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A method for carrying out quasiclassical trajectory~QCT! calculations of A1BC(v, j ) reactive
collisions for the special case of the total angular momentumJ50 is described. Since quantum
reactive scattering calculations involving heavier atoms are not straightforward for theJ.0 case,
this method is useful to establish the extent to which classical mechanics is applicable to a particular
reaction. The method is tested by comparing the results of trajectory calculations for theJ50 case
with analogous quantum-mechanical~QM! calculations for the O(3P)1HCl reaction and the
reverse reaction Cl(2P)1OH. The S4 potential surface, which is based on MRCI1Q/cc-pVTZ
energies scaled by the scaled external correlation method@B. Ramachandranet al., J. Chem. Phys.
111, 3862 ~1999!#, is used for these calculations. The QCT and QM cumulative reaction
probabilities are found to be in good agreement, especially for the Cl1OH reaction. The agreement
between the two types of state-resolved reaction probabilities is less striking but improves
considerably as the initial diatomic rotational quantum numberj increases. A comparison is also
made between the exact andJ-shifted QCT thermal rate coefficients. These are found to be in
excellent agreement, which is in keeping with similar agreement observed in the case of the
quantum-mechanical exact andJ-shifted thermal rate coefficients. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1335657#

I. INTRODUCTION

There is a fundamental difference in the way the total
angular momentumJ ~boldface indicates a vector quantity
here and throughout! is treated in the quantum-mechanical
~QM! and quasiclassical trajectory~QCT! formulations of
the atom–molecule reactive collision problem. In quantum
mechanics, since the Hamiltonian is block diagonal in the
total angular momentum quantum numberJ, it is natural to
formulate and solve the scattering problem for each fixed
value of J.1 In order to obtain the integral reaction cross
section, one performs calculations for all values ofJ for
which the reaction probabilities are non-negligible. On the
other hand, in the QCT approach, it has been customary to
allow the~unquantized! total angular momentum to vary in a
random fashion from trajectory to trajectory so that the initial
state-selected integral reaction cross section is directly ob-
tained by propagating a sufficiently large ensemble of
trajectories.2 This means that direct comparisons of quantum
and classical behavior for reactive atom–molecule collisions
are most easily done for those few cases where a fully con-
verged quantum reaction cross section can be calculated.
Several such comparisons exist~for example, see Refs. 3–7!,
and these generally support the notion that classical mechan-

ics provides rather accurate descriptions of atom–diatomic
molecule~A1BC! reactions at relatively high energies.

Methods for choosing trajectory initial conditions such
that J lies within a specified range 0<J<Jmax (Jmax.0)
have been described by Truhlar and co-workers.8 In these
calculations, the impact parameterb is constrained to lie be-
tween two limits. This restricts the magnitude, but not the
direction, of the orbital angular momentum vectorl, which
now is obtained as a random value between a minimum and
maximum. However, sinceJ5 j r1 l ~i.e., byvectoraddition!
wherej r is the rotational angular momentum of the diatomic
molecule, it is still possible to get trajectories withJ
.Jmax, which are rejected from the ensemble. Comparisons
of QCT partial cross sections calculated in this manner to
analogous QM quantities for the H1H2,8 D1H2,9 and the
H1D2

10 reactions also show that quasiclassical trajectory
methods are generally reliable for describing atom–molecule
collisions at high energies.

On the other hand, computational challenges of obtain-
ing QM reactive cross sections remain formidable for a very
large number of reactions of chemical interest. In the case of
the two reactions mentioned in the title, namely, O1HCl and
the reverse reaction, Cl1OH, reaction probabilities for non-
zeroJ>100 are required in order to get well-converged QM
cross sections. Such calculations are very time consuming
and, in many cases, calculations are practical only for theJa!Electronic mail: ramu@chem.latech.edu
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50 case. Thus far, to the best of our knowledge, QM-QCT
comparisons forJ50 have been done for only the case
where the initial diatomic rotational quantum numberj 50
~for example, see Ref. 11!, the only exception being a recent
work by us.12 In the casej 50, trajectories can be forced to
haveJ50 by setting the impact parameterb for all trajecto-
ries identically equal to zero. The effect of settingb50 is to
force the orbital angular momentuml to vanish so thatJ
5 j r . However, to obtainJ50 QCT reaction probabilities
for initial states withj .0, and ultimately to obtain cumula-
tive reaction probabilities, additional restrictions on the ini-
tial conditions have to be enforced. This paper describes a
way by which this may be accomplished. The prescription
for selecting QCT initial conditions is tested by comparing
J50 QCT initial state-resolved as well as cumulative reac-
tion probabilities with analogous QM results for the O1HCl
and Cl1OH reactions.

In cases where QM calculations forJ.0 are very time
consuming or practically impossible, various approximations
have been employed to calculate quantities such as the ther-
mal or state-resolved rate coefficients, which can be com-
pared to experimental results. The most popular among these
is the J-shifting method, which typically starts with the cu-
mulative reaction probabilities for theJ50 case.13 Several
recent studies have reported thermal rate coefficients calcu-
lated by various versions of theJ-shifting method for
the O1HCl reaction.11,12,14–20Detailed studies19 reveal that
for initial state-resolved dynamics, the simpleJ-shift ap-
proximation is inadequate and that a proper evaluation of
J.0 probabilities is very important. Thermal rate coeffi-
cients, however, were found to be well estimated within
10%–20% error by the simpleJ-shift approximation. Given
the usefulness of the simpleJ-shifting approach, it is of some
interest to examine the behavior of this method when applied
to QCT J50 reaction probabilities. We make an attempt in
this direction in this work. TheJ-shifted QCT thermal rate
coefficients are compared to those calculated from the full
QCT reaction cross sections12 which include contributions
from all relevantJ.

The remainder of this paper is organized as follows. In
Sec. II, we present the details of the initial state selection in
QCT calculations withJ50. In Sec. III, the QCT and QM
calculations undertaken for this work are described. The re-
sults of the QCT calculations for the O1HCl and Cl1OH
reactions are compared to analogous QM calculations in Sec.
IV. Here, we also compare the rate coefficients calculated
from theJ50 QCT probabilities using theJ-shifting method
to those calculated from the full QCT cross sections. We
conclude in Sec. V with a summary of this work.

II. TRAJECTORY INITIAL CONDITIONS

Our intention is to examine the initial conditions neces-
sary to generate trajectories with initial diatomic quantum
number j >0 and total angular momentumJ50. We wish
the resulting modifications to be minimal and to preserve, as
much as possible, the conventions and the initial state selec-
tion methods of the traditional approach, as described in
Ref. 2.

The initial arrangement of the atom A and the diatomic
molecule BC commonly adopted in QCT calculations is
shown in Fig. 1. The collision parametersb,u, andh defined
in this figure are required for our discussion. The vectorq
~with Cartesian componentsq1 ,q2 , and q3) points from
atom B to C, and the vectorQ ~with Cartesian components
Q1 ,Q2 , andQ3) points from the center of mass of BC to the
atom A. The convention is to assume that the atom A and the
center of mass of BC lie in theyz plane of a Cartesian axes
system~i.e., Q1

05Q2
050, where the superscript ‘‘0’’ indi-

cates the initial value! and that the initial relative velocity
vector vrel is directed in the1z direction @i.e., P1

05P2
0

50;P3
05(2mA,BCErel)

1/2#. The total angular momentum of
the three atom system, defined asJ5 j r1 l, is obtained by the
vector addition of the three components of the rotational and
orbital angular momenta. Therefore

J25J"J5Jx
21Jy

21Jz
25~ j x1 l x!

21~ j y1 l y!21~ j z1 l z!
2. ~1!

With the usual definitions of the Cartesian components of
angular momenta, it is possible to show that for the general
case we get

l x5b~2mA,BCErel!
1/2, l y50, l z50. ~2!

Therefore, settingb50 for all trajectories results in the or-
bital angular momentum being exactly equal to zero, which
meansJ5 j r . This is, of course, the basis for QCT calcula-

FIG. 1. Traditional~see Ref. 2! definitions of collision parameters used in
QCT calculations.
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tions for the caseJ5 j 50 mentioned earlier. For the more
general casej >0, it is clear that in order to getJ50, the
three terms in Eq.~1! mustindividually vanish. We choose to
accomplish this without modifying the conventional choices
for $Pi

0% ~given above! and those for$qi
0%.2 In order for the

first term in Eq.~1! to vanish, we requirel x5Q2P32Q3P2

52 j x . SinceP2
050, and it is easy to show that, we require

Q2
05

2 j x
0

P3
0

5
2 j x

0

~2mA,BCErel!
1/2

. ~3!

Similarly, for the second term in Eq.~1! to vanish, we re-
quire l y52 j y . SinceP1

050, this implies that

Q1
05

j y
0

P3
0

5
j y
0

~2mA,BCErel!
1/2

. ~4!

With these definitions, the impact parameterb now depends
on the values ofj x and j y for the particular trajectory and the
collision energy. Now, sincel z50, we requirej z50. It is
easy to show, from Ref. 2, that this requirement translates to

j z52 j r sinu cosh50, ~5!

where j r5u j r u. This condition leaves us with the choice of
restrictingu to 0 orp, which restricts the diatomic molecule
to be initially oriented along thez axis, or restrictingh to
p/2 or 3p/2, which initially restricts the plane of rotation of
the molecule, as one might surmise from Fig. 1. Since rede-
fining u will affect the uniform sampling of$qi

0%,2 we
choose to restricth, which is randomly assigned to one of
the two ‘‘allowed’’ values. These choices, therefore, yield
J50 at the beginning of the trajectory propagation. Since the
total angular momentum is conserved along a trajectory, the
value of J is expected to remain 0 to within the numerical
accuracy of the integration procedure.

The collision parameters other thanb andh are chosen
as described in Ref. 2 by random sampling of appropriate
intervals. The restrictions imposed here are comparable to
those implicit in the QMJ50 case, wherel and j r are re-
quired to cancel so as to yieldJ50. Note that with this
choice of initial conditions, the total angular momentumJ
will be identically equal to 0 for allj regardlessof the way
the magnitudej r is defined.

The definition ofj r is a matter of some interest in QCT
calculations. In the quantum-mechanical case,j r is unam-
biguously j r5@ j ( j 11)#1/2\.Some QCT calculations have
employed this definition4,11 while some others6,8–10,21 have
opted for the semiclassical expressionj r5( j 1 1

2)\,22 which
is reported to give better agreement with QM calculations for
the j 50 case~the difference between the two definitions is
insignificant forj .0). In the calculations presented here, we
have adopted the semiclassical definition ofj r ~and, there-
fore, of l ), but have required thatJ[0 using the restrictions
on h described above.

Arguments can be made that the semiclassical definition
should be adopted for the total angular momentum also in
QCT calculations, i.e.,uJu5(J1 1

2)\, which would mean that
the classical analog of theJ50 QM case isuJu[\/2 in QCT
calculations. Alternately, in the spirit of the approach taken
by Truhlar and co-workers,8–10 it can be argued that the total

angular momentum should be allowed to assume any value
in the range 0<uJu<\, becauseuJu is thevectorsum of the
rotational angular momentumj r and the orbital angular mo-
mentum l, with u j r u5( j 1 1

2)\, and u lu5( l 1 1
2)\. These

choices, of course, have profound implications for the initial
conditions. We defer the examination of these issues to the
Appendix. Meanwhile, the following argument can be of-
fered to support the choice adopted here, i.e., to setuJu[0 in
spite of the semiclassical definition ofu j r u. The total angular
momentum is a rigorously conserved quantity in both QM
and QCT calculations. Therefore, althoughj r and l can as-
sume arbitrary values in classical calculations regardless of
their initial value, the total angular momentum can be given
a specific value which is maintained throughout the calcula-
tion. In other words,uJu can be treated as aquantizedprop-
erty even in classical calculations. Therefore, it is justifiable
to assign the same value touJu in both QM and QCT calcu-
lations.

III. CALCULATIONS

In this section, we describe the calculations done for the
O(3P)1HCl and Cl1OH reactions, in order to test the
method of choosing trajectory initial conditions described in
the previous section. The potential energy surface for these
calculations is the recently published S4 surface23 for the
lowest3A9 state of the O(3P)1HCl system, which is based
on MRCI1Q/cc-pVTZ energies scaled by the scaled external
correlation method.24 Although recent calculations12,20 have
shown that the S4 surface fails to yield thermal rate coeffi-
cients in good agreement with experimental results, espe-
cially at low temperatures, it has been shown to reproduce
many of the experimental observations23,25 of the state-to-
state integral cross-section measurements of Zhanget al.26

The QCT calculations were done using a modified ver-
sion of the code used in previous calculations.12,23,25 The
modifications in the choice of collision parameters are de-
scribed in the previous section. For the forward reaction,
1000 trajectories were propagated out of each rovibrational
state of HCl below thetotal energy of 21 kcal/mol~0.91 eV!
with respect to the zero-point energy of the asymptotic
O(3P)1HCl arrangement. This includedv50 states up to
j 523 andv51 states up toj 516. For each initial state,
batches of trajectories were propagated at collision energies
from the maximum value down to the point where the reac-
tion probability was zero~i.e., less than 1023). The spacing
between collision energies was 1.0 kcal/mol or 0.04 eV, ex-
cept near the reaction threshold where a smaller spacing was
used. Also, larger numbers of trajectories (3000– 5000) were
propagated for collision energies near the reaction threshold
so as to decrease the error in the calculated reaction prob-
ability. The QCT calculations for the reverse reaction were
also done in a similar manner, for OHv50,j 50 – 20 and
v51,j 50 – 15. In each case, the total angular momentum
was monitored and was found to be conserved to within the
numerical accuracy of the integration procedure. Typically,
we found that the final value of the total angular momentum,
Jf<10231. For plotting QCT reaction probabilities as a func-
tion of energy, we used a spline interpolant between the re-
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action probabilities calculated at the various collision ener-
gies.

The QM calculations were done using the method devel-
oped by Tolshtikin and Nakamura, using hypersphericalel-
liptic coordinates.27,28The theory and implementation of this
method has been described in detail in the cited references
and, therefore, we restrict ourselves to a brief outline. The
coordinate system consists of the hyper-radiusr and two
angles (z,x) which parametrize the hypersphere. The Schro¨-
dinger equation forJ50 in these coordinates is written as

@K~r!1Had~z,x;r!2mr2E#C~r,z,x!50, ~6!

whereK(r) represents the kinetic energy for motion inr,
Had is the adiabatic Hamiltonian defined at fixedr and is
composed of the angular kinetic energy and the interaction
potential,m is a characteristic mass factor,27 and E is the
total energy. The adiabatic channel potentialsUn(r) and the
channel eigenfunctionsFn(z,x;r) are obtained by solving
the eigenvalue problem

@Had~z,x;r!2mr2Un~r!#Fn~z,x;r!50, ~7!

where n indicates the adiabatic channel number. After the
eigenvalue problem of Eq.~7! is solved at a number of val-
ues of the hyper-radiusr, the radial problem of Eq.~6! is
solved by the method ofR-matrix propagation. The scatter-
ing matrix S is obtained by imposing the proper scattering
boundary conditions onC(r,z,x) in the asymptotic regions
where the entrance and exit channels are fully decoupled.
The main advantage of the hyperspherical elliptic formula-
tion is that for the heavy–light–heavy (H –L –H8) mass
combinations of the type considered here, these coordinates
offer good separability between the two hyperangles so that
the two-dimensional eigenvalue problem of Eq.~7! can be
very efficiently solved at a number of values of the hyper-
radiusr. The hyperspherical elliptic coordinates also make it
possible to extend the concept of the potential ridge to three
dimensions.28 The potential ridge is defined as the projection
of the location~as a function ofr) of the barrier in the
vibrationally adiabatic potentials onto a plot of theUn(r).
This leads to a view of electronically adiabatic reactions as
vibrationally nonadiabatic transitions at avoided crossings in
the vicinity of the potential ridge.28–31 This approach sheds
considerable light on the rather unique behavior of quantum
initial state resolved reaction probabilities in this reaction on
the S4 surface.12

IV. RESULTS AND DISCUSSION

We first compare the QM and QCT cumulative reaction
probabilities ~CRPs! for the O1HCl→OH1Cl, and the
Cl1OH→HCl1O reactions. We refer to the former as the
‘‘forward’’ reaction and the latter as the ‘‘reverse’’ reaction.
These results are shown in Fig. 2. The origin of the energy
axis is the zero-point energy~ZPE! of the asymptotic
O1HCl arrangement. The solid lines represent the QM prob-
abilities, while the QCT results are represented as dotted
lines. The error bars on the QCT cumulative probabilities
represent the sum of the error bars for the individual initial
state resolved probabilities. It is clear that the QCT and QM
results agree quite well with each other, the agreement being

especially good for the case of the Cl1OH reaction. The
vibrationally resolved QM CRPs show qualitatively different
behavior in the forward and reverse cases, which is faithfully
reflected by the QCT results.

In the case of the QM calculations, the unitarity of theS
matrix ~or symmetry ofuSu2) ensures that the CRPs for the
forward and the reverse reactions are the same. In QCT cal-
culations, although the principle of microscopic reversibility
leads to the expectation that the forward and reverse reac-
tions have nearly the same CRPs, a rigorous constraint does
not exist. Therefore, it is not unusual that the QCT results for
the reverse reaction are in significantly better agreement with
the QM results than for the forward reaction. A possible
explanation for this has to do with the extent to which vibra-
tional adiabaticity is conserved in the classical dynamics for
the two cases. An examination of the vibrational modes
along the minimum energy path~MEP! on the S4 surface
indicates that motion along the MEP is only weakly coupled
to the vibrational modes transverse to it on the O1HCl side
of the reaction barrier.32 Therefore, during the approach of
the O to the HCl, conditions are favorable for the conserva-
tion of vibrational adiabaticity. This means that, in the case
of the O1HCl reaction, the QCT reaction probability does
not assume nonzero values until the total energy approaches
that of theeffective reaction barrier, which consists of the

FIG. 2. Comparison of QM and QCT cumulative reaction probabilities for
~a! O(3P)1HCl→OH1Cl, and~b! Cl1OH→HCl1O(3P). The QM prob-
abilities are represented by solid lines and the QCT probabilities, by dotted
lines.
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Born–Oppenheimer potential barrier,DV‡, plus the local vi-
brational zero point energy, whereas the QM system tunnels
through the effective barrier at lower energies. This behavior
is clearly visible in Fig. 2~a!. The situation is rather different
for the OH1Cl reaction. In this case, a deep (25.17 kcal/
mol with respect to the asymptotic O1HCl energy! van der
Waals minimum is present in the entrance channel at
(r OH,r HCl ,uOHCl) 5(1.90a0, 4.12a0, 80.4°).23 During the
approach of the Cl to the OH, the MEP takes a sharp turn
from this minimum to the minimum energy saddle point lo-
cated at (r OH,r HCl ,uOHCl) 5(2.42a0, 2.66a0, 131.4°). All
vibrational frequencies associated with the three-atom sys-
tem undergo significant changes along this rather short dis-
tance along the MEP.32 This leads to strong coupling be-
tween motion along the reaction path andO–H–Cl
vibrational modes, which compromises vibrational adiabatic-
ity. In this case, since classical dynamics does not preserve
the zero-point energy, QCT reaction probability assumes
nonzero values atE.DV‡ which, as seen in Fig. 2~b!, leads
to very good QCT-QM agreement.

Let us now compare the behavior of QM and QCT reac-
tion probabilities out of a few initial states for the O1HCl
reaction. This comparison is presented in Fig. 3, which
shows the reaction probabilities out of selected HCl (v

50,j ) states and Fig. 4, which shows reaction probabilities
for selected HCl (v51,j ) states. It is immediately apparent
that the QM-QCT agreement is not nearly as good as in the
case of the CRPs. However, the energy dependence of the
QM and QCT reaction probabilities does exhibit many quali-
tative similarities while they agree with each other nearly
quantitatively in terms of overall magnitudes. Not surpris-
ingly, QCT curves do not show any indications of the sharp
resonance structure present in the QM curves, which are in-
dicative of Feshbach resonances.12 On the other hand, the
broader features of the QM curves are reflected to some ex-
tent in the QCT results and the degree of this reflection be-
comes greater asj increases.

The QM and QCT reaction probabilities out of selected
initial states for the Cl1OH (v, j ) reaction are presented in
Figs. 5 and 6. The comments made in relation to Figs. 3 and
4 are applicable here also. The energy dependence of the
QCT initial state resolved reaction probabilities show quali-
tative similarities to their QM counterparts and, once again,
the quality of agreement between the two types of results
improves asj increases.

There is one aspect of the OH(v50,j ) probabilities that
deserves additional comment. In the QM case, it has been
observed that reaction probabilities out of the OH(v50,j
50 – 3) are surprisingly small over the entire energy range
considered,12 especially when compared to the results ob-

FIG. 3. Comparison of QM and QCT initial state-selected reaction prob-
abilities for the O1HCl reaction. Solid lines represent QM and the dashed
lines the QCT results. Panels~a! and ~b! compare states withv50 and the
indicated initialj values.

FIG. 4. Same as Fig. 3, but for HCl states withv51 and the indicatedj
values.
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tained on the potential surface of Koizumi, Schatz, and Gor-
don ~KSG!.14 The concept of the potential ridge28 is very
helpful in understanding this behavior. Recall that this con-
cept leads to the view of reactive transitions as vibrationally
nonadiabatic transitions at avoided crossings in the vicinity
of the potential ridge. Avoided crossings elsewhere in the
hyper-radial space are far less effective in causing reaction.
The main reason for this is the weak interaction between the
states correlating asymptotically with reactant and product
states away from the potential ridge and the ‘‘reaction
zone.’’ The coupling between two states undergoing an
avoided crossing is indicated by the magnitude of the energy
splitting between them. Sharp avoided crossings with narrow
splittings imply weak interaction, while relatively large en-
ergy splittings are indicative of substantial interaction be-
tween the states. A quantitative judgment about the strength
of the interaction between the levels can be made using the
parametera2 defined in Ref. 33. The adiabatic potential
curves for the OH(v50,j 50 – 3) states undergo a few sharp
avoided crossings away from the three-body interaction re-
gion but, in fact, miss the potential ridge region altogether.
We refer the reader to Fig. 4 of Ref. 12 to examine the
potential energy curves. The situation is quite different for
the j 57 and 10 states. The former undergoes multiple sharp

avoided crossings in its approach to the potential ridge and
appears to undergo a moderately strong~as measured by the
energy splitting! avoided crossing with an adiabatic potential
curve leading asymptotically to a O1HCl state almost ex-
actly at the potential ridge. Thej 510 curve undergoes a
stronger avoided crossing with an adiabatic potential curve
that also leads asymptotically to a O1HCl rovibrational
state. In both these cases, we expect the quantum reaction
probabilities to be higher and, as can be easily verified from
Fig. 5 above, the results bear out these expectations.

The surprising aspect of the comparison in Fig. 5 is that
the QCT calculations also lead to similar behavior. The QCT
calculations, of course, do not rely on the adiabatic potential
curves since these are purely intermediate quantities in a par-
ticular approach to the solution of thequantum-mechanical
reactive scattering problem. However, the relative magni-
tudes of the QCT reaction probabilities plotted in Fig. 5
show remarkable similarities to the trends observed in the
QM case. The QCT probabilities out of OH(v50,j 50,3) are
extremely small over the entire energy range examined. In
sharp contrast, the QCT results for thej 57 and 10 states are
dramatically larger. This behavior, we believe, indicates that
the presence~or absence! of avoided crossings of the adia-
batic potential energy curves in the vicinity of the potential
ridge is a manifestation of a dynamical mechanism that has

FIG. 5. Comparison of QM and QCT initial state-selected reaction prob-
abilities for the Cl1OH reaction. Solid lines represent QM and the dashed
lines the QCT results. Panels~a! and ~b! compare states withv50 and the
indicated initialj values.

FIG. 6. Same as Fig. 5, but for OH states withv51 and the indicatedj
values.
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clear classical analogs. Further insight to this phenomenon is
provided by a semiclassical theory of avoided crossings de-
veloped by Zhu and Nakamura.33

Finally, we compare the exact QCT thermal rate coeffi-
cients for this reaction12 to the J-shifted QCT rate coeffi-
cients. The reason for making this comparison is the follow-
ing. As noted in the Introduction, it is generally not
straightforward to performJ.0 QM calculations for most
reactions of chemical interest. In such cases, theJ-shifting
approximation provides a simple and reasonably accurate
method to calculate the thermal rate coefficients. The basic
principle behind the method can be summarized as

kJS~T!5kJ50~T!Qrot
‡ ~T!, ~8!

wherekJ50(T) is the rate coefficient calculated fromJ50
reaction probabilities andQrot

‡ (T) is the rotational partition
function for the transition state. Although initial state re-
solved cross sections and rate coefficients requireJ.0 dy-
namics calculations, the simpleJ-shift approximation is ac-
curate enough for thermal rate coefficients.15,18,19Our recent
investigations on the S4 surface12 have made available the
exactQCT thermal rate constants,kQCT(T), which includes
contributions from all relevant values ofJ, sampled in a sta-
tistical manner. The calculations reported above yield the
J50 QCT reaction probabilities which permit thekJS

QCT(T)
to be calculated at various temperatures. Therefore, we now
compare these two quantities with the hope that this com-
parison will provide some insight into the behavior of the
J-shifting method. This comparison is presented in Fig. 7.

It is immediately apparent from Fig. 7 that the exact and
approximate QCT rate coefficients are in excellent agree-

ment over the entire temperature range examined. The dif-
ference between the QCT and the QM rate coefficients can
be attributed to tunneling. Due to the relatively high reaction
barrier of the O1HCl reaction, the near-threshold behavior,
to which tunneling contributes significantly, has a strong in-
fluence on the rate coefficients even at high temperatures. In
contrast, the sharp Feshbach resonances which show up
prominently in the QM results, but are absent from the QCT
ones, are not expected to contribute significantly to the rate
coefficients since these get averaged out.

A detailed study of theJ-shifting approximation and its
variants by Nobusada and Nakamura19 has shown that the
simple J-shifting approximation is not adequate for repro-
ducing quantities such as initial rovibrational state selected
cross sections,sv j (E), and rate constants,kv j (T). At least
the treatments such as the extendedJ-shift approximation,
which involves QM calculations forJ< j i ,J1 ,J2 , . . . , where
J1 etc., representJ values higher thanj i , are required in this
regard. However, thanks to the cancellation of over- and un-
derestimates of the individualkv j (T), the simpleJ-shift ap-
proximation seems to work relatively well within 10%–20%
for the thermal rate coefficients. From the comparison above,
it is seen that the simpleJ-shifting approximation works ex-
ceedingly well in the present system also for QCT rate coef-
ficients.

V. SUMMARY

We have presented a method for choosing trajectory ini-
tial conditions in simulations of A1BC reactive collisions
which makes it possible to generate trajectories for which the
total angular momentumuJu[0 for all values of the initial
diatomic rotational quantum numberj. One guiding philoso-
phy in the development of the method was to minimize the
changes in the initial state selection methods commonly
adopted in ‘‘traditional’’ QCT calculations which sample all
possible values ofJ in a statistical manner. Because of this,
the method can be implemented with minimal changes to
existing A1BC trajectory codes, most of which incorporate
the methods outlined in Ref. 2. These calculations are di-
rectly comparable to quantum-mechanical reactive scattering
calculations for the special case ofJ50. Given the compu-
tational difficulties in performing accurate QM calculations
with J.0 for most reactions of chemical interest, this
method provides a way to establish the extent to which clas-
sical mechanics can be expected to resemble quantum-
mechanical results.

The results of our calculations show that theuJu[0 QCT
approach is generally successful in reproducing the behavior
of the QM CRPs both qualitatively and quantitatively. The
breakdown of vibrational adiabaticity in the entrance chan-
nel, as in the case of the Cl1OH reaction, appears to yield
particularly good agreement between QM and QCT cumula-
tive reaction probabilities at low energies. TheuJu[0 QCT
dynamics is less successful in reproducing QM initial state
resolved reaction probabilities. However, the QCT results
agree with the QM ones in many cases qualitatively and in
some cases quantitatively. The agreement generally im-
proves as the diatomic rotational statej increases. Naturally,
QCT results do not reflect any of the sharp Feshbach reso-

FIG. 7. Comparison of the QM (J-shift!, QCT ~exact!, and QCT (J-shift!
thermal rate coefficients.
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nances which prominently show up in the QM results, espe-
cially for the Cl1OH reaction, because these are caused by
quasibound states supported by a rather deep well in the
potential surface. These resonances, however, tend to get av-
eraged out in the CRP curves and, therefore, do not seriously
affect the quantum-classical similarities mentioned above. It
is also noteworthy that the relative magnitudes of the QCT
initial state resolved probabilities show the same trends as
the QM case, as illustrated by the two panels of Fig. 5.

We have also compared the thermal rate coefficients cal-
culated from the QCTuJu50 reaction probabilities using the
J-shifting approximation,13 kJS

QCT(T), to the exact QCT rate
coefficients,kQCT(T). This comparison reveals that the two
quantities are nearly identical to each other in the tempera-
ture range 300 K<T<1000 K. Similar agreement has also
been observed for the exact andJ-shifted quantum mechani-
cal thermal rate coefficients.19

Finally, in the Appendix, we consider alternate defini-
tions of uJuthat can be justified on various grounds. Of these,
it is seen that the case (uJu5\/2, Jz50), whereJz is the z
component ofJ, yields results very close to those obtained
above, both at the level of initial state resolved probabilities
and when summed over the initial states. Other choices lead
to poor QM-QCT agreement. Therefore, we believe that the
approach taken in this paper is a valid way of obtaining QCT
reaction probabilities which can be directly compared to the
results ofJ50 QM calculations.
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APPENDIX

We now examine the alternate ways of choosinguJu in
QCT calculations mentioned in Sec. II and their implications
for the selection of trajectory initial conditions. It will be
necessary in the following to make the distinction between
the magnitude of the total angular momentumvector, uJu,
and the total angular momentumquantum number, J.

1. Case A: zJzÆ\Õ2

Since semiclassically22 uJu5(J1 1
2)\, the QCT analog of

the QM J50 calculations is the case ofuJu[\/2. This
choice has profound implications for the selection of QCT
initial conditions. In this case, we start by randomly parti-
tioning the value ofuJu ~i.e., \/2) among the three Cartesian
components ofJ as

Jx
25

bx

bx1by1bz
S \

2D 2

,

and so on, wherebx ,by , andbz are three random numbers
in the interval~0,1!. Now

Q1
05

2~Jy2 j y!

~2mA,BCErel!
1/2

, Q2
05

~Jx2 j x!

~2mA,BCErel!
1/2

,

and, sincel z50, Eq. ~5! can be revised to give

j z5 j r usinu coshu5Jz . ~A1!

In other words, we require

usinuu5
Jz

j r ucoshu
. ~A2!

However, sinceusinuu must be bounded between the values
(0,1), certain restrictions must be placed on the range of
values of cosh. We require thatj r ucoshu>Jz, i.e.,

Jz

j r
<ucoshu<1. ~A3!

Therefore, cosh must be chosen in a random fashion be-
tween these two limits. Ifb is a random number in the in-
terval (0,1), then the choice ofucoshu can be written as

ucoshu5
Jz

j r
1S 12

Jz

j r
Db.

With this choice, the angleh calculated can be distributed
over the interval (0,2p) by randomly assigning the angle to
be equal toh or (2p2h). Substituting the value of cosh
into Eq. ~A2! for sinu, likewise, yields a value ofu which
can be distributed over the interval (0,p) by randomly as-
signing the angle to be equal tou or (p2u). Note that we
are now choosing the angleu through Eq.~A2! rather than
from a random distribution in the interval (0,p).

2. Case B: zJzÆ\Õ2;J zÆ0

This case also follows from the semiclassical quantiza-
tion of angular momentum22 which yields, in addition to the
condition uJu5(J1 1

2)\, the condition that thez component
of the total angular momentum,Jz5M\. SinceM<J, we
require thatM50 in addition to theJ50 requirement. In
other words, semiclassically, the total angular momentum
vector has a nonzero length but is confined to thexy plane.
The initial conditions for this case can be obtained by first
partitioning the value ofuJu ~i.e., \/2) amongJx andJy as

Jx
25bxS \

2D 2

, Jy
25~12bx!S \

2D 2

.

From these relationships,Q1
0 and Q2

0 are defined as in case
A. SinceJz50, Eq.~5! is once again used to define the value
of h and u is chosen from a random distribution in the in-
terval (0,p).

3. Case C: 0ÏzJzÏ\

As already mentioned in Sec. II, an argument can be
made for an even more relaxed selection criterion which
would allowJ to vary between 0 and\. This can be done as
follows. The Cartesian components ofJ are chosen as

Jx
25

bx

bx1by1bz
J2,
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and so on, whereuJu is chosen asb\, whereb is a random
number in the interval (0,1). Then, steps identical to those
for theuJu5\/2 case are employed. This case is clearly in the
spirit of the approach taken by Truhlar and co-workers,8–10

but has the advantage that since the range ofJ is strictly
limited, no trajectories have to be rejected from the en-
semble. Note that this formulation is not applicable to the
case wherej 50 ~i.e., j r5\/2). In this case, if the value
assigned randomly toJz.\/2, the lower limit of Eq.~A3!
will be greater than unity. Therefore, we treat thej 50 case
by settingbmax50.

We now examine some numerical results from QCT cal-
culations using the two cases presented here and compare
them to QM results. For this purpose, classical trajectories
were initiated from O1HCl (v50,j ) for j 50,1,3,5,10, and
15 using the methods for choosing initial conditions de-
scribed above under cases A, B, and C. In Fig. 8, the reaction
probabilities forj 53 and 10 thus calculated are compared to
QM results and QCT results from the method of choosing
initial conditions described in Sec. II, which setsuJu[0. It is
clear that both case A and case C lead to QCT reaction
probabilities that are qualitatively quite different from the
QM ones for thej 53 case, while the curve representing case
B is very close to theuJu[0 case. In the case ofj 510, all
choices lead to poor agreement at low energies. However,

the curve corresponding touJu[0 and to case B are far more
similar qualitatively to the QM curve than the other two.
Although not shown, we have observed similar behavior in
each of the other four states examined. In each case, the
results from cases A and C are in good agreement with each
other but in poor agreement with theuJu[0 and case B QCT
results and often in qualitative disagreement with the QM
results. Also, in each of these cases, theuJu[0 and case B
are quite similar to each other.

We also present, in Fig. 9, a comparison of the partial
cumulative reaction probability, i.e., the total reaction prob-
ability for statesv50, j 50,1,3,5,10 and 15. It is clear from
this figure that the specific method employed for choosing
initial conditions becomes less important for such ‘‘aver-
aged’’ quantities. However, even at this level, the choice
uJu[0 or (J5\/2, Jz50) appears to give the best qualitative
and quantitative agreement with QM results.
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