of 0.1 for clarity of presentation.
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(Ho) are largely insensitive to the parameters in s(u),
and hence the results for this property are not presented
in this figure. The results for those ( A ) that are very
small are also not reported in Fig. 3. These include (L )
for [22,2] and (D ) and ( P ) for (24, 12).

Figure 3 shows that, as a is raised from 0 to about 6 or
8, the ( A ) vary over a fairly broad range in a seemingly
irregular manner. However, for larger values of a, the
( A ) remain fairly constant. To understand these re-
sults, we recall that a determines the rate at which the
chaotic range between s, and 1 is traversed. When a is

sma11, this range is traversed rather slowly, allowing con-
siderable opportunity for the trajectories to be influenced

by chaos. However, when a is large, this range is
traversed rapidly enough that the trajectories cannot
wander far from well-preserved vague tori. Since these
vague tori occupy definite regions of the phase space, the
resulting properties ( A ) have reasonably well-defined
values and are relatively insensitive to further variations
in a. Presumably, if the value of a were increased
indefinitely, a point would be reached where the switch-

ing would be completed so quickly that the nonadiabati-
city would become unacceptably high.

To generate semiclassical expectation values ( A ) for
comparison with the exact quantum results, we apply the
accelerated AS procedure to an ensemble of 320 trajec-
tories for each state. We choose the parameters in the
switching function to be P=0. 10, v=245, and T=300
and repeat these calculations with three values of a: 8.0,
10.0, and 12.0. We compute the ( A ) over the ensemble
of trajectories for each a and report the average of these
three results and the standard deviation o z for compar-
ison with the exact quantum expectation values. This
comparison is the topic of Sec. III.

III. COMPARISON OF QUANTUM
AND SEMICLASSICAL EXPECTATION VALUES

In this section, we examine and discuss the results of
our calculations of semiclassical expectation values for
states with n in the range 20-25. These states encompass
a range of energy in which the dynamics of the classical
Henon-Heiles system varies from partly chaotic (E =20,
where about half of the energy surface is occupied by reg-
ular trajectories) to mostly chaotic (near the dissociation
energy at E =26.04, where only a small portion of the en-
ergy surface is occupied by regular trajectories). To
present our results in a systematic manner, we divide our
discussion into four sections. In Sec. IIIA we examine
the general trends in the ( A ) and the ( A )~ as the (n, l)

quantum numbers vary. In Sec. III 8 we examine
discrepancies observed between the semiclassical and
quantum results, and relate them to purely quantal phe-
nomena such as quantum trapping and tunneling associ-
ated with avoided crossings. In Sec. IIIC we examine
evidence that the tunneling observed here is a widespread
phenomenon for chaotic systems. Finally, in Sec. IIID
we describe the possible implications of these results for
the ability of quantum systems to display statistical be-
havior.

A. Semiclassical and quantum expectation values

Previous studies ' ' '4'~ '~ ' ' '~' of the Henon-
Heiles system have generated a wealth of information re-
garding its dynamics. It is thus possible to anticipate the
trends in the semiclassical expectation values ( A ) as
functions of the quantum numbers. For states with very
small values of ~1~, the quantizing vague tori, labeled by
[n„,n ] quantum numbers, bear trajectories that are
confined by barriers to regions close to the three C2 axes
of the Henon-Heiles potential. The almost complete ab-
sence of any precessing character for these states is ex-
pected to be refiected in relatively small values of (L ),
and corresponding large values of (D ) and (P). As the
value of n~ (or ~l~) increases, the amplitude of the motion
normal to the C2 axes increases. This means that the
values of ( L ) increase, while those of ( D ) and ( P ) de-
crease. As ~l~ increases further, more trajectories are able
to surmount to barriers and precess, and the resulting
vague tori are labeled by (n, l) quantum numbers. For
such vague tori, (L ) and (L ) should increase more or
less monotonically as ~l~ increases. Of course, in the ab-
sence of purely quantal phenomena, similar behavior is
expected for the ( A ) as well. The quantum expectation
values, however, can be shown to obey certain additional
relationships. From the symmetry of the quantum super-
position states, it can be proved that (L)~—=0 and
(P)q =&3(D) for the librating-type superpositions,
while (D) =(P) =0 for the precessing-type superposi-
tions. If the classical-quantal correspondence is good, the
classical ( A ) should satisfy similar relationships. The
extent to which these relationships are indeed found to be
satisfied provides an additional check for the success of
the AS procedure.

We now summarize our results in the form of Figs.
4(a)-4(f), where the classical and quantum versions of
(L), (L2), (D), and (P) are plotted for each n, as
functions of ~l~. The results for those states that have
been quantized from zeroth-order tori [n„,n ] are plotted
at the mean value of

~ l~ for the superposition. For exam-
ple, the state [22,0] corresponds to a superposition of the
states labeled by (22,0j and (22,2). We thus plot the re-
sults for this state at ~1~= 1 in the appropriate figure.
This convention is maintained in all six subfigures. We
do not present the results for the (Ho) in these figures
because the differences between (Ho) and (Ho) are
usually very small. We also do not present the results for
(D), (P), (D)~, and (P)~ for precessing states since
these ( A )'s are very sinall, and the ( A ) 's rigorously
vanish.

We thus present, in Fig. 4(a), the semiclassical and
quantum expectation values of selected properties for
states with n =20. It is clear that the semiclassical ex-
pectation values, open symbols connected by dashed
lines, do behave in the qualitative manner anticipated
from the earlier discussion. We see that the quantum re-
sults also follow the general trends in the ( A ): the
(D )~ and (P ) decrease from relatively high values as

~1~ increases, while (L ) increases. (L ) is identically
zero for the librating type superpositions, but increases
with ~l~ for the precessing type states. The (A ) and
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( A )~ are in good agreement for all of the states with

n =20, with the sole exception of the state (20,18}. More-
over, it may be verified that the relationship
(P ) =&3(D ) is also satisfied by the classical librating-
type vague tori. These observations suggest that our pro-
cedure is generally successful in generating the correct

quantizing vague tori in the chaotic regime of the
Henon-Heiles system, and also in suppressing, to an ap-
preciable extent, the influence of strong chaos on these
vague tori. We postpone to Sec. III B a detailed discus-
sion of the large discrepancies between the ( A ) and
( A ), such as observed in the case of state (20, 18}.
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FIG. 4. Quantum and semiclassical expectation values as a function of
l ll, for states with (a) n =20, (b) n =21, (c) n =22, (d) n =23,

(e) n=24, and (f) n=25. The open symbols represent the semiclassical results while the solid symbols represent the corresponding
quantum results. Expectation values for L' have been multiplied by a factor of 0.1 while the value of 20 has been added to the expec-
tation values for D and P for clarity of presentation. Data are taken from Table II.
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TABLE II. Comparison of semiclassical and quantum expectation values. (a) Librating-type states
occur in sets of three. The (D ) and (P ) that are tabulated correspond to one of these states; the (D )
and (P ) for the remaining states can be deduced by symmetry, as described in Ref. 6. (b) Precessing-
type states occur in pairs, one having the value of (L ) that is tabulated and the other having the nega-
tive of this value.

State

[20,0]
{40A„69E]

[19,1]
{31 A2, 70EI

[21,0]
{44A „76E]

[20,1]
{33 A), 78EI

[19,2]
{45A „79E)

[22,0]
{47A ),83E{

[21,1]
{37A2,84E}

[20,2]
{49A, , 86E]

[23,0]
{51Ai, 89EJ

E
Ho
L
L2

D
P

E
Ho
L
L
D
P

E
Ho
L
L2

D
P

Ho
L
L2

D
P

E
Ho
L
L2

D
P

E
Ho
L
L
D

P

Ho
L
L2

D
P

E
Ho
L
L
D
P

H()
L

(a) Librating-type
19.6343
23.11
0.0

34.2
—10.44
—18.08

19.8420
22.46
0.0

90.3
—9.46

—16.38

20.4754
20.41
0.0

40.5
—12.79
—22. 16

20.7080
23.67
0.0

100.6
—9.68

—16.77

20.8687
23.10
0.0

148.1

—7.69
—13.32

21.3206
25.84
0.0

42.6
—14.12

—24.45

21.5622
24.97
0.0

108.4
—11.54
—20.00

21.7425
24.38
0.0

154.1
—7.41

—12.84

22.1151
27.28
0.0

(A)
states

19.6387
22.87
0.17

37.9
—10.78
—18.69

19.8474
22.44
0.17

86.4
—9.27

—16.05

20.4805
24.47
0.23

41.1
—11.90
—19.88

20.7126
23.93
0.07

99.6
—10.08
—17.24

20.8623
22.95
0.62

155.7
—6.73

—11.66

21.3078
25.62
0.12

51.6
—12.19

—20.86

21.5651
24.88
0.25

112.3
—10.51
—17.83

21.7468
24.11
0.31

154.1
—8.12

—13.61

22.1236
27.01
0.05

0.0001
0.35
0.29
0.6
0.46
0.16

0.0005
0.26
0.68
3.3
0.35
0.25

0.0011
0.05
0.18
1.7
0.07
0.03

0.0006
0.28
0.31
1.5
0.33
0.57

0.0006
0.12
0.18
6.3
0.33
0.39

0.0008
0.24
0.35
3.7
0.41

0.08

0.0006
0.15
0.58
4.6
0.32
0.21

0.0012
0.13
0.54
0.2
0.60
0.37

0.0019
0.62
0.32

0.0005
0.32
0.35
1.9
0.28
0.31

0.0006
0.26
0.53
4.0
0.43
0.35

0.0007
0.36
0.63
2.3
0.29
0.34

0.0007
0.30
0.56
4.7
0.45
0.36

0.0007
0.18
0.71
5.7
0.73
0.52

0.0009
0.40
0.42
2.9
0.32

0.35

0.0011
0.31
0.61
5.8
0.45
0.39

0.0010
0.22
0.69
6.4
0.62
0.48

0.0012
0.45
0.44
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TABLE II. (Continued).

State

[22,1]
(40A„92E}

[21,2]

( 54 A 1,93Ej

[24,0]
[55A),95E}

[23,1]
[44A„98E}

[22,2]

( 57A i, 10E}

[25,0]
j 58 A „104E}

[24,1]
(47Ap, 106E}

[23,2]
j 61A i, 108E}

Lz

D
P

Hp
L
L
D
P

E
Hp
L
L2

D
P

Hp
L
L2

D
P

Hp
L
L
D
P

Hp
L
Lz

D
P

Hp
L
L2

D
P

Hp
L

D
P

Hp
L
L
D
P

&A),

48.8
—12.24
—21.21

22.4091
26.02
0.0

133.9
—10.60
—18.37

22.6154
25.32
0.0

187.0
—9.61

—16.65

22.9095
28.54
0.0

66.6
—13.04
—22.59

23.2369
27.60
0.0

132.6
—11.02
—19.09

23.4643
27.00
0.0

178.0
—9.02

—15.62

23.6907
30.20
0.0

71.5
—15.46
—26.79

24.0445
28.74
0.0

156.4
—11.76
—20.37

24.2907
28.48
0.0

190.0
—10.15
—17.58

&A)

57.7
—12.44
—22.26

22.4088
25.97
0.12

126.7
—10.97
—18.54

22.6134
25.66
0.02

166.3
—8.90

—15.03

22.9244
28.37
0.22

72.5
—13.27
—23.08

23.2424
27.46
0.04

137.9
—11.49
—19.33

23.4699
27.01
0.55

181.0
—9.19

—16.57

23.7103
29.43
0.05

95.6
—13.56
—23.44

24.0571
29.22
0.07

14.20
—11.74
—20.36

24.3131
28.45
0.56

189.6
—9.67

—15.34

3.9
0.42
0.44

0.0003
0.27
0.59
4. 1

0.30
0.57

0.0007
0.26
0.97
0.7
0.66
0.89

0.0012
0.42
0.27
2.3
0.39
0.38

0.0015
0.17
0.72
4.1

0.50
0.06

0.0005
0.13
0.75

10.9
0.24
0.32

0.0034
0.19
0.24
3.3
0.06
0.20

0.0031
0.32
0.33
3.3
0.43
0.17

0.0006
0.39
1.26
2.0
0.59
0.29

34
0.32
0.42

0.0015
0.34
0.64
5.8
0.47
0.42

0.0014
0.72
0.71
7.9
0.64
0.53

0.0017
0.49
0.49
4.0
0.34
0.46

0.0021
0.39
0.67
8.0
0.52
0.48

0.0020
0.36
0.77
9.0
0.66
0.57

0.00024
0.51
0.56
5.8
0.40
0.47

0.0030
0.46
0.67
8.7
0.59
0.62

0.0029
0.40
0.81

10.3
0.80
0.69

{20,8)
72E

E
Hp
L

(b) Precessing-type states
20.0007 19.9973
22.10 22. 16

5.07 5.86

0.0009
0.16
0.25

0.0008
0.18
0.56
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TABLE II. (Continued).

State

(20,10)
73E

(20, 12)
I43A i, 32A, I

(20, 14)
75E

(20, 16)
77E

(20, 18)
I46A „34A~I

(20,20)
82E

(21,11)
80E

(21,13)
81E

(21,15)
t48A „36A,)

(21,17)
85E

(21,19)
88E

(21,21)
(52 A i, 39 A 21

(22, 10)
87E

Lz

Hp
L
L

Hp
L
L2

Ho
L
L

E
Hp
L
L2

Ho
L
L

E
Hp
L
L'

E
Ho
L
L

Hp
L
L

Ho
L
L

E
Hp
L
L2

E
Hp
L
L2

E
Hp
L
L
E
Hp
L
L2

(A),
126.7

20.1124
22.08
7.41

140.3

20.2589
22.04
9.46

159.9

20.4401
22.01
11.09

182.8

20.6592
21.80
13.12

220.7

20.9224
21.78
12.01

250.7

21.2346
21.02
18.07

341.4

21.0557
23.22

8.12
160.7

21.2151
23.20
9.99

179.9

21.4115
23.06
11.88

209.9

21.6451
22.90
13.67

245.7

21.9247
22.61
15.87

295.6

22.2585
22.07
18.80

371.5
21.8628
24.29
6.31

171.5

(A)
130.8

10.1069
21.91
7.11

142.8

20.2565
21.95

8.92
150.9

20.4369
21.90
11.66

193.2

20.6567
21.66
13.36

228.2

20.9177
21.52
15.30

267.5

21.2286
21.23
18.02

341.2

21.0529
23.33
7.47

157.5

21.2124
23.09
9.91

179.4

21.4088
23.24
11.98

211.7

21.6424
22.90
14.14

255.3

21.9195
22.51
15.75

288.0

22.2519
22.27
18.25

353.7
21.8538
24.31
6.62

174.9

5.4

0.0007
0.10
0.13
5.6

0.0008
0.04
0.42
7.3

0.0003
0.12
0.36

11.2

0.0010
0.16
0.05
0.2

0.0003
0.04
0.13
3.1

0.0005
0.03
0.06
2.6

0.0005
0.20
0.04
3.1

0.0012
0.07
0.53

10.0

0.0001
0.16
0.42
3.8

0.0009
0.19
0.47

10.1

0.0005
0.13
0.29
6.9

0.0002
0.16
0.25
9.5
0.0011
0.16
0.56
8.6

5.8

0.0011
0.18
0.55
7.3

0.0010
0.19
0.47
8.1

0.0010
0.18
0.44
9.5

0.0008
0.16
0.40
9.6

0.0008
0.15
0.33
9.7

0.0005
0.12
0.23
8.5

0.0011
0.22
0.57
8.0

0.0013
0.21
0.50
9.67

0.0013
0.22
0.48

10.2

0.0011
0.18
0.43

10.6

0.0010
0.15
0.37

11.2

0.0006
0.13
0.26
9.8
0.0018
0.24
0.64
7.9
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TABLE II. (Continued).

State

(22, 12)

t 503, , 383, )

(22, 14)
90E

(22, 16)
91E

(22, 18)
l53A| 4132 I

(22,20)
96E

(22,22)
99E

(23, 11)
94E

(23,13)
97E

(23, 15)
[562|,43A, )

(23,17)
100E

(23,19)
103E

Ho
L
L

E
Ho
L
I 2

Ho
L
L

E
Ho
L
L2

E
Ho
L
L

Ho
L
L

E
Ho
L
L2

E
Ho
L
L'

E
Ho
L
L2

E
Ho
L
L

E
Ho
L
L 2

21.9978
24.40

8.63
180.7

22. 1731
24.36
10.30

202.6

22.3757
24.61
10.54

210.9

22.6202
24.58
10.73

237. 1

22.9249
23.73
16.44

321.3

23.2820
23.15
19.45

401.2

22.7891
25.56
6.96

188.2

22.9467
25.97
7.60

187.1

23.1238
25.56
10.76

224.3

23.3485
25.42
12.37

255.6

23.6290
25.50
11.55

277.5

21.9966
24. 12

8.45
176.2

22. 1670
24.26
10.08

193.3

22.3778
24.24
11.74

231.8

22.6262
23.80
14.53

278.2

22.9206
24.00
16.86

332.8

23.2736
23.43
19.01

387.8

22.7849
25.82

7.17
202.2

22.9369
25.39
9.09

217.5

23.1203
25.87
10.32

211.4

23.3452
25.34
12.15

262.6

23.6098
24.88
14.67

292.9

0.0003
0.14
0.76
8.3

0.0009
0.05
0.42

12.9

0.0007
0.04
0.32
5.2

0.0011
0.02
0.51
9.8

0.0021
0.17
0.08
1.4

0.0012
0.03
0.12
2.5

0.0012
0.13
0.65
2.5

0.0016
0.14
0.33
5.9

0.0030
0.07
0.36
3.4

0.0021
0.10
0.49
6.36

0.0086
0.05
0.49
9.4

0.0015
0.23
0.59
8.8

0.0016
0.23
0.55

10.9

0.0016
0.21
0.56

11.4

0.0014
0.19
0.48

1 1.4

0.0013
0.18
0.40

12.4

0.0013
0.15
0.30

11.6

0.0009
0.30
0.71
9.3

0.0020
0.24
0.65

11.0

0.0021
0.28
0.59

11.8

0.0018
0.22
0.63

12.2

0.0017
0.20
0.51

13.2

(23,21)
[603, , 4632 )

E
Ho
L
L

23.9233
24.90
17.01

346.3

23.9196
24.91
16.94

345.47

0.0007
0.09
0.54

12.4

0.0017
0.20
0.46

14.3

(23,23)
109E

E
Ho
L
L2

24.3046
24.41
19.29

421.5

24.2940
24.61
18.88

395.1

0.0009
0.27
0.17
7.4

0.0013
0.28
0.35

13.3



1770 B. RAMACHANDRAN AND KENNETH G. KAY

TABLE II. (Continued).

State

(24, 10)
102E

(24, 12)

f 59 A, , 45 A 2 j

(24, 14)
105E

(24, 16)
107E

(24, 18)
I62A „48A~j

(24,20)
112E

(24,22)
115E

(24,24)
(67A, , 52Ap j

(25, 11)
111E

(25, 13)
113E

(25, 15)

j64A„SOAp j

(25, 17)
116E

(25, 19)
119E

(25,21)
t69A, , 54A, j

E
Ho
L
Lz

E
Ho
L
Lz

E
Ho
L
L2

E
Ho
L
L2

Ho
L
L

E
Ho
L
L 2

Ho
L
Lz

E
Ho
L
L

E
Ho
L
L2

E
Ho
L
L

E
Ho
L
Lz

E
Ho
L
g 2

E
Ho
L
Lz

E
Ho

&A),

23.5883
26.19
7.22

230.7

23.7235
27.04
7.13

201.5

23.8786
26.79
9.38

227.6

24.0931
27.11

8.17
236.1

24.3299
26.99
9.97

265.5

24.6027
26.27
14.76

329.2

24.9184
26.14
17.28

368.4

25.3235
25.57
20.07

448.8

24.5050
28.19

5.68
217.3

24.6448
27.92
7.26

239.7

24.8022
28.59
7.91

229. 1

25.023
28.35
9.96

261.5

25.2699
28.23
8.75

286.5

25.5818
27.34

&A)

23.5810
26.61
4.21

199.0

23.7165
27.12
7.53

221.5

23.8764
26.50
9.32

229.9

24.0724
27.25
9.52

226.9

24.3096
26.49
12.03

281.1

24.5923
26.16
15.84

333.9

24.9161
26.08
16.99

365.9

25.3123
26.24
18.88

411.7

24.4940
28.43
4.28

216.3

24.6424
27.48
7.02

253.9

24.8126
28.43

8.98
247.0

25.014
28.56
9.11

259.6

25.2759
27.23
12.24

315.31

25.5723
27.26

0.0024
0.27
0.47
3.1

D.0002
0.48
0.85
8.2

0.0002
0.04
0.66

10.1

0.0011
0.16
1.17

15.2

0.0015
0.05
0.71

11.3

0.0021
0.17
0.40
9.9

0.0019
0.10
0.04
2.8

0.0025
0.44
0.44

12.5

0.0002
0.09
0.26
3.9

0.0038
0.20
0.89

11.0

0.0038
0.27
0.20
5.2

0.003
0.16
0.74

10.0

D.0022
0.18
0.49

10.9

0.0012
0.35

0.0030
0.28
0.75
9.6

0.0022
0.31
0.73
9.5

0.0026
0.26
0.68

12.4

0.0027
0.31
0.67

11.9

0.0023
0.23
0.67

12.5

0.0020
0.24
0.54

15.0

0.0024
0.21
0.50

15.3

0.0017
0.20
0.44

15.9

0.0032
0.34
0.80

11.0

0.0028
0.28
0.84

11.9

0.0035
0.33
0.74

13.2

0.004
0.33
0.76

12.5

0.0024
0.23
0.72

14.3

0.0026
0.26
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TABLE II. (Continued).

State

(25,23)
125E

(25,25)
130E

L
L2.

E
Hp
L
L'

E
Hp

L
Lz

15.80
364.3

25.9085
27.49
17.32

387.1

26.3443
27.67
15.73

430.0

(A)
15.88

354.5

25.9089
27.54
17.82

409.1

26.3254
27.87

18.20
412.8

0.69
15.5

0.0027
0.13
0.16

17.8

0.0036
0.22

0.48
17.5

0.60
15.7

0.0031
0.24
0.54

16.9

0.0025
0.24
0.51

18.1

The results for the states with n =21, 22, 23, 24, and
25 are presented in Figs. 4(b) —4(f), respectively. We see
from these figures that the trends in the ( A ) remain
essentially unchanged as n increases. The ( A ) on aver-

age seem to follow the trends in the ( A ), in each of the
figures. However, significant deviations from the antici-
pated behavior are observed in many instances. Also,
substantial differences between the ( A ) and the ( A ) q

become more frequent as n increases.
A more complete description of our results is presented

in Table II. Also listed in that table are the identities of
the states that are combined to form each of the superpo-
sitions, and the (n, ~t~) or [n„,n ] assignments of the su-

perposition states. In addition, two measures of the relia-
bility of the classical calculations are tabulated: (i) stan-
dard deviation cr

„

in the ( A ) taken over the results of
three calculations with a=8.0, 10.0, and 12.0; and (ii) the
Monte-Carlo error, given by p„=6 A„,/N ' ~, where
b A, , is the rms deviation in ( A ) computed over an en-
semble of N trajectories. The Monte Carlo errors p~
presented in Table II are the largest of the Monte Carlo
errors among the calculations for the three values of a.
The largest hE, , values among the three calculations
for a given state is therefore, given by hE, , =N' pE.

A review of Table II reveals that the AS energies al-
ways agree with the exact quantum superposition ener-
gies to within hE, , This is an important finding, since
we saw in Sec. II 8 that the use of the switching function
s(t) in AS did not yield the correct quantized energies in
the case of the state [22,2]. This also indicates that we
have superposed the correct energy eigenstates for our
comparison with the AS results. Turning to the standard
deviations o.~, we see that they are almost always quite
small compared to the ( A ), indicating that the latter
quantities are relatively insensitive to the choice of the
parameter a in s(u). In Sec. II B, we interpreted the in-
sensitivity of the ( A ) to the value of a to mean that the
vague tori at the end of the switching process are rela-
tively well preserved, and localized in specific regions of
phase space. The accuracy of the AS energies and the
small values of o. z therefore indicate that our procedure
succeeds in producing quantized vague tori that are rela-
tively free from the influence of chaos.

B. Quantum-classical discrepancies

We consider states for which ~( A ) —( A ) ~
)2p„for

any A examined as exhibiting a quantum-classical
discrepancy. Admittedly, this condition is rather arbi-
trary and allows a rather generous range of differences to
be treated as insignificant. However, it ensures that we
will not encounter too many apparent discrepancies that
are simply artifacts of the Monte Carlo procedure, and
accounts, approximately, for the presence of the standard
errors a

„

that are often on the order of the p,„.
Note that we do not consider the total energy E as one

of the properties A while detecting discrepancies by the
above procedure. This is because, unlike the remaining
properties, the energy is a function only of action vari-
ables for an integrable system. As a result, the energy is
much less sensitive to differences in the quantum and
classical phase-space densities than the other properties.
Furthermore, the very small values of the pE suggest that
these Monte Carlo errors measure only the spread in ac-
tion variables in the vague torus. Thus violations of the
condition

~ ( H ) —( H )
~ 2pE indicate limitations of

the classical AS method due to nonadiabaticity and
chaos, rather than the essential differences in the quan-
tum and classical state densities that are of primary in-
terest here.

Table III lists the states that exhibit classical-quantum
discrepancies, according to the above criterion, and
identifies the properties 3 in which the discrepancies are
observed. Such discrepancies can arise from two distinct
sources: (i) purely classical effects that cause failure of
the AS method to produce accurate vague tori for certain
states, and (ii) purely quantum effects that cause actual
differences in the forms of the classical and quantum
phase space densities for certain states. Discrepancies of
the second kind imply differences in the quantum and
classical dynamics and are the main subject of concern in
this work.

A substantial amount of evidence supports the view
that the discrepancies listed in Table III are not caused
by the purely classical inadequacy of the AS method to
produce vague tori. Such a failure of the AS method
could, conceivably, be caused by the chaotic nature of the
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TABLE III. Discrepancies between quantum and classical
expectation values.

State
Discrepant
properties' Explanations

final system, or by the passage across separatrices bound-
ing large classical resonant zones ' ' during the
switching process. However, it is unlikely that the pres-
ence of chaos is directly responsible for the differences,
since states that exhibit the disagreements do not consid-
erably lie in the most chaotic regions of phase space.
Indeed, there are states in highly chaotic portions of
phase space that do not show significant classical-
quantum discrepancies. Also, it does not appear that the
passage across separatrices causes the differences. This
may seem to be an especially likely source of the
discrepancies since (as we will show below) many such
discrepancies are associated with avoided crossings of
quantum energy level curves near k=0.08, and such
crossings are known to indicate the existence of classical
resonance conditions. ' However, if this were
indeed the source of the discrepancies, we would expect
them to be accompanied by especially large values of
AE,

„

indicating strong nonadiabaticities —an effect
that is not observed. In addition, if this were the cause of
the differences, we would expect to find quantum-classical
disagreements for all precessing states with levels that un-
dergo avoided crossings with A, (0.08, not just those that
have crossings at A, =0.08. This, again is not observed.
Our conclusion that the resonances are ineffective in
causing the discrepancies is consistent with their weak
and high-order nature.

Figure 4 provides additional evidence that the
discrepancies are not due to purely classical effects that
cause the AS method to fail for certain states. It is evi-
dent from these figures that, in most cases, the discrepan-

cies are accompanied by strong irregularities in the
quantum —not the classical —curves. This suggests that
the disagreements result from effects that occur in the
quantum calculations for specific states, i.e., that the
discrepancies signify true differences between the quan-
tum and classical descriptions of the states. Additional
evidence that the discrepancies are associated with quan-
tum effects will be presented later in this section.

%e now attempt to identify the quantum effects that
cause the discrepancies. As we describe below, it is possi-
ble to attribute almost all of the quantum-classical
disagreements to two quantum phenomena: trapping
effects that occur for states with extreme values for quan-
turn numbers and nonclassical effects that are associated
with avoided crossings (AC's) of energy levels as a func-
tion of the parameter A, .

Quantum-mechanical trapping ' is a localization of
states in regions of phase space associated with extreme
values for quantum numbers, when the classical system
displays no such behavior. Trapping has, by now, been
observed in a variety of systems, including the
present one. It can be explained in several (possibly
equivalent) ways as being caused by the ineffectiveness in
quantum systems of narrow, high-order classical reso-
nances, certain nonadiabatic effects, or low classical
flux through barriers (the quantum suppression of
chaos ' ' ). For the Henon-Heiles system with energy
near the dissociation limit, trapping occurs for two kinds
of states states [n„,n ] with low n (especially n~=0),
and states (n, l) with high 1 (especially l =n) The .local-
ized nature of quantum states relative to their classical
counterparts leads to the following predictions for the
expectation values ( A ):

(L ) ((L ), (D) ) (D), (P) ) (P), low n

(L ) )(L ), (L) )(L), high l .

[21,0]
[19,2]
[22,0]
[21,1]
[23,0]
[21,2]
[25,0]
[23,2]

Librating-type states
(D)„&P),
(P),«'), (D)„(P),
(D)„&P),
(L'&, &P)
&L'), , &P&,
(L'), (D)„(»,
(P),

(20,18)
(22, 16)
(22, 18)
(23,13)
(23,19)
(24, 10)
(24, 12)
(24, 16)
(24, 18)
(24,24)
(25, 19)
(25,25)

Precessing-type states
(I. &

(L)
(H. )„«),(L')
(H. )„(L),«')
&H. )„«)
(L )„(L-'),
«')
&L)
(H. &„&I.&
&H. &, (L ), , (L'),
(H, &„(L.'&, (I. )

'The largerof (2) and (3 ) is listed.

trapping
AC: (21,9)—(20, 18)
trapping
unknown

trapping
AC: (23,9)—(22, 18)
trapping
AC: (25,9)—(24, 18)

AC: (21,9)—(20, 18)
AC: (23,5)—(22, 16)
AC: (23,9)—(22, 18)
AC: (24,2)—(23,13)
AC: (24, 10)—(23,19)
AC: (24, 10)—(23,19)
AC: (25,3)—(24, 12)
AC: (25,5)—(24, 16)
AC: (25,9)—(24, 18)
trapping
AC: (26,10)—(25, 19)
trapping

Table III identifies those discrepancies that are due to
trapping. It can be verified that the anticipated effects on
the ( A ) are indeed observed in most cases. However,
exceptions occur for states [23,0] and (25,25). The excep-
tion for [23,0] may be due to the influence of weak AC's
which tend to oppose the effects of trapping on the expec-
tation values. As shown below, the simultaneous action
by trapping and AC effects also explains the absence of
discrepancies for state [24,0] which would be expected to
show a strong trapping influence. The exception for
(25,25) may be related to the fact that this state lies above
the dissociation energy for the system.

Almost all of the remaining discrepancies listed in
Table III can be associated with avoided crossings of en-
ergy eigenvalues near A, =0.08. To make this matter
clearer, Fig. 5 shows a range of Henon-Heiles energy lev-
els as a function of k, between X=0.075 and 0.085.
Those avoided crossings in this energy range that are as-
sociated with nontrapping quantum-classical discrepan-
cies are marked by circles placed at the closest approach
of the energy levels. It is immediately apparent that all
such AC's occur near k =0.08, while states that undergo
avoided crossings away from X=0.08 do not show such
discrepancies. This finding has the following significance.
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TABLE IV. Avoided crossings in
17.9 + E «25.3

the Henon-Heiles system for the range 0.075 «k «0.085 and

States
«, I ~I )-«'.

I
~'I )

(18,0)-(17,15)
(20,0)—(19,15)
(22,0)—(21,15)
(24,0)—(23,15)

(19,1)-(18,14)
(21,1)-(20,14)
(23,1)—(22, 14)
(25, 1)-(24,14)

(19,1)-(18,16)
(21,1)-(20,16)

(23,1)-(21,19)
(25,1)-(23,19)

(26,2)-(25, 11)

(22,2)—(21,13)
(24,2)-(23,13)
(26,2)-(25,13)

(22,2)-(20,20)
(24,2)-(22,20)
(26,2)—(24,20)

(26,2)-(23,23)

(23,3)-(22,12)
(25,3)-(24,12)

(23,3)-(21,21)

(25,3)-(23,21)

(18,4)-(17,17)
(20,4)—(19,17)
(22,4)-(21,17)
(24,4)-(23.17)

(24,4)—(22,22)
(26,4)-(24,22)

(17,5)-(16,16)
(19,5)—(18,16)
(21,5)-(20,16)
(23,5)-(22, 16)

(25,5)—(24, 16)

(22,6)-(21,15)
{24,6)—(23,15)
(26,6)—(25,15)

(25,7)—(23,23)

(25,7)—(24, 16)

{18,8)—(17,17)
(20,8)—(19,17)
(22,8)—(21,17)
(24,8)—(23,17)

(24,8)—(22,22)

(19,9)-(18,18)

R(0.08)

0.49
0.28
0.11
0.08

0.11
0.37
0.29
0.10

0.06
0.09

0.06
0.23

0.52

0.10
0.69

d

0.06
0.10
0.10

0.15

0.41
0.75

0.08
0.09

0.52
0.20

0.09
0.05
0.11
0.14

0.06
0.39

0.07
0.21
0.33
0.82

0.80

0.45
0.73
1.00

0.40

0.22

0.22
0.25
0.43
0.51

0.11

0.19

0.004
0.011
0.012
0.017

0.011
0.013
0.017
0.109

0.009
0.016

0.011
0.015

0.026

0.009
0.027
0.032

0.004
0.002
0.009

0.023

0.049
0.046

0.011
0.013

0.126
0.026

0.008
0.004
0.010
0.016

0.003
0.025

0.004
0.012
0.017
0.030

0.071
0.089
0.098

0.003

0.045

0.013
0.021
0.047
0.063
0.021

0.0802
0.079
0.077
0.075'

0.0833
0.0810
Q.O785'
0.0760

0.076'
0.075'

0.083'
0.081'

0.0791

0.0810
0.0793
0.076

0.0812
0.0797
0.078

0.082

0.0826"
0.0792"

O.O78'

0.083

0.077'
0.082

0.0766'
0.077'
0.077'
0.076'

0.0791
0.0793

0.082
0.082'
0.082'
0.0808

0.0793'

0.085~

0.083~
0.0799~

0.0799'

0.084'

0.082'
0.084'
0 085'
0.083
0.084

O.O79O'
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TABLE IV. (Continued).

States

(21,9)-(20,18)

(23.9)—(22, 18)

(25,9)—(24, 18)

(20, 10)—(19,19)
(22, 10)-(21,19)
(24, 10)-(23,19)
(26, 10)-(25,19)

(23,11)-(22,20)

(25,11)-(23,23)

(26, 12)-(25,21)

(26, 12)-(24,24)

(21,13)-(20,20)
(23,13)-(22,20)
(25, 13)-(24,20)

(24, 16)—(23,23)

(23,17)—(22,22)
(25, 17)-(24,22)

R(0.08)

0.38

0.84
0.63

0.99
0.70

0.93
0.82

0.10
0.26
0.87
1.00

0.34

0.15

0.16

0.31
0.36

0.02
0.09
0.34

0.02

0.13
0.17

0.005

0.016
0.200

0.037
0.059

0.063
0.118

0.010
0.016
0.035
0.073

0.040

0.030

0.021

0.037
0.019

0.001
0.002
0.014

0.003

0.009
0.018

0.0795

0.0796'
0.0810

0.0797'
0.084

0.0791'
0.085

0.076'
0 077'
0.0790'
0.0803'

0.083

0.084'

0075 '
0.083'
0.0809

0.0793
0.0809
0.082

0.076'

0.082
0.082

'The
~

I'~ state is involved in more than one isolated avoided crossing for the range of )I, considered.
The ~l~ state is involved in more than one isolated avoided crossing for the range of X considered.

'Both states are involved in more than one isolated avoided crossing for the range of A, considered.
R (0.08) not computed since other AC's intervene between A,„and0.08.

'Only the A
&

states are involved in the avoided crossing.
Both the A& and A2 states are involved in the avoided crossing. The value for the A& state is reported
on the first line, and that for the A2 state, on the second.
Only the A2 states are involved in the avoided crossing.

If the avoided crossings were associated with classical
resonances, and the discrepancies were due to the break-
down of the AS method at sufficiently strong resonances,
we would expect the discrepancies to be present in every
case the states are involved in an avoided crossing for
A, ~0.08, not just those that take place near X=0.08.
Figure 5, therefore, suggests that a nonc1assical
phenomenon is associated with the circled AC's, which in
turn are responsible for the observed quantum-classical
discrepancies.

To quantify the effects of the AC's on the expectation
values, we introduce three parameters to describe each
such AC. Consider an avoided crossing between two en-
ergy curves E+(A, } and E (A. }. Then A,„,the values of A,

at the AC, is defined as the k for which ~E+(A, ) —E (k)~
is a minimum. The splitting 6 is defined as

& (~)=~/IE+ (~)—E (~) I
.

These parameters can be interpreted in a straightforward
manner when the AC can be treated as a textbook two-
level problem. Then the energy curves are given by the
expression

E~(A) =
—,'[E, (A, )+E2(A.)]+—,

'
I [E,(A) —E2(k)]

(16)

where E] and E2 are the two uncoupled diabatic energy
curves that cross at A,„,and 8', 2 is the effective interac-
tion which perturbs the states and which is assumed here
to be roughly constant in the vicinity of A,„.Let us
denote the eigenfunctions associated with E+ by f+ and
the diabatic states associated with energies E and PJ. , so
that

&=IE (&„)—E (&„)I,
while the ratio R (A, ) is defined as

(14)

g+(A, )=C+, ()(,)p, +C~2(A. }$2 . (17)
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TABLE V. Expectation values for diabatic states formed from energy eigenstates involved in avoid-
ed crossings.

State (adiabatic)' (diabatic)'

[24,0]
[55A, , 95E]

(23,13)
97E

E
Hp
L2

D
P

E
Hp

L
L

AC (24,2)—{23,13),
22.9095
28.54
66.6

—13.04
—22.89

22.9467
25.95

7.60
187

95E-97E (R =0.69)
22.9244
28.37
72.5

—13.27
—23.08

22.9396
25.39

9.09
217

0.0017
0.49
4.0
0.33
0.46

0.0020
0.24

0.64
11

22.9131
28.86
52.5

—15.58
—26.97

22.9413
25.49

9.15
208

[25,0]
[58A ), 104E]

(24, 12)
[59A i, 45Ag]

E
Hp
L2

D
P

E
Hp
L
L2

AC: (25,3)-(24,12),
23.6907
30.20
71.5

—15.46
—26.79

23.7235
27.04
7.13

201.5

583,-593, (R=0.76)
23.7103
29.43
95.6

—13.56
—23.44

23.7165
27.12
7.53

221.5

0.0024
0.51
5.8
0.40
0.47

0.0022
0.31
0.73
9.5

23.6941
30.44
62.4

—16.30
—28.24

23.7184
26.68
7.78

215.2

[22,1]
[40A„92EJ Hp

L2

D
P

AC: {23,5}-{22,16), 92E—91E (R =0.82)
22.4091 22.4088
26.02 25.97

133.9 126.7
—10.60 —10.97
—18.37 —18.54

0.0015
0.34
5.8
0.47
0.42

22.4039
26.31

117.1
—10.48
—18.15

(22, 16)
91E

E
Hp
L
L2

22.3757
24.61
10.54

210.9

22.3778
24.24
11.74

231.8

0.0016
0.21
0.56

11.4

22.3834
24.17
11.76

236.1

[24, 1]
[47A p, 106E] Hp

L2
D
P

AC: (25,5)-(24, 16), 106E-107E (R =0.81)
24.0445 24.0571
28.74 29.22

156.4 142.0
—11.76 —11.74
—20.37 —20.36

0.0030
0.46
8.7
0.59
0.62

24.0513
29.07

142.2
—12.19
—21.12

(24, 16)
107E Hp

L
L2

24.0931
27.11
8.17

236.1

24.0724
27.25
9.52

226.9

0.0027
0.31
0.67

11.9

24.0828
27.50

8.23
213.7

[23,1]
[44A, , 98E]

(23,15)
[56A, ,43 A, ]

E
Hp
L2

D
P

Hp
L
L

AC: (24,6)—(23,15),
23.2369
27.60

132.6
—11.02
—19.09

23.1238
25.56
10.76

224.3

44A -433 (R =0.73)
23.2424
27.46

137.9
—11.49
—19.33

23.1203
25.87
10.32

211.4

0.0021
0.39
8.0
0.52
0.48

0.0021
0.28
0.59

11.8

23.2304
27.72

126.0
—11.30
—19.58

23.1334
25.38
11.19

234.3
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TABLE V. ( Conti n ued ).

State (adiabatic)' &A)'
&A),

(diabatic)'

(25,15)
[64A, , SOA, ]

E
Hp
L
Lz

AC: (26,6)—(25, 15), 51A2-50A2 (R = 1.00)
24.8022 24.8126
28.59 28.43
7.91 8.98

229.1 247.0

0.0035
0.33
0.74

13.2

24.8268
27.79
10.27

264.0

AC's:
[19,2]

[45 A 1,79E]

(21 9) (20 18) 45A &W6A ] {R=0.84) and
E 20.8687 20.8623
Hp 23.10 22.95
L 148.1 155.7
D —7.69 —6.73
P —13.32 —11.66

35A2-34A2 (R =0.53)
0.0007
0.18
5.7
0.73
0.52

20.8702
22.80

151.2
—6.56

—11.35

(20, 18)
[46A„34A,]

E
Hp
L
L2

20.9224
21.78
12.01

250.7

20.9177
21.52
15.30

267.5

0.0008
0.15
0.33
9.7

20.9219
21.78
15.46

278.9

AC's:
[21,2]

[54A i 93E]

(23,9)—(22, 18), 54A]-53A t (R=0.99) and
E 22.6154 22.6134
Hp 25.32 25.66
L 187.0 166.3
D —9.61 —8.90
P —16.65 —15.03

42A2-41Aq (R =0.70)
0.0014
0.72
7.9
0.64
0.53

22.6081
25.69

163.7
—8.30

—14.38

(22, 18)
[53A i, 41A~]

E
Hp
L
L

22.6202
24.58
10.73

237. 1

22.6262
23.80
14.53

278.2

0.0014
0.19
0.48

11.4

22.6341
24.06
14.27

265.2

AC's:
[23,2]

[61A „108E]

(25 9)—(24 18) 61 A ]
—62 A ] (R =0.93) and 49 A 2-48 A 2 {R=0.83)

E 24.2907 24.3131 0.0029
Hp 28.48 28.45 0.40
L 190.0 189.6 10.3
D —10.15 —9.67 0.80
P —17.58 —15.34 0.69

24.3064
28.70

175.8
—8.24

—14.27

(24, 18)
[62A „48A,] Hp

L
L

24.3299
26.99
9.97

265.5

24.3096
26.49
12.03

281.1

0.0023
0.23
0.67

12.5

24.3218
26.62
12.33

269.0

(24, 10)
102E Hp

L
L2

AC: (24, 10)—(23,19), 102E-103E (R =0.87)
23.5883 23.5810
26.19 26.61
7.22 4.21

230.7 199.0

0.0030
0.28
0.75
9.6

23.5986
26.59
3.78

205.6

(23,19}
103E Hp

L
L

23.6290
25.50
11.55

277.5

23.6098
24.88
14.67

292.9

0.0017
0.20
0.51

13.2

23.6187
25.10
14.99

302.5

(25, 19)
119E

E
Ho
L
Lz

AC: (26, 10)—(25, 19),
25.2699
28.23

8.75
286.5

120E—119E (R =0.69)
25.2759 0.0024
27.23 0.23
12.24 0.72

315.31 14.3

25.3043
27.57
13.55

324.5

'Quantum expectation values for ordinary adiabatic states from Table II.
Semiclassical expectation values from Table II.

'Quantum expectation values for the diabatic states obtained as superpositions of the adiabatic states, as
described in the text.
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Then, it is then easy to show that

28 (18}

and

R(A, ) = I 1 —[2C+, (A. )
—1] I' (19)

for any of the four values C+, (k). Thus 5 measures the
strength of the perturbing interaction while R(A, ) mea-
sures the effectiveness of this interaction at mixing the di-
abatic states at k.

In order for the two-level model to be valid, the AC
must be isolated An A. C at k„will be isolated if R (A,„)is
suitably small for all other AC's that involve either of the
levels E+(A, } or E (A, ). A reasonable practical criterion
for smallness is R (0.6 since this implies that C+ (0.1

or )0.9. By these standards, all of the AC's in Fig. 5

may be classified as isolated.
Values of A,„,5, and R (0.08) are presented in Table IV

for AC's in the range 0.075 ~ A, ~ 0.085 and
17.9 ~E ~25.3. AC's with R (0.08) ~0.6 [i.e., those that
yield 0.9~ C+, (0.08) ~0.1] are correlated with several
classical-quantum discrepancies in Table III. With only
one exception (out of 14 cases}, each nontrapping
discrepancy is found to be associated with an AC having
R (0.08) + 0.6. Furthermore, with two exceptions (out of
14 cases), all AC's with R(0.08) ~0.6 are observed to
cause discrepancies in at least one of the two states in-
volved. Thus, to summarize our results, of the 60 states
examined, 20 are found to show classical-quantum
discrepancies. Of these discrepancies, 6 are attributed to
trapping, 13 are associated with AC's, and 1 remains
unexplained.

To verify that the AC's are indeed responsible for the
discrepancies, we calculate quantum expectation values
of the properties A for the diabatic states P of Eq. (17),
using the values of R (0.08) in Table IV to determine the
C+, (0.08) [see Eq. (19)]. A comparison of these expecta-
tion values to the classical ( A ) is presented in Table V.
This comparison shows that the formation of the diabatic
states eliminates the quantum-classical discrepancies in
all cases where Table III attributes these discrepancies to
AC's. This convincingly demonstrates that the AC
discrepancies are not caused by the purely classical
failure of the AS method as the result of chaos or separa-
trix crossing, but stem from the presence of nonclassical
effects.

Note that the formation of diabatic states does not
reduce, but actually enhances the quantum-classical
discrepancies for states involved in trapping such as
[24,0] and [25,0]. Indeed, it creates a discrepancy for the
state [24,0] where none had existed before, thus revealing
the anticipated trapping nature of this state.

We mentioned earlier that the mixing of character
among diabatic states that accompanies the AC's causes
a fundamental uncertainty in the assignment of quantum
numbers to these states. The present results show, how-
ever, that this uncertainty is but a symptom of an under-
lying quantum effect which ruins the classical-quantum
correspondence and brings about the discrepancies.
These discrepancies are not caused by the uncertainty in

the assignments and cannot be removed by reassignment
of quantum numbers.

In agreement with previous work, ' ' we identify
the nonclassical effect that accompanies AC's as a form
of tunneling between (vague) tori. There is much evi-

dence for this interpretation. It is known that primitive
semiclassical methods do not prevent energy levels from
crossing as a parameter is varied. ' ' Since the im-
provernents ' ' ' ' in the semiclassical theory re-
quired to cause the curves avoid each other and produce
the correct splittings are of the kind needed to treat ordi-
nary tunneling, it is natural to classify AC's as tunneling
phenomena. In addition, since the interacting states typi-
cally are characterized by different sets quantum numbers
(usually association with disjoint parts of phase space) the
quantum phenomenon has been identified as tunneling
between different tori. ' We note that the association
of AC's with nonclassical phenomena has been most

firmly established for sharp AC's that produce small
splittings. Our work provides evidence that this associa-
tion remains valid for gradual AC's that yield splittings
on the order of the mean energy spacing (see Fig. 5).

Table III shows that the proportion of states influenced
by tunneling increases with the energy (and with the
chaotic nature) of the classical system. The number of
states involved in strong AC's (R &0.6) grows from two,
for n =20,21, to eight, for n =24, 25. This trend is con-
sistent with the data presented in Table IV which organ-
izes AC's into "families" associated with specific pairs
(l, l') of I quantum numbers for the participating states.
Within almost every family, k varies monotonically and
6 increases monotonically as the energy increases. Ex-
ceptions to this trend for b are probably due to the
difficulty of measuring small splittings accurately. The
regularity of the progressions is a consequence of the as-
sociation of all members of a family with specific classical
resonance condition. However, the relevant point here is
that, as b, increases, the range of A. for which R(A, ) is
large increases, and thus more states become influenced
by tunneling. At the same time, since the rate of tunnel-
ing is proportional to 6, this rate also increases. Thus,
for our system, tunneling becomes more prevalent and
faster, causing quantum-classical discrepancies to become
more common and more pronounced, as the energy in-
creases.

C. Implications for tunneling in other chaotic systems

Increases in AC level splittings 5, similar to those ob-
served for our case, have been noted in many other sys-
terns as the energy is raised or as the classical motion be-
comes more chaotic. " ' This phenomenon has, in
fact, been identified as a symptom of chaos
and has been used" ' ' ' to explain the success of the
Wigner distribution ' in modeling the statistics of
nearest-neighbor energy-level spacings for chaotic sys-
terns. We note that many of the AC's appearing in the
published plots of the energy-level curves for these cases
are similar to those in our calculations. Just as for our
system, these AC's are often gradual and lead to split-
tings on the order of the mean level spacing. Although
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not all such AC's are isolated, a substantial proportion of
them often are, just as for our system.

Since the AC's in our system are found to imply non-
classical effects, the suspicion arises that the AC s in oth-
er chaotic systems may likewise signify tunneling. There
is, in fact, evidence that this is true. Davis and, more re-
cently, Eckhardt, Hose, and Pollak have noted certain
pairs of states in chaotic systems which, when added and
subtracted, yield new states describing clearly identifiable
classical behavior. This is consistent with the existence
of AC's with R =1 which induce tunneling. Robnik '

has examined how the wave functions of a chaotic system
change as a parameter in the Hamiltonian varies and
AC's are encountered. The mixing of states and the ex-
change of identities of states that the observes appear to
be totally consistent with the mechanism for quantum-
classical discrepancies for our system. Radons, Geisel,
and Rubner ' ' have attributed enhanced tunneling prob-
abilities for the periodically kicked planar rotor to avoid-
ed crossings in the quasienergy spectrum.

If many AC's in other chaotic systems indeed signify
tunneling, then the increased occurrence of tunneling ob-
served in our system as it becomes more chaotic is but an
example of a more general phenomenon; i.e., tunneling
generally becomes more prevalent and faster as a system
becomes more chaotic. As we will discuss below, this has
serious implications for the achievement of statistical be-
havior in quantum systems.

We note, however, that this interpretation conflicts
with an implicit assumption in the literature which asso-
ciates AC s in chaotic systems with the purely classical-
state mixing that is expected to accompany chaos. This
classical interpretation is consistent with the belief that
chaotic systems display Wigner nearest-neighbor spacing
statistics in the classical limit. Indeed, if the ACs of
chaotic systems are symptoms of tunneling, as they are in
the case of regular systems, then the splittings 5 should
decrease with A' as exp( —S/A) where S)0, and become
negligible compared to mean level separations in the clas-
sical limit. Thus, if such AC s are the major source of
level repulsions in chaotic systems as fi +0, the levels of-
such systems cannot obey Wigner statistics in the classi-
cal limit.

However, since our work does not examine the classi-
cal limit, we must be cautious about drawing conclusions
concerning the interpretation of AC's or the validity of
Wigner statistics for chaotic systems in that limit. For
example, it may well be that distinct AC's (i.e., well-
defined approaches and avoidances of energy levels as a
function of a parameter in the Hamiltonian) no longer
occur for chaotic systems in the classical limit. Alterna-
tively, such AC's may still occur but may indeed corre-
spond to classical-state mixing for sufticiently small A.

However, in order for these AC's to signify classical-state
mixing, it is not sufficient for the individual underlying
quantum resonances to behave classically (i.e., for many
levels to lie within the resonance widths ), since the
AC's produced by isolated classical resonances continue
to signify tunneling even in the classical limit. ' The con-
dition for the AC s to represent classical-state mixing
would thus have to be connected with the chaotic nature

of the system, i.e., with the overlap of resonances,
perhaps as reflected in the overlap of AC's. ' We can-
not, therefore, rule out the possibility that certain over-
lapping AC's in published plots of energy eigenvalues are
associated with purely classical behavior. However, a siz-
able proportion of AC's in these plots are isolated and it
appears unlikely that AC's would suddenly acquire a
classical interpretation as soon as they being to overlap.
Thus the suspicion remains that many of the AC's for
other systems —overlapping as well as isolated —signify
nonclassical effects, as they do for our system.

It remains to be rationalized how an increased degree
of chaos can cause tunneling to become more prevalent
and rapid. One explanation begins by recognizing that
each AC is associated with a particular classical reso-
nance condition. ' The energy levels affected by this
resonances are determined by solving the Schrodinger
equation (subject to appropriate boundary conditions ')
for the rotor system described by the Hamiltonian
H=p /2m+ Vocos(2$). This results in pairs of levels

with E & Vo, ' which undergo AC's as a parameter in

the original Hamiltonian is varied and which correspond
to states of the original system that undergo tunneling.
The splitting between these levels can be approximated
semiclassically as 6=4fi~ 'e, where ~ is the classical
period for rotation by the rotor and e is the amplitude
for reflection of waves over the cosine barrier. As the
width of the resonance increases, Vo increases, causing
the well to become deeper, and the barrier to become
sharper. At a fixed energy above the barrier, the deepen-
ing of the well should cause the period of rotation to de-
crease somewhat and the sharpening of the barrier should
cause the reflection amplitude to increase rapidly. As a
result, the splittings associated with tunneling should in-
crease dramatically as the resonance becomes broader.
Numerical calculations by Sibert, Hynes, and
Reinhardt 9 conform these expectations. Broadening of
resonances also brings about chaos by causing resonances
to overlap, so that one may expect increased degrees of
chaos to be accompanied by increased level splittings as-
sociated with tunneling.

D. Implications for statistical behavior in quantum systems

From our viewpoint, the most interesting aspects of the
results presented here are connected with the purely
quantum nature of the tunneling phenomenon, its pre-
valence in chaotic systems, and the limitations that this
imposes on the ability of the quantum systems to imitate
the dynamical evolution of their classical counterparts.
One type of dynamical behavior that is characteristic of
classical chaotic systems and that is strongly relevant to
chemical physics is what we have termed pseudoergodici-
ty. ' ' " This is a temporary, approximate form of statis-
tical behavior that can be achieved in phase-space regions
which are bounded by bottlenecks impeding the flow of
density, such as cantori and separatrices. The impor-
tance of pseudoergodicity stems from its relation to
refined statistical theories for chemical reactions and
its theoretical significance as the forerunner to global sta-
tistical behavior on the full energy shell.



1780 B. RAMACHANDRAN AND KENNETH G. KAY 41

The quantum analog of pseudoergodicity can be
defined and such behavior is expected to appear in the
quantum counterparts of chaotic systems, provided that
the time scale for quantum-classical correspondence is
sufficiently long. ' ' However, tunneling limits this time
scale. When tunneling is fast enough to compete with the
classical rate of statistical relaxation within bottlenecked
regions, pseudoergodicity cannot occur in the quantum
system. In such cases, there can certainly be no analog in
the quantum system of the more global behavior that
arises at longer times from the classical penetration of
bottlenecks.

In previous work, the pseudoergodicity behavior of
the quantum and classical analogs of the Henon-Heiles
system was examined. It was found that the pseudoergo-
dicity behavior of the classical system was often absent in
the quantum analog. This was attributed to tunneling
and trapping. In fact, the states for which discrepant
classical and quantal statistical behavior was observed are
just the states shown here to be involved in tunneling and
trapping (with allowances for some different assign-
ments of quantum numbers which, in part, are due to
the use of a larger basis in the present calculation).

The arguments presented here imply that increasing
degrees of chaos are generally accompanied in a quantum
system by more rapid tunneling. If this is the case, sta-
tistical behavior is generally hard to achieve in quantum
systems because chaos —the condition that makes such
behavior possible in classical systems —causes effects that
prevent similar behavior from appearing in the quantum
analog s.

IV. SUMMARY

We have developed an accelerated AS method that
makes it possible to calculate semiclassical expectation
values for chaotic systems. To maintain low degrees of
nonadiabaticity while preserving the integrity of vague
tori, the perturbation is switched on slowly over the regu-
lar regime but more rapidly over the chaotic regime.
Comparison of the semiclassical results to accurate quan-
tum expectation values yields good agreement for most

high-energy states of the Henon-Heiles system. Howev-
er, the frequency of the discrepancies is found to grow
with energy. Evidence suggests that these differences are
not caused by the failure of the adiabatic switching
method to describe vague tori as a result of classical
nonadiabaticity or chaos, but are symptoms of purely
quantum phenomena. We are able to attribute almost all
cases of quantum-classical discrepancies to two such phe-
nomena: trapping effects for states with extreme values
for quantum numbers and tunneling effects associated
with avoided crossings. As the energy is raised and the
system becomes more chaotic, the increased strength of
the avoided crossings is found to lead to more frequent
and stronger tunneling.

The correlation observed between AC's and quantum
effects seems to conflict with the assumption, implicit in
much recent work, that gradual AC's which cause large
splittings in chaotic systems arise from the classical mix-
ing of states that expected to accompany chaos. Our re-
sults show that such AC's can signify nonclassical effects
just as do the sharp, narrowly avoided AC's typical of
regular systems. However, this does not contradict the
claim that AC's generally tend to become broader and
stronger as systems become more chaotic, since higher
degrees of chaos can lead to stronger tunneling. If a sub-
stantial proportion of the robust AC's that accompany
chaos in other systems are indeed caused by tunneling,
then (i) more frequent and rapid tunneling may generally
accompany the onset of chaos in quantum systems, (ii)
this rapid tunneling may compete with classical-like re-
laxation, making it difficult for quantum systems to
display even transient statistical behavior, and (iii) this
tunneling may be partly responsible for the Wigner
nearest-neighbor level spacing statistics observed in such
systems.
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