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A detailed discussion of an approximate, variational approach to atom-molecule reactive scattering 
is presented. This approach reduces the formally three arrangement atom-diatomic molecule 
reactive scattering problem to one of a single arrangement without the use of negative imaginary 
potentials at the exit channel boundaries. The method is based on applying the Kohn variational 
principle for the log-derivative matrix to a representation of the scattering wave function that spans 
just the reactant arrangement. For many reactive systems, the method yields impressively accurate 
results for total reaction probabilities from a specific initial state. In such cases, it is also possible to 
extract fairly accurate state-resolved reaction probabilities from the results of the variational 
calculation. The mathematical and practical aspects of accomplishing this are presented. We 
evaluate the advantages and the limitations of the method by numerical computations on the 
collinear HfHs (and isotopes) and F+H,, and the three dimensional (J=O) F+ H, 
reactions. 0 I994 American Institute of Physics. 

1. INTRODUCTION 

In a recent letter,’ we outlined an approximate method 
for the computation of total reaction probabilities from a 
specific initial state in the case of atom-diatomic molecule 
reactive scattering. This method yields an approximate scat- 
tering matrix from a variational calculation of the log- 
derivative matrix, where the trial function is a representation 
of the scattering wave function spanning only the reactant 
arrangement. Preliminary results’ indicated that the method 
had sufficient potential to warrant further investigation. This 
paper presents a more complete discussion of this method, as 
well as an extension to the method that enables one to cal- 
culate state-resolved reaction probabilities from the results of 
the variational calculation. 

The development of methods that reduce the computal 
tional effort involved in a formally exact treatment of the 
three-body reactive scattering problem has attracted consid- 
erable attention in the recent past.2-7 The general trend in 
this area has been to seek a reduction in then size of the 
domain spanned by the solutions, i.e., the scattering wave 
functions. To this end, Neuhauser, Baer, and co-workers use 
negative imaginary potentials (NIPS) at the boundaries of the 
entrance and exit channels,“-4 while Miller and co-workers 
place these potentials on the borders of the “transition state 
region.“5-7 Both approaches result in substantial reductions 
in the size of the regions that must be spanned by basis 
functions, thus reducing the computational effort involved in 
these calculations. A different approach was taken by Man- 
delshtam and Taylor,’ who compute cumulative reaction 

‘IPresent address: Department of Chemistry, Ohio State University, Colum- 
bus, OH 43210. 

probabilities by enclosing the interaction region of the poten- 
tial in successively larger “boxes” with infinite potentials at 
the boundaries. 

The method developed by us1 also reduces the size of the 
coordinate space spanned by the basis functions. The method 
does this by reducing the three-arrangement scattering prob- 
lem to a two-point boundary value problem in a single ar- 
rangement. However, it accomplishes this without the use of 
the NIPS and thereby avoids the complications, the increased 
computational effort, and storage requirements resulting 
from complex algebra. The fact that such a boundary value 
problem can be solved by a suitable variational method’-” 
adds to the attractiveness of the present method. 

The main features of the present method are the follow- 
ing: The scattering problem is solved in a small region 
spanned by the mass-weighted Jacobi vectors (R,r) for the 
reactant arrangement. Schematically, for the sake of this dis- 
cussion, we represent this region as a rectangle, as shown in 
Fig. 1. The Kohn variational principle for the log-derivative 
matrixg-” is used to compute the log-derivative matrix at the 
boundaries R = RN and r = rM , with the gradients computed 
perpendicular to the boundaries, i.e., with respect to R at 
R = RN and with respect to r at r = rM . From this approxi- 
mate log-derivative matrix, an approximate scattering matrix 
is constructed by applying complex incoming and outgoing 
wave boundary conditions at R = RN and T = rM , perpendicu- 
lar to the boundaries. This last step also requires $re evalua- 
tion of a set of bound-state energy eigenvalues at the bound- 
aries so that the wave vectors for the complex waves can be 
evaluated. 

This approach is, of course, necessarily approximate. 
The scattering boundary conditions applied above will be 
exact only if the mass-weighted angles between the reactant 
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t , I s ’ 4 , . representing the solutions. Section III presents the numerical 
tests conducted to evaluate the m&hod. The majority of these 
tests are done using collinear models and compute the total 
reaction probabilities from a specific initial state. However, 
one three-dimensional application is presented here (in addi- 
tion to those in Ref. 1) in order to support some of our 
conclusions. In Sec. IV, we show how state-to-state prob- 
abilities can be extracted from the solutions of the variational 
calculation. Section V summarizes our investigations and 
presents an evaluation of the advantages and limitations of 
the present method. .~ 

FIG. 1. A schematic summary of the single arrangement method: the scat- 
tering problem is solved in the rectangular region, and the S-matrix bound- 
ary conditions are applied at R = RN and r= rM. Two contours of the poten- 
tial sarface and the DVR points selected by applying the energy cut-off 
criteria (see the texti are shown. All distances are in atomic units (bohrs). 

and product arrangements were exactly 90”, which occurs 
only in the case of molecule-surface scattering. As the 
angles become smaller, the boundary conditions applied at 
the product boundary T-= rM become poorer approximations 
to the correct boundary conditions. In spite of this, however, 
previous applications of the method’ to reactive systems in 
which the mass=weighted angles were as sharp as 54.7” 
showed that the total reaction probabilities from a specific 
initial state computed using these approximate boundary 
conditions were surprisingly accurate over a wide range of 
energies. In the present pap&, we show that the method suc- 
ceeds even in cases where the angle is as small as 41.4”. 
Moreover, as we show below, when the total reaction prob- 
abilities from the present approach are accurate, the vari& 
tional solutions are sufficiently close to the actual solutions 
that we can extract fairly accurate state-tozstate resolved re 
action probabilities from them. 

At the same time, we find that this approach does not 
work equally- well in all cases. One of the examples we 
present below is one where the methbd does not yield accu- 
rate results for a certain range of scattering energies. Exam- 
ining the reasons for the failure in this case leads to interest- 
ing -insights and suggests ways to fuither improve the 
method. 

It should be noted that well-known procedures exist to 
make the results from our approximate method exact. These 
are, the various techniques for log-derivative matrix 
propagation’“-‘4 or R-matrix propagation.15 Once the solu- 
tions at the boundaries of the rectangular region are calcu- 
lated using the method described below, any of the above-. 
mentioned propagation schemes can, in principle, yield the 
exact result. 

The remainder of this paper is organized as follows: In 
Sec. II, we present the mathematical details of formulating 
the variational problem in a single arrangement and the con- 
siderations to be used in the selection of basis functions for 

II. MATHEMATICAL AND COMPUTATIONAL ASPECTS 

The mathematical foundation for our method is provided 
by @e Kohn variational principle for the log-derivative ma- 
trix, or the Y matrix (Y-KVP).“-” A detailed discussion of 
this variational principle appears in Ref. 10. However, the 
following details, along with Fig. 1, should be sufficient for 
understanding this approach to reactive scattering. In order to 
keep our equations reasonably free of clutter,. we use the 
collinear reactive scattering case to present the formulation 
of the Y-KVP in a single arrangement. Extending this formu- 
lation to the three-dimensional case requires a few additional 
details, which we will discuss subsequently. 

A. Formulation for collinear reactive scattering 

The variational functional for the log-derivative Y may 
be written as 

Y= Y,+(%Q&-p), 

where ‘Y, is a “guess” for the stationary quantity (see Ref. 
10). For collinear scattering, the functions Tm(R,r), where 
the superscript indicates the initial state, satisfy the equation 

- fi’ &p\E” 
-4 

a” IPE” 
2P aR2 

f 
dr’ ) 

+ V(R,r)W”=EY”, G-9 

where the coordinates are mass-weighted Jacobi coordinates 
for the reactant arrangement.16 The stationary expression for 
the (m,n) element of the log-derivative matrix at the bound- 
aries r=rM (RoSRGRN); R=R, (roGr6rM) is now ob- 

i 

tained as’-’ ’ 

Y,,,=JRydR /zdr[(g)(g)+(F) 

X(z)]+% /l:-dR 1: dr ?Ir” 

X[V(R,r)-E]Y. 

The solution corresponding to a reactant initial state m is 
required tb satisfy the conditions W”(R,,r) = c&(r) at 
R= RN, where c,b,(r) are solutions to the bound state prob- 
lem 

-ii2 a2+, 
2u dry +V(RN,r)~,(r)=E,~,(r); m=O,lA... 

W 
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and P”‘( R, r,) = 0, whereas a solution corresponding to a 
“product” initial state n is required to satisfy the condition 
*‘“(R,r,)=cp,,(R) at T=Y~, where cpo,(R) ‘s are solutions to 

-iI c&D,, 
~~~~R~~+V(R,T~)‘P~(R)=E:,(P.~R), n=O,l,Z,... 

(4b) 

and W’(R, ,r) = 0. Thus, the solutions satisfying the “log- 
derivative boundary conditions” become identical to the ini- 
tial diatomic wave functions at the appropriate boundary and 
vanish at all the other boundaries of the problem. Once the 
log-derivative matrix is found, the S matrix boundary 
conditions” are applied at R = RN and Y = TM using the inter- 
nal energies calculated from Eqs. (4), and the total reaction 
probability from a specific initial state is obtained by sum- 
ming the appropriate column of the reactive block of IS]‘. 

The approximate nature of our approach arises from the 
fact that the derivative of the wave function at the Y = TM 
boundary is evaluated in a direction perpendicular to the re- 
actant translational coordinate. Moreover, the bound state 
problem of Eq. (4b) involves a potential for internal motion 
that does not correspond to the product diatomic internal 
motion. In spite of these unphysical features, the total reac- 
tion probabilities calculated using the method are accurate 
over a wide range of energies for certain reactions, as shown 
in the following section. It will be seen there that even in 
cases where we would expect this approach to fail com- 
pletely, the results are qualitatively and often quantitatively 
quite close to the exact results. It should be noted, however, 
that the individual elements of the S matrix obtained in this 
fashion are most often not close to those of the actual S 
matrix. 

We now turn to the computational details of obtaining 
the Y matrix using the Kohn variational principle. We ex- 
pand W”‘(R,r) in the region (R,GRGR,; rO=%rsrM) as 

*“‘(R,r)=$ 2 lui(R)vj(r))(ui(R)vj(r)I~~), (5) 
ix1 j=l 

where ui(R) and vi(r) are Lz basis functions which satisfy 
the log-derivative boundary conditions’-” 

Ui(O)=Ui(R,)=O, i= l,...,N-l, (64 

U~(O)“O, zbN(RN)= 1. (6b) 

Vj(O)=Zj.(TM)=O, j=l,...,lw- I, 654 

+(O)=O, VM( TM) = 1. (64 

The substitution of Eq. (5) into .Eq. (3) followed by the ex- 
tremization of the functional with respect to the (as yet un- 
known) expansion coefficients C~=(UiUjl~'m) results in a 
linear algebraic system of equations with multiple right-hand 
sides AC=B, which must be solved for the coefficients C. 
The matrix elements of A and B are given as 

Aidk[={zklIU~)(~jIVI)+(~~IVS)(UiIUk) 

(74 

Wu, Ramachandran, and Wyatt: Total and state-resolved reaction probabilities 9397 

+ $ (UiVjlV-(E’-E,)IUN~m) Ub) 

where we have used the fact that ‘Y”(RN,r) = uNqSm(r) in 
evaluating the block B”. A similar set of matrix elements 
~&so exists for “product” initial states, and these make up the 
B” block of the right-hand sides. The only differences be- 
tween B” and Bn are that in the latter, the internal functions 
are functions of R, and we use the fact 
9”( R, ‘$1 = v,cp,(R) in order to define the right-hand sides. 

The basis functions {ui} and {vi} are chosen, respec- 
tively, to be Lagrange polynomials defined over (N+ l)-point 
and (M + 1)-point I Gauss-Lobatto quadrature nodes. This 
automatically ensures that the boundary conditions of Eqs. 
(6) are satisfied. In addition, at each quadrature node, these 
functions satisfy the Kroenecker delta conditions 
Ui( Rk) = Sj, and Vj(PE) = Sj, a!8 In other words, this choice of 
the basis functions and the quadrature rule give rise to a 
discrete variable representation (DVR)“” of the problem on 
a grid in the rectangular region of Fig. 1. 

The computational advantages of a DVR are well known 
and have been discussed in many recent publications.‘~5-7,9~‘9 
In the present case, the DVR directly helps to determine a 
few of the expansion coefficients in Eq. (5) from the solu- 
tions of the one-dimensional problems of Eqs. (4), since 
$,~(YJ=(u~v~~~~); Z=l,...,M and (P~(R~)=(u~vMIP~); 
k=l , . . . ,N. The DVR also causes a large number of matrix 
elements in A and B to vanish, since 

Aijkl=(UIIU;)~jjE+(~~IV;)Sik+ h,. 2 [VlRi,r,i)-E]~ik~il~ 
(84 

-(E-e,)]&,. -. (8b) 

Since all the.expansion coefficients corresponding to i= N 
and j-M are known from the boundary conditions, the 
range of the indices i and k in A and Bm extends from 
l,..., (N- 1). This means. that the only nonzero term in Eq. 
(8b) is the first term. Similar arguments (for the range of 
indices j and I) can be offered in the case of the B” [or the 
“product”) block of the right-hand side to show that only 
one of the kinetic energy terms survives in that case also. 

It is easy to see that Eqs. (8) give rise to a very sparse 
matrix A and a sparse set of right-hand sides B. It is espe- 
cially interesting that the Kroenecker delta property of the 
basis functions gives rise to a very structured matrix. The 
largest matrix elements of matrix A occur along the diagonal, 
which are the only terms with a contribution from the poten- 
tial and the scattering energy. The vast majority of the;e- 
maining nonzero elements occur in diagonal blocks. Outside 
the diagonal blocks, the nonzero matrix elements become 
successively smaller and occur in “stripes” parallel to the 
diagonal. Such a matrix is ideally suited for solution by the 
several iterative methods available today,*‘-% which do not 
require the full matrix to be stored in memory. We have 
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already implemented the generalized minimal residual 
(GMRes) method2’ with a preconditioners3 to solve the lin- 
ear algebraic problem, and the preliminary results have been 
encouraging.= Parameter 

TABLE L The parameters for typical runs for the collinear reactions. 
Lengths are in bohrs and energies in electron volts. 

In the collinear applications presented below, we have 
opted to solve the relatively small linear system of equations 
directly. The three-dimensional applications presented in 
Ref. 1 exploit the structured sparsity of A to achieve signifi- 
cant savings in memory, and use an iterative refinement 
scheme to converge the solutions. The 3D application pre- 
sented in Sec. III also exploits the structured sparsity of A in 
the same fashion, but utilizes the GMRes algorithm. 

RO 
RN 
m 
rh4 
Scattering energy (range) 
Energy cut-off parameter’ 
Full basis size (N- 1) X (iw - 
Selected basis size N,=, 

0.0000 o.slooo 
6.5000 6.5000 
0.0000 0.0000 
3.5000 3.0000 
0.40-1.65 0.28-0.80 
2.0000 1.5000 

1) 1666 1421 
386 397 

‘LThe energy cutoff used on the repuIsive side of the potential is twice the 
cut-off parameter listed. 

B. Extension to three-dimensional reactive scattering 

Extending this approach to three-dimensional reactive 
scattering involves a few more details, which we now dis- 
cuss. The scattering wave functions ‘WR,p-, ~1 
=(Rr)-‘v(R,r, y) in this case satisfy 

&y $+rm LT p 
a~‘+~-jpV+ V’ 

It is necessary to’ define the product internal states with re- 
spect to effective potentials generated by averaging over the 
angle y at the boundary r= rM because the potential 
V( R,r, y) typically has strong dependence on the angle y at 
the boundary r=rM. Although this may appear somewhat 
inelegant, having to evaluate the matrix elements of Eq. (13), 
or the solutions of Eqs. (12), are not significant difficulties in 
the applications of the method. First of all, even large 
eigenvalue-eigenvector problems can be very efficiently 
solved on modern supercomputers with highly optimized 
routines. Second, only a few of the bound states at r=rM 
have to be converged in order to yield accurate total reaction 
probabilities. Note that the scattering wave functions in the 
“interaction region” of the potential are represented by func- 
tions (DVR points! independent of the asymptotic diatomic 
states. Therefore, the log-derivative matrix, in principle, need 
consist only of matrix elements between the open channels at 
each scattering energy. This also means that the basis set 
expansion for the solutions of Eq. (14b) need only be suffi- 
ciently large to converge the open channels. 

=EV, i9j 
where (R,r,y) are the mass-weighted Jacobi coordinates16 
for the reactant arrangement. These functions are expressed 
in terms of the Gauss-Lobatto DVR and a set of spherical 
harmonics as 

N M A,,, 
i=l k=i j,l 

(10) 
where YJ”‘s are defined asr6 JYI 

$Y= C (j~~j~~ljbJM)Yi,,j(i)Y~,,I(R). ilO 
‘“,j ~‘~1 

Since lj - 11 aJ&j + I, the values of .Z and j above determine 
the allowed values of 1. The quantity j,, is a parameter 
chosen based on the diatomic bound-state energies and the 
scattering energy. 

The three-dimensional analogs of the reactant and 
“product” internal functions defined in Eqs. (4) are obtained 
as follows: The reactant internal functions satisfy the equa- 
tion 

-6’ d* j(j+l) 

i-i 2p dp-2- r2 ] + ViRN,r,O)-E,j 

i124 

The substitution of the Hamiltonian of Eq. (9), basis set 
expansion of Eq. (lo), and the sohttions of Eqs. (12) into the 
variational functional of Eq. (l), followed by extremization 
of the functional with respect to the expansion coefficients, 
results in a linear algebraic system of equations with struc- 
tured sparsity, as in the case of the collinear model. The 
order of the matrix A in this case will be 
(N-l)X(M-l)Xj,,. In actual applications, we further 
reduce the size of the matrices A and B by rejecting all DVR 
points that lie in regions where the potential is higher than an 
arbitrary energy cut-off parameter. The grid points shown in 
Fig. 1 are the points selected by applying such a cutoff. In 
the case of collinear scattering, the potential has the same 
dimensionality as the DVR grid, and a simple scanning of 
the potential is sufficient to select a physically relevant sub- 
set of the grid points. In 3D scattering, in principle, one must 
scan the angle y at each grid point (Ri ,rkj to check whether 
the potential energy falls below the cutoff. In the present set 
of applications, however, we have applied the cut-off criteria 
by scanning the potential V(R,r, y) at three values of the 
angle y. Applying the cut-off criteria typically results in a 
50% or greater reduction in the order of matrix A. Tables 1 
and II present typical values for the parameters used in sev- 
eral of the calculations. 

while the product internal functions are defined as solutions 
to the equation 

z(z+ 1) 

R2 I 

+ Vjlyzr(R,rM)- ELjlirlf t 12b) 

where Vi~j!Z’(R,rM) is defined as 

Vjrj~~~(R,rM)={y~~(Y)lV(R,rM,y)lY~~,(~)). (13) 
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TABLE II. The parameters for typical runs for the three-dimensional reac- 
tions. Lengths are in bohrs and the energies in electron volts. (a) 

Parameter H+H2 P+Hz 1.2, , I I I / * 

Ro 1.0000 1.0000 
RN 6.0000 6.5000 
*0 0.0000 0.3000 
*M 4.5000 2.3000 
Scattering energy (range) 0.28-1.65 0.29-0.50 
Energy cut-off p-etef 2.0000 1.5000 
Jmax 30 40 
DVR basis size iN- 1) X (M- I) 853 897 
Selected basis size N,,, 365 408 

“The energy cutoff used on the repulsive side of the potential is twice the 
cut-off parameter listed. 

1.0 - 

0.8 

0.6 

0.4 - 

0.2 - 

0.0 - 

III. TOTAL REACTION PROBABILITY FROM SPECIFIC 
INITIAL STATES 

In this section, we describe the numerical tests we have 
conducted in order to evaluate the method, and present the 
results. While the bulk of the tests are conducted on collinear 
models, a three-dimensional application is presented here in 
order to support one of the conclusions regarding the range 
of applicability of the method. Applications of the method to 
the 3D H+H2, D+H,, and H+D, reactions (J=O) have al- 
ready been presented in Ref. 1, and are not repeated here. 

We first-examine the sensitivity of the total reaction 
probabilities on the position of the boundary rM on the prod- 
uct side. Figure 2 shows the total reaction probability from 
the ground state of the Hz molecule for the collinear H+H, 
reaction on the PK2 surface for several values of rM. We 
also show the exact results, obtained from a two-arrangement 
formulation of the Y-KVP method, in Fig. 2. Clearly, in this 
case, the results from the method are reasonably insensitive 
to the position of the boundary on the product side. Figure 2 
also indicates that the results are in good agreement with 
those of the exact calculation. Similar agreement is found for 
the total reaction probabilities out of the first and second 
excited states of the Hz molecule as well. 

1.2 

1.0 

E 0.8 
2 
$ 0.6 
8 
g 0.4 

0.2 

0.0 

1 

-/iL~lp, I I I 

0.5 0.7 0.9 1.1 1.3 1.5 i17 
E WI 

FIG. 2. The total reaction probability from the reactant v=O state for the 
collinear H+H, reaction on the PK2 surface. The results of the single 
arrangement method at different values of the product boundary rM are 
s\\own as lines, an8 the exact results are represented by the symbols. 

A --i‘t 
r .;‘~, 

t, \ 3 
7-l 1.0 

B WI 

1.21 2 , I I I . I , 

I 
1.0 

c 0.8- =i 
!j 0.6 - 
8 g 0.4- 

0.2 - 

0.0 1 - -4 ’ - 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
E (ev) 6 

FIG. 3. The total reaction probability from the reactant v=O state for two 
collinear reactions on the PK2 surface. The results of the single arrange- 
ment method are shown as lines, and the exact results are represented by the 
symbols. (a) The D+HD reaction: (b) the TfHT reaction (T=3H). 

As noted in the Introduction, the boundary conditions 
applied at the~product boundary become worse approxima- 
tions to the correct boundary conditions as the mass- 
weighted angle between the two arrangements decreases. We 
now examine how this affects the results of the single ar- 
rangement method by increasing the masses of the nonex- 
changed atoms. In Fig. 3, we present the total reaction prob- 
abilities for the D+HD (mass-weighted angle=48.6”) and 
the T+HT(T=3H) reactions (mass-weighted angle=41.4”). 
Clearly, there is good agreement between the results of the 
present method and the exact results. Although not shown in 
Fig. 3, we have repeated these calculations at different values 
of rM and verified that the results are stable. 

However, the application of the present method to the 
collinear F+H, reaction (mass-weighted angle=46.4”) on 
the T5A surface,“(j produces quite different results. As seen in 
Fig. 4, at low energies, the total reaction probability fluctu- 
ates wildly as rM is varied. In this region, the results of the 
present method are also in poor agreement, even qualita- 
tively, with the exact ones. However, as the energy increases, 
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1.0 
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0.4 
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0.0 
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E W4 

FIG. 4. The same as Fig. 2, but for the F+H, reaction on the TSA surface. 

the sensitivity of the reaction probabilities to t-M decreases 
dramatically, and the agreement between the single arrange- 
ment and the exact results improves considerably. 

In light of the results presented in Fig. 3, we may dis- 
count the small value of the mass-weighted angle as the 
source of this behavior. That explanation, in any case, fails to 
explain why the results are in poor agreement with the exact 
ones only at energies near the threshold. We believe that the 
sensitive dependence of the near-threshold reaction prob- 
abilities on the position of the product boundary rM is caused 
by factors that affect the free flow of reactive flux from the 
“strong interaction” region to the asymptotic product region. 
These factors can be identified by the following reasoning: 

The behavior of the scattering wave functions in the exit 
channel away from the product boundary is largely deter- 
mined by the local potential. It is well known that for this 
reaction, on the T5A surface, reactive flux into the HF v=3 
vibrational state is energetically favored at energies near the 
threshold. This means that the exit channel solution will have 
a significant v=3 component. The boundary conditions ap- 
plied at r = rM , however, depend on the bound state energies 
calculated using the potential V(R, rM) _ Table III presents the 
product bound state energies of HF, calculated both along a 
cut of the product channel potential at the proper mass- 
weighted angle (along r’ at fixed R’, say R’ = Rh; the 

following section explains how Rh is chosen) and along 
r=rM. Table IlI shows that the scattering wave function at 
near-threshold energies (E&O.28 eV) in the case of -the 
F+H, reaction is matched to vibrational states whose ener- 
gies are significantly different from the vibrational states 
supported by the exit channel potential away from the 
boundary. In fact, the shape of the potential in the single 
arrangement approach, which is implied by the boundary 
conditions applied, is similar to that shown in Fig. 5(a). In 
dynamical terms, it is as if the potential suddenly and dis- 
continuously widens (the “width” being measured in a di- 
rection normal to the local potential contours), and makes a 
turn in the direction of the r coordinate at r = rM . The result- 
ing reflections of the reactive flux from the boundary appears 
to be responsible for the near-threshold behavior of the 
F+H, reaction probability. 

However, this does not explain why the results from the 
single arrangement method are more stable and in much bet- 
ter agreement with the exact results at higher energies. It 
would appear that the u=5 state of V(R,r,), which becomes 
open above 0.49 eV, has a role in this. Recall that away from 
the boundary r = rM , the exit channel solution has a signifi- 
cant v=3 component. In the energy range 0.28-0.49 eV, the 
reactive llux is directed predominantly to the v=4 state of 
V(R,r,), which has a very different nodal structure com- 
pared to the v=3 state. The nodal pattern of the v=5 state, 
on the other hand, provides a much better match to the nodal 
structure of the exit channel wave function. A comparison of 
the HD vibrational energies, also presented in Table III, ex- 
plains why a similar problem does not occur in the case of 
the Df HD reaction. In this case, the vibrational components 
of the exit channel solution are in good agreement, in terms 
of energies and nodal patterns, with the bound states at the 
boundary r = rM . 

One way to minimize the reflections of reactive flux is to 
modify the potential near the product boundary in such a 
way that the abrupt “broadening” and “turning” of the po- 
tential is made smooth and continuous. This can be accom- 
plished by smoothly extending and “bending” the potential 
V(R,r,) as shown in Fig. 5(b). As one would expect from 
the above explanation, the total reaction probabilities from 
this potential, shown in Fig. 5(c), are relatively free of the 
effects of reflected flux. 

TABLE III. The asymptotic energies in the product channel of the F+H, reaction on the T5A surface, and the 
D+HD reaction on the PK2 surface, at a cut r’(R’ = Rh) and at the cut r= I-~, where the primes indicate the 
mass-weighted Jacobi coordinates of the product arrangement. Energies are in electron volts, measured from the 
asymptotic minimum of the reactant molecule in both cases, and the lengths are in bohrs. 

HF HD 

% I , % 
(atR’ = 2; = 7.55) 

e;r 
” (atR’ = RE,= 5.27) (at r=rM=3.5) (dtFrM=3.0j 

0 -1.1313 - 1.1966 0.2474 0.2379 
1 ', -0.6438 -0.8362 0.7035 0.5815 
2 -0.1801 -0.4870 1.1356 0.9111 
3 0.2583 -0.1493 1.5434 1.2265 
4 0.6687 0.1763 
5 1.0453 0.4936 
6 1.3785 0.8033 
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In light of these comments, it would seem that the single the reaction probability of Fig. 4 is almost completely absent. 
arrangement method has a rather limited range of applicabil- 
ity, unless special modifications are made to the potential 

Above E-0.285 eV, the reactive flux appears to flow 
smoothly into the bound states at rM , some of which occur at 

surfaces. However, our experience so far indicates that-the energies (in electron volts) 0.2896, 0.3135, 0.3195, 0.3644, 
collinear F+H, is an especially severe case. In the case of etc. The results are also in reasonable agreement with exact 
3D scattering, the product boundary typically has a much resultsz7 over the energy range examined. However, since the 
higher density of states, and the reactive flux suffers less ground energy level of the H, molecule at the boundary 
interference from boundary reflections. In support of these R= R,=6.5 bohr is 0.2824 eV, the single arrangement 
comments, we present, in Fig. 6, the preliminary results of method cannot reproduce the low energy “peak” in the re- 
applying the method to the three 3D FfH, reaction (J=O) action probabilities [see Fig. 2(bj of Ref. 27(b)]. Setting RN 
on the T5A surface without any modijkations. Figure 6 to a larger value will yield a Ha ground state energy less than 
shows that the single arrangement results are more stable as 0.2733 eV and would presumably remedy this problem. We 
the boundary TM is moved, and the oscillatory behavior of also expect the stability of the total reaction probabilities and 

FIG. 5. (a) The implicit shape of the collinear T5A surface used in the single 
arrangement method. The product boundary is indicated by the dashed line 
at r=3.25. The variational problem is solved in the region below the dashed 
line. (bj The collinear T5A surface, modified by smoothly extending and 
behding the potential at r=3.25 to the boundary r=6.0. (c) Total reaction 
probabilities for the F+Hs reaction on the potential surface of (b). 
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FIG. 6. Total reaction probability out of Hz(v=O, j=O) for the 3D F+Hz 
reaction (J=O) on the T5A surface. The lines represent the results of the 
single arrangement method at the indicated values of the parameter rM, 
while the symbols are the exact results; 0: Ref. 27 (a) and (c), 0: estimated 
from Fig. 2(a) of Ref. 27(b). 

the agreement with the exact results to improve considerably 
if the same modification to the product channel potential as 
in Fig. 5 is made in the 3D case. 

IV. STATE-TO-STATE REACTION PROBABILITIES 

The solution of the variational problem, which yields 
total reaction probabilities from specific initial states under 
favorable conditions, also contains sufficient information re- 
garding state-specific reaction probabilities. We now describe 
how this information may be extracted. Our approach is to 
use the open channel solutions of the variational problem to 
construct open channel S-matrix wave functions in each ar- 
rangement, which can then be used to directly calculate state- 
to-state transition probabilities. 

Let tia denote the number of open reactant channels at 
scattering energy E. We number the channels such that isna 
denotes an open reactant state, while i>na denotes an open 
product state. Then the solutions of the variational problem 
satisfy the boundary conditions 

‘J$(R~,rj=@(r), *L(R,rM)=O, for i=Sn,, 
(14a) 

*\lriy(RN,rj=O, ‘% ‘k(R,rM)=pi(R), for i>na, 
i14b) 

where the superscript denotes the initial state, and the sub- 
script on V!( R, r) is indicative of the type of boundary con- 
ditions satisfied by the wave function. The S-matrix wave 
functions for the reactant initial states, on the other hand, 
satisfy the boundary conditions 

xikjR,)&(r), 

‘@ ;(R,r&= - c S;h”‘(kjrM)qoj(R), 
Pa0 

ilW  

t15bj 

9402 Wu, Ramachandran, and Wyatt: Total and state-resolved reaction probabilities 

where ht’) and Izc2j are the Riccati-Hankel functions de- 
scribed by Calogaro,“’ whose asymptotic behaviors are given 
by 

Jim h”)(k~x)=k~*‘2 exp(ikjx), J J 
x*- 

l im h(2)(kjx)=kT1’2 exp( -ikjx). I x+= 

The wave vectors kj are defined with respect to the bound 
state energies of Eqs. (4j, and the superscript on the S-matrix 
elements in Eqs. (15) serves to indicate that we are referring 
to the approximate S matrix calculated from the present 
method. 

The first step in our procedure is to use the solutions of 
the variational problem to construct a set of functions satis- 
fying the boundary conditions of Eqs. (15) as follows: 

j=Sno 

X(kjRN)‘P$(R,r)- c SGh”‘(kjrM)‘P’iy(R,r). 
G-n0 

(16) 
Consider now the mass-weighted Jacobi coordinates of the 
product arrangement, which we denote as (R ’ , r ’ ) . The next 
step in our procedure is to identify a point Rh along R’, and 
to calculate a set of product diatomic functions at this point, 
which satisfy 

[ 

-h2 a2 
----+V(R;,r’) 5”(r’)=~,J”(r’), n=1,2,... . 2p dr 1 

(17) 

The choice of the point Rh must be made such that the po- 
tential V(Rb,r’j used to solve the bound state problem of 
Eq. (17) is sufficiently away from the “strong interaction 
region” that the diatomic energies are close to their asymp- 
totic values, and at the same time, lie within the rectangular 
region of Fig. 1, which is spanned by the functions defined in 
Eq. (16). We have used the first point below the energy cut- 
off on the repulsive side of V(R, rM) to define the point 
Rh. 

Our method for extracting state-to-state probabilities 
now depends on the validity of the following two assump- 
tions: (i) along the cut (Rh , r’) of the potential, the S-matrix 
wave functions computed using Eq. (16) are sufficiently 
close to the actual S-matrix wave functions; and (ii) the cut 
CR;, T’ j is sufficiently far from the strong interaction region 
of the potential that the actual S-matrix wave function can be 
expressed in its asymptotic form. The latter condition can be 
met with any desired accuracy by redefining the rectangular 
region of Fig. 1. We expect the former condition to be satis- 
fied with sufficient accuracy for a large class of problems for 
the following reasons: we have verified that except very near 
the boundary r= rM , the nodal structure of the scattering 
wave function in the r’ direction is largely determined by the 
local potential, and also that the distortion in the nodal pat- 
terns due to the unphysical product boundary conditions ap- 
plied at r = rM is significant only very close to this boundary. 
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FIG. 7. State-resolved reaction probabilities using Eq. (19) (shown as sym- 
bols) compared to the exact results (lines) for the collinear H+H, reaction 
on the PK2 surface. (Solid line and filled circles) P,,,; (dashed line and 
empty circles) P,,. 

The mass-weighted angle between the coordinate systems of 
the reactant and product arrangements in all the applications 
considered here is small enough to ensure that the range of r’ 
(at R’ = R$ for which the wave function has significant 
amplitude is far from the boundary r= rM . In cases where 
the angle is too large for this to be true (e.g., Li+FH), we 
expect the elements of Sy to be sufficiently close to the ac- 
tual S matrix that one may extract state-to-state probabilities 
directly from Sy. 

Thus, in light of the above discussion, we write 

Wk(Rh,r’)z- 2 Sijh(‘)(KjRh)c’(r’); i<t’Zo, 

F-0 

081 
where the Kj’S are defined using the bound state energies 
calculated in Eq. (17). Now, taking into account’the ortho- 
normality properties of the @(r’), we obtain the state-to- 
state reaction probability from the initial state i to an arbi- 
trary product state k as 

~ki=I~kilZ=I(Sk(r’)I~\I~~1;,r’))12. (19) 
The state-to-state probabilities obtained using EQ. (19) 

for the collinear H+H, reaction are shown in Fig. 7 along 
with the exact probabilities. This comparison indicates that 
the assumptions made in obtaining Eq. (19) are largely jus- 
tified in this case. The projections yield reaction probabilities 
that are qualitatively and often quantitatively in good agree- 
ment with the exact results. An extreme test of the present 
approach is presented in Fig. 8, where we apply Eq. (19) to 
the F+H2 reaction to extract the O-3 and O-4 reaction prob- . . . abdltles, i.e., P,, and P,,. It is clear from Table III that the 
bound states up to v=4 at r = rM [solutions of Q. (4b)] are 
open to Vs(R,r) just above the threshold energy. The v=5 
state also becomes open at energies above 0.50 eV. The sharp 
mass-weighted angle between the Jacobi coordinates in this 
case can also be expected to cause severe distortions to the 
nodal patterns of *,(R,r) [or W,(R,r)] near r=rM. In 
spite of this, however, Fig. 8 shows that for the range of 
energies where the present method yields satisfactory total 
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FIG. 8. The same as Fig. 7, but for the collinear F+H, reaction on the T5A 
surface. (Solid line and filled circles) P 3+O; (dashed line and empty circles) 
p4-,. 

reaction probabilities, the projections of Eq. (19) also yield 
accurate state-to-state probabilities. However, the method 
has difficulty with the very narrow resonance at E=0.690 
eV. The exact result indicates that this is a O-3 transition, 
while the projection assigns the higher reaction probability to 
p40. 

V. SUMMARY 

This paper presents a detailed discussion of an approxi- 
mate method that reduces the formally three arrangement 
problem of A + R C (and the two arrangement problem of 
collinear A + BC) reactive scattering to a two-point boundary 
value problem in a small region that spans just the reactant 
arrangement. The Kohn variational method for the log- 
derivative matrixgW1’ is used to solve this problem, using a 
Gauss-Lobatto DVR. In its present form, the region spanned 
by the basis has a rectangular shape, and the product bound- 
ary conditions are applied in the same direction as r, the 
mass-weighted Jacobi vector that measures the interatomic 
distance in the reactant diatomic molecule. This aspect 
makes the method an approximate one, since the solutions in 
the rectangular region are matched at the ‘product’ boundary 
to functions that do not correspond to the asymptotic solu- 
tions of an actual product arrangement Hamiltonian. In spite 
of this, the examples presedted above show that the method 
is capable of .calculating qualitatively, and often quantita- 
tively correct total, as well as state-resolved, reaction prob- 
abilities from a specific reactant initial state for a large class 
of reactions. In the case of the collinear F+H, reaction, for 
which the method yields unsatisfactory results, fairly 
straightforward and easily implemented modifications to the 
potential appear to eliminate most of the errors. 

The method presented here shares many features of the 
approach taken by Miller and co-workers.5-7 The scattering 
problem is reduced to a linear algebraic problem. The use of 
the DVR renders matrix element evaluation a trivial exercise, 
and as shown in Tables I and II, application of the energy 
cut-off criterion results in substantial reductions in the size of 
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the basis set. Moreover, the matrices resulting from using 
this basis in the variational functional are extremeiy sparse 
and have a well-defined structure. 

The main advantages to be claimed for the method pre- 
sented here are the following: By reducing the scattering 
problem to a boundary value problem, we have the option of 
dividing the relevant region of the potential into several 
smaller subregions and obtaining a solution in each of them 
separately. For example, in Fig. 5(b), the solutions above and 
below the dashed line can be obtained separately and com- 
bined to yield a log-derivative matrix that connects the reac- 
tant boundary to the final product boundary. This would be 
the best way to extend the boundary R, to the true asymp- 
totic region of the T5A potential in the 3D F+H, reaction 
(see the last paragraph of Sec. 111). Since smaller basis sets 
are sufficient to span the subregions, the individual linear 
algebraic problems to be solved are also smaller. Moreover, 
by avoiding negative imaginary potentials altogether, the 
present approach also avoids complex algebra in the most 
difficult parts of the calculations. 

However, in contrast to the approach taken by Miller and 
co-workers, the present method incorporates unphysical 
boundary conditions, and computes the full scattering matrix 
before total reaction probabilities can be extracted. The un- 
physical nature of the product boundary conditions, however, 
can be almost completely rectified. For example, the idea of 
smoothly bending the potential, presented in Fig. 5(b), sug- 
gests other schemes for potential modification as well. 
Swinging the potential cut V(Rh,r’) [see Eq. (17)] through a 
circular arc to the boundary r= rM would completely solve 
the problem of energy mismatch between components of the 
scattering wave function in the exit channel and at the 
boundary YE/i. Since the exit channel is “turned” in a 
smooth, continuous manner, there should be minimal reflec- 
tions of the reactive flux. The direction of the exit channel at 
r = rM would now be perpendicular to the boundary, and thus 
the boundary conditions applied would now be exact. Efforts 
to incorporate this modification, as well as to use an efficient 
DVR29 to span the angle variable, are in progress. 
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