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Classical chaos is usually accompanied by “local” ergodicity—ergodic behavior in regions of
phase space that are generally smaller than, but of the same.dimensionality as, the energy
surface. If there are strong bottlenecks in phase space impeding the relaxation to statistical
equilibrium in the full region of ergodicity, it is often possible to define an approximate form of
ergodic behavior in a smaller subregion where relaxation occurs temporarily but quickly. Such
“pseudoergodicity” is also a symptom of chaos. We use the presence of quantum behavior that
mimics local ergodicity and pseudoergodicity as a probe for the influence of classical chaos on
quantum dynamics. We show that the quantum analog of a pseudoergodic region in phase
space is generally formed by superpositions of energy eigenstates. The superposition states
spanning a given pseudoergodic zone have similar expectation values and small off-diagonal
elements to other states with similar energy for a certain class of operators. We perform
calculations which identify the ergodic regions for two versions of the quantum Henon—-Heiles
system. For the “more classical” of these systems we find good agreement between the
proportion of quantum states in pseudoergodic zones and the proportion of classical phase
space occupied by chaotic trajectories. We also find that the quantum pseudoergodic regions
can be identified with classical vague tori of the precessing and librating types. Different
ergodic regions are separated from one another by what appear to be the quantum analogs of
the precessor-librator separatrix and other classical bottlenecks. For the “less classical” of the
systems, we find that classical chaos is reflected in the quantum dynamics to a smaller, but still

noticeable, degree.

I. INTRODUCTION

Classical systems that are nonintegrable typically un-
dergo a transition from regular to irregular motion over a
certain energy range.! The nature and the underlying causes
of this transition have been the subjects of many studies.’ In
this paper, we investigate the implications of the transition
and the resulting chaos for quantum mechanical systems.
Our approach makes use of the intimate connection between
the classical concepts of irregular motion and ergodicity.

To explain our approach, we must first establish some
terminology. The dynamics of an s-dimensional system with
smooth potentials is said to be regular if, for the vast majority
of trajectories, the motion is confined to s-dimensional tori
embedded in the 2s-dimensional phase space. Such motion is
stable, in the sense that the separation between initially near-
by trajectories increases only linearly with time. Apart from
rare cases of frequency commensurability, the motion on
each torus is also ergodic on that torus," i.e., any trajectory
on a torus comes arbitrarily close to every point on the same
torus during the course of time. We refer to this type of ergo-
dicity as “trivial” because the ergodic region—the s-dimen-
sional torus—has a lower dimensionality than the full
(2s — 1)-dimensional energy surface and thus has zero mea-
sure on the energy surface.

On the other hand, dynamics becomes irregular or chao-
tic when, for a substantial fraction of trajectories, the motion
is no longer confined to tori, but extends over regions of
higher dimensionality. Such motion is unstable, in the sense
that neighboring trajectories diverge exponentially with

4628 J. Chem. Phys. 86 (8), 15 April 1987

0021-8606/87/084628-20$02.10

time. Barring exceptional cases in which chaotic dynamics
remains subject to certain supplementary integrals of mo-
tion,* the dimensionality of the chaotic regions is (25 — 1)—
the same as that of the energy surface. The chaotic motion
may be said to be ergodic in these (25 — 1)-dimensional re-
gions since ergodicity in an invariant region is simply equiva-
lent to the metrical indecomposability of that region.’ An
ergodic region of this kind still does not usually extend over
the full energy surface.* However, it generally has nonzero
measure on the energy surface since it has the same dimen-
sionality as that surface. We therefore call the form of behav-
ior usually accompanying chaos “nontrivial” ergodicity.
For brevity, the term ergodicity will henceforth denote non-
trivial ergodicity unless otherwise indicated.

Thus, chaotic behavior typically creates (nontrivial) er-
godic regions in phase space. It may be conjectured that the
converse is also true: the appearance of such ergodic regions
in phase space signals the presence of chaos in Hamiltonian
systems. Indeed, we are unaware of any cases where nontri-
vial ergodicity occurs in a Hamiltonian system (with s> 1)
without all of the accompanying manifestations of chaos,
including exponentially diverging trajectories.

A traditional way of measuring the “degree of chaos” in
a classical system is to calculate the fraction of the energy
surface occupied by chaotic trajectories. For example, var-
ious authors have determined this degree by estimating the
proportion of the Poincaré surface occupied by exponential-
ly diverging trajectories,’ by analyzing the distribution of
frequency components in power spectra,® and by examining
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the convergence of resummed perturbative expansions® at
each energy. The present considerations show that this de-
gree of chaos is directly related to the proportion of the ener-
gy surface occupied by ergodic regions.

In this paper, we identify the quantum counterparts of
classical ergodic regions. We then extract information about
the influence of chaos on quantum dynamics by comparing
the “quantum ergodic” regions to those affected by classical
chaos and by comparing the fraction of the quantum energy
shell occupied by such regions to the classical degree of cha-
os. We thus use the concept of ergodicity to explore the con-
sequences of chaos for quantum systems.

To establish criteria for identifying quantum counter-
parts of classical ergodic regions, we generalize the semiclas-
sical ergodic theory which we previously developed.'®!! In
its earlier form, this theory applied only to “global” ergodi-
city on the full energy surface; for our present work we re-
quire a version that applies to “local’” ergodicity on a limited
portion of the energy surface. Criteria obtained from the
resulting theory have the advantage of reducing to the classi-
cal criteria for ergodicity as fi— 0. It is precisely this property
that allows us to refer to the behavior observed in the quan-
tum system as the counterpart of the classical behavior.

The implications of classical chaos for quantal systems
has remained a controversial topic despite a large amount of
work on this subject. There have been many attempts to
identify the consequences of classical chaos for the energy
levels,'*'* wave functions,'>'® matrix elements,!®!:1%-2!
and dynamics®??¢ of quantal systems. There have also been
previous attempts'>!42527.28 tg extract from such studies a
quantum mechanically derived quantity that is analogous to
the fraction of chaotic trajectories on the energy surface. Of
the previous approaches to defining such a “‘quantum degree
of chaos” the one that appears to be most successful relates
this degree to the distribution of quantum energy level spac-
ings.”*!* As we shall see, the present approach effectively
relates this degree to the dynamical behavior of the quantum
system and to the distribution of certain quantum matrix
elements.

Our work is certainly not the first attempt to use ergodi-
city as a means of identifying the implications of chaos for
quantum systems, '%11:15:20-22:29.30 Hawever, the form of er-
godic behavior investigated in earlier studies has been global
ergodicity on the full energy shell—a condition not achieved
by typical mechanical systems with smooth potentials. As
we have emphasized, the form of ergodicity that actually
accompanies the onset of chaos in such classical systems is
local ergodicity. It appears that a proper treatment of the
local nature of the ergodicity is crucial if one wishes to use
ergodicity to relate classical chaos to quantum dynamics.
For that reason, the present paper focuses on the local form
of ergodicity as a key to exploring the influence of chaos on
quantum mechanical behavior.

The remainder of this paper is based on the following
plan: in Sec. II, we extend the definition of classical local
ergodicity to quantum systems by applying the semiclassical
ergodic theory. We thereby develop the theoretical concepts
and techniques that allow us to identify locally ergodic re-
gions in quantum systems. In Sec. III, we use these tech-
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niques to identify the ergodic regions in the quantum
Henon-Heiles system. In Sec. IV, we compare the “quan-
tum ergodic” regions and the *“quantum degree of chaos”
obtained from our calculations to the corresponding classi-
cal quantities and discuss the extent to which our results
reflect various features of the underlying classical chaotic
behavior. In Sec. V, we summarize our work and make con-
cluding remarks.

IIl. THEORY

We begin by reviewing the classical definition of (local)
ergodicity. Let us denote the Hamiltonian of a system by
H(p,q) and let p(p,q) be the density function for a particu-
lar, invariant portion of the energy surface over which the
ergodicity of the motion is to be examined. This function is
the microcanonical density function [ E — H(p,q) ] multi-
plied by a characteristic function that is equal to 1 for points
(p,q) in the region of interest and 0 elsewhere. The invar-
iance of the region implies that p does not evolve in time, i.e.,
plp(0).a()] =p(p(0),4(0)] = p(p,q), where [p(2),q(2)]
are the phase variables that evolve at time ¢ from the vari-
ables (p,q) atinitial time 0. Then the motion in this region is
said to be ergodic!~>-33! if10.11.32

lim C,(T) =C,,, (n

T
for all quadratically integrable dynamical properties 4 (p,q),
where

T, (D)= (1/T)f’° dtexp( — t/T)C, (1), )
0

C,()=(AD)|A)/{4]4), 3
and

Caeq = (114 ?/{1|1){4 |4), 4)
with ’

A(t) =A[p(),q()], (6)
and

(4|B) =fdp qup(p,q)A(p,q)*B(p,q)- @)

In these equations, C, (¢) is the autocorrelation function of
property A, C, (T) is the time average of this correlation
function, and C,, is the statistical equilibrium value of this
function, where each of these quantities is evaluated over the
region projected onto by p(p,q). Equation (1) then states
that the motion within this region is ergodic if the infinite
time average of the autocorrelation function is equal to its
statistical equilibrium value. The only difference between
this definition of local ergodicity and the more familiar de-
finition of global ergodicity is that, in the latter, the density
function p(p,q) which projects onto only a portion of the
energy surface, is replaced by the microcanonical density
function [ E — H(p,q)] which projects onto the full sur-
face.

The condition for ergodicity can be stated in a more
concise form as'’
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lim F,(T) =0 (8)

T— oo

for all quadratically integrable 4 (except functions depend-
ing only on H), where

F (1) = [Cy(T) = Cyeg /(1 — Cyg)- (9

The quantity F, (T) was introduced in a previous study'’
which treated the special case p(p,q) = §(E — H). The con-
clusions derived there can be extended in a straightforward
way to the present case to establish the following results: (a)
F,(0) =1, (b) F,(T) is a monotonically nonincreasing
function of T, (c) F, (T) obeys the inequality

0<F,(N)<1 (10)

forall Tand (d) F,(T) = 1 for all T when the dynamics in
the region described by p is nonergodic and 4 [ #4(H)] is
any constant of the motion in that region.

The primary advantage of describing the condition for
ergodicity in terms of the F, (T) instead of the C, (7" and
C, 4 is that their normalization to the range between O and 1
allows us to identify behavior that is close to the ergodic
ideal. As will become apparent below, this feature is impor-
tant in establishing the quantum analog of ergodicity.

Thus, in terms of F,, we may locate portions of the ener-
gy surface for which the dynamics is ergodic by searching for
invariant regions of dimensionality (2s — 1) for which
F, () = 0for all quadratically integrable properties 4. As
discussed in the Introduction, such ergodic motion signals
the presence of chaos.

One aspect of the procedure described above for identi-
fying irregular regions of phase space is especially problem-
atic for the proposed extensions to quantum systems. To
verify the ergodicity of the dynamics, it is necessary to inves-
tigate the behavior of the system for periods of time that are
at least long enough for the C, (T) to relax sensibly to their
equilibrium values. Often, however, such relaxation times
are very long,>*-36 even for strongly chaotic systems, due to
the temporary trapping of the phase flow by various “bottle-
necks” within an ergodic region. The difficulty is that good
agreement between quantum and classical dynamics often
deteriorates after relatively short time periods'!*>** due to
tunneling, nonclassical recurrences, and other quantal phe-
nomena. Thus, if the relaxation of the C, (7)) is severely
impeded by bottlenecks, serious differences between quan-
tum and classical behavior may arise before the classical re-
laxation process is complete. Under such circumstances, it
will not be possible to identify any form of quantum behavior
that is similar to the ergodic behavior occurring in the classi-
cal system.'! However, our main goal in the present studies
is to identify the quantum analog of chaotic behavior and it is
often possible to use the techniques of ergodic theory to de-
tect chaos in classical systems even prior to the relaxation of
the C, (T') over the full ergodic region. It is these techniques
that we extend to the quantum systems.

The techniques we require to identify chaos from the
short-time behavior are applicable when the bottlenecks that
divide an ergodic region into two or more parts are very
strong. If the passage across such bottlenecks is slow enough,
essentially complete relaxation may occur in each of the sep-
arated subregions long before relaxation occurs over the full

ergodic region.?”*® Under these circumstances, a form of
“temporary ergodicity” applies to each of the subregions pri-
or to diffusion across the bottlenecks, and the conditions
specified by Egs. (1) and (8) are fulfilled with the following
changes: (a) the density function p(p,q) appearing in the
correlation functions is interpreted as the density function
for one of the individual subregions; (b) C, () and
F, () are replaced by C,(r) and F,(7), respectively,
where 7 is a time period that is shorter than the time required
for a typical trajectory in the subregion of interest to escape
across a bottleneck; (c) the functions 4 (p,q) are restricted
to those properties for which C,, ( T) relax nearly completely
by time 7; and (d) the equalities expressed in Egs. (1) and
(8) are replaced by near equalities. Thus, the content of Eq.
(8), as presently modified, can be expressed as

F, (1)<l (11)

We call the temporary form of ergodicity described
above “pseudoergodicity” to distinguish it from true ergodi-
city. Pseudoergodicity within a particular subregion is a reli-
able symptom of chaos provided that the subregion has di-
mensionality (25 — 1).

In contrast to the condition for true ergodicity, the cur-
rent condition for pseudoergodicity, Eq. (11), is not ex-
pressed in terms of a vanishing value of F,. Since relaxation
is generally incomplete during the finite observation time 7,
F,(7) can, at best, be small but nonzero for all relevant
properties 4.

We note that the subregion projected by p(p,q) is no
longer truly invariant, as required by ergodic theory, since
trajectories prepared in the subregion eventually *“leak out™
to the other portions of the full ergodic region. Nevertheless,
under the assumed condition of separate time scales for re-
laxation within and among subregions, p is still approxi-
mately invariant up to time 7, i.e.,

plp(),a()1=ppa), t<T (12)

This approximate invariance is sufficient to allow us to ex-
tend most of the concepts associated with ergodicity to pseu-
doergodicity. .

The kind of sequential relaxation needed for pseudoer-
godicity is expected to occur frequently. It is known, for
example, that remnants of tori that have been partially de-
stroyed by chaos can serve as bottlenecks to phase space
flow.>” Recent work by several groups*’>® has identified
cases in which the time scales for passage across such tori are
so much longer than the relaxation rates within the separat-
ed subregions, that a form of transition state theory can be
applied to calculate the rate of passage across the bottle-
necks. Within the context of semiclassical mechanics, the
regions to which chaotic trajectories are, at least temporar-
ily, restricted have been called “vague tori.”®* The exis-
tence of these regions has been used to explain the success of
certain semiclassical techniques to obtain quantized energy
levels of chaotic systems.

We now use the principles of the semiclassical ergodic
theory, as described in Refs. 10 and 11 to extend these ideas
to quantum mechanics. This extension to quantum systems
assumes that, apart from the total energy, the classically
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chaotic behavior is not subject to any approximate, isolating,

integrals of motion. Although the existence of exact, supple-
mentary, integrals of motion for chaotic behavior is highly
exceptional, the presence of approximate, supplementary,
constants of motion is rather comnon in systems having
more than two degrees of freedom.***? When such approxi-
mate integrals restrict the classical motion to regions having
dimensionality less than 2s — 1 for long periods of time, the
treatment described below must be modified. These modifi-
_cations are discussed in Appendix A.

OQur objective here is to identify a quantum mechanical
analog of F, (7) which can serve as an indicator of quantum
behavior corresponding to classical chaos. Accordingly, we
make the following substitutions in Eqgs. (2)—(7) to obtain
quantum analogs of the autocorrelation functions and their
statistical equilibrium values: (a) we replace classical prop-
erties 4(p,q) and A[p(2),q(2)] byA andA(t), whereA is the
operator corresponding to 4 and 4 (1) is A propagated for
time # in the Heisenberg picture; (b) we replace the density
function p by the projection operator g which projects onto
those states on the quantum energy shell that correspond to
the region described by the classical function; (c) we replace
the phase space integrals by quantum mechanical traces.
Thus, the quantum expressions for C, (#), C,(),andC, e
are given by Eqgs. (2)-(4) with integrals (4 |B ) replaced by

(4|B)Y =Tr[p4'B]. (13)

We are now able to define the quantum analog of F, (T")
in terms of the quantum correlation functions and equilibri-
um statistical values, obtained by the procedure described
above. Using the superscript ¢ to distinguish quantum ana-
logs from the corresponding classical functions, we obtain

F"(T)—[C"(T) ea]/(1—=C%). (14)
Asinthe classical case, it may be shown that F 4(0)=1and
that F4%(T) is a nonincreasing function of T obeying the
inequalities 0<F 2 (T) <1 for all T. The condition for quan-
tum dynamics in the region projected by p to be considered
analogous to classical ergodic or pseudoergodic behavior in
the region projected by p(p,q) is then

Fi(TY=F,(T) for 0KT<r,
and

Fi(n)«l
for a class of operators 4 to be described below.

In order for the quantum and classical dynamics to be in
good agreement for times 7, as required by these equations, it
is necessary to choose quantities 4, 7, g, and other param-
eters in a judicious way. As illustrated by the calculations of
Ref. 11, a careful choice of these quantities can indeed cause
the behavior of F¢ to closely mimic that of F,. We now
discuss these optimal choices.

The set of operators A which is tobe used to compute F'%
and to test for ergodicity should, ideally, consist of all
members of the class of “acceptable”'® operators that are
“not too strongly localized.”!! As discussed in Ref. 11, such
operators correspond classically to well-defined quadratical-
ly integrable functions 4 (p,q) that do not have exceptionally
high values in regions of phase space of volume X#4° and

(15)

(16)

have many eigenstates on the quantum energy shell. Addi-
tionally, if we wish to test for pseudoergodicity instead of
true ergodicity, the operators included in the calculations
must correspond to classical properties that lead to nearly
complete relaxation of the F, by time . As in the classical
case, properties 4 that are functions only of the Hamilto-
nian, H, are not required to obey Egs. (15) and (16).

Also as in the classical case, the observation time 7 ap-
pearing in these equations must be long enough for the relax-
ation of the C ¢ ( T) over the region of interest to be essential-
ly complete, but short enough for the region to remain
sensibly invariant. An additional requirement, dictated by
the condition that F% agree with F, is that  must be short
enough for no serious discrepancies between quantum and
classical dynamics to appear during this time period.

The density operators g appearing in the quantum auto-
correlation functions are analogous to the functions p(p,q)
appearing in the classical autocorrelation functions. Thus,
the p project onto locally ergodic or pseudoergodic portions
of the quantum energy shell. To specify these operators, we
recall the expression for the quantum analog p”(E — H) of
the microcanonical density function §( E — H). This opera-
tor projects onto the full quantum energy shell and is used to
define the quantum analog of global ergodicity. As discussed
in Refs. 10 and 11, the microcanonical density operator is
given by

A
p°(E—H) = S|i)p°(E— E)){Jl, (17)
J

where the |j) are energy eigenstates and the E, are the corre-
sponding energy eigenvalues. The quantity o denotes the
half-width of the quantum energy shell and p° (E — E,) isa
function (e.g., a Gaussian) that decreases to zero as
|E — E;| becomes much greater than o. The value of o must
be chosen to contain enough energy levels that the dynamics
occurring on the quantum energy shell closely mimic those
occurring on the classical energy surface. More details about
the choice of o are given in Refs. 10 and 11.

The operator p, needed to identify the quantum analog
of local ergodicity, projects only onto the portion of the full
energy shell associated with an ergodic region. Accordingly,
we represent this operator as

p=SN ) (E—EN{J|- (18)

J

In this equation, |J ) are states that span the ergodic or pseu-
doergodic region of interest and E, are their energy expecta-
tion values. We do not require |J ) to be energy eigenstates.
Specific characteristics of the |J) are discussed at a later
stage. The prime on the summation serves as a reminder that
only certain states, corresponding to a particular ergodic re-
gion, are included. The function p?(E — E;) is defined as in
Eq. (17), above.

The number of terms appearing in the restricted sum-
mation of Eq. (18) is determined, in part, by the require-
ment that the states projected by p represent regions of non-
trivial ergodicity or pseudoergodicity, i.e., that the classical
dimensionality of the regions be 2s — 1. We now discuss the
relationship between the number of terms in Eq. (18) and
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the dimensionality of the corresponding classical region.
Let us first express the classical distinction between tri-
vial and nontrivial ergodicity as

trivial ergodicity

nontrivial ergodicity,
(19)

Sdp §dqp(p,q) {=0 =
fdp §dqS(E—H) | >0 =

where the ratio on the left-hand side is simply the measure of

the ergodic region projected by p(p,q) with respect to the
measure of the full energy surface. The quantum analog of
this ratio is
Trip] _N,

Trlp”(E—H)] Ng~
where N, is the number of states in the region projected by 3,
while N is the number of states on the full energy shell.
Applying the classical limit, we obtain:

lim e [0 =

ioNg L>0 =

Although the number of states Nz on the energy shell is

infinite in the classical limit, it is finite when #> 0. Equation
(21) therefore leads us to expect N, to vanish for a regular
(trivially ergodic) region, away from the classical limit. This
conclusion, however, has to be accepted with caution, Clear-
ly, it cannot mean that there are never any quantum states on
the energy shell that correspond to a classical torus since this
would lead to absurd conclusions for a completely regular
system where every state corresponds to a classical torus.
Instead, the result N, = 0 does not apply to every torus but
only to “almost every” torus. The condition then means that
a classical torus selected at random from the energy surface
will almost certainly not correspond to a quantum state.
This is reasonable since only exceptional tori, obeying the
EBK quantization conditions, can correspond to a quantum
state, and such tori are of measure zero on the energy sur-
face. Nevertheless, exceptional, quantized tori do exist and
N, will not be zero for a trivially ergodic region consisting of
such a torus. The value we expect for N, in this case is, in
fact, just unity, consistent with the familiar rule that each
quantized torus corresponds to a single quantum state.
Thus, the quantum projection operator p for such a case
should contain a single term of the form |J ) (J |. This expec-
tation is supported by the explicit expression we derive for
F4 (1) [see Eq. (23), below]. This expression shows that,
for a classically regular region, F4 (7) cannot be close to
zero for all acceptable properties as #i—0 unless p contains
only a single term. If 5 contains more than one term, the
resulting value of F'§ () will tend to 1 as #— 0 for quantum
properties A that approach the true classical actions. Such a
value for F% contradicts the assertion of ergodic quantum
behavior in the region.

Now let us turn our attention to the quantum counter-
part of a classical region of nontrivial ergodicity. Since
N,/Ng > 0for such a region in the classical limit, we expect
N, alsotobe > O for this region away from the classical limit.
Actually, once again, we must be cautious. A classical region
may correspond to a quantum state and N, may be > 0 only
if its phase space volume fdp fdqp(p,q) is at least on the

(20)

trivial ergodicity

21
nontrivial ergodicity. 2h
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order of 4 °. However, even a classical nontrivial ergodic re-

gion that is large enough to yield the value N, =1 is too

small to be distinguished quantum mechanically from a triv-

ially ergodic region, for which N, may also be equal to 1.

Only regions with N, > 1 may be confidently identified as

counterparts of classical nontrivial ergodic regions. Thus, in
order to conclude that a quantum region is the analog of a
nontrivially ergodic classical region, i.e., that the correspond-
ing classical region has dimensionality (2s — 1), the density
operator p in Eq. (18) must contain two or more terms. Clas-
sical ergodic regions with N, = 0 or 1 are too small to yield
quantum behavior that can be identified as chaotic.

We now discuss the choice of states |J ) used to form j,
the projector onto an ergodic region. If, in analogy to the
classical theory of true ergodicity, we insisted on the strict
invariance of p for all times, then we would have to choose
the |/ ) to be energy eigenstates. However, in analogy to the
classical notion of pseudoergodicity, it is sufficient for our
purposes to demand invariance of 5 for the limited time peri-
od 7, so that we may choose the |J ) to be superpositions of
energy eigenstates.

There are, actually two reasons for wishing to allow the
|7 ) generally to be superpositions instead of individual ener-
gy eigenstates. First, it may be necessary to form linear com-
binations of energy eigenstates in order to create states that
are localized in desired pseudoergodic subregions. Second, it
may even be necessary to form such superpositions in order
to create states that are localized in certain truly ergodic
regions. A given energy eigenstate may be delocalized over
several distinct ergodic subregions that are separated from
one another by classical dynamical barriers. Although quan-
tum transitions between these regions may be allowed by
tunneling processes, the corresponding classical transitions

. may be forbidden. In such cases, density operators diagonal

in the energy eigenstates project onto classical nonergodic
regions and only operators diagonal in certain superposi-
tions of these eigenstates can project onto individual ergodic
zones.

If p is nondiagonal in the energy eigenstates, g will vary
with time. To apply the tools of ergodic theory to such cases,
this time dependence must be slow enough for the correla-
tion functions to relax almost completely in the pseudoergo-
dic or ergodic subregions prior to any significant breakdown
in the invariance of . In Appendix B we examine the conse-
quences of this requirement for the choice of states |J ). We
show there that the effective invariance of 5 over the time
period 0 T<7 implies that

7 <#i/AE,

where AE is the largest energy separation between the ener-
gy components of |/ ) and #/AE may be interpreted as the
invariance time of 5. The variety of superposition states [J )
that may be used to represent pseudoergodic regions is thus
constrained by restrictions that are placed on the invariance
time. For example, the requirement that this time period
greatly exceed the relaxation time of the correlation func-
tions sets an upper limit to the separation between the energy
components of the |J ).

It is important to point out that the loss of invariance at

(22)
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times ~#i/AE may be caused by purely quantum effects
(e.g., tunneling) as well as classical passage of trajectories
across bottlenecks. Thus, although we refer to #/AE as the
invariance time, it may often be identical to what we call the
time range for good quantum-classical correspondence.

In Appendix C we derive an explicit formula for F¢ (7).
The result is

F4(r =B Yo (E—E) AN — (4)]?
J

+B;'Y'p°(E—E,;)
J

X YK/ [14 (0xm)?],  (23)
Kt
where
() =3"p"(E—E)LI|A|L)Y/ Y 'p"(E—EL), (24)
L L
B,=D,(1-C%,), (25)
o;x = (E; —Ex)/#, (26)

and the expressions for D, and C¢ ., are given in Appendix
C.

From Eq. (23), we see that the pseudoergodicity condi-
tion F¢ (1) €1 has the following implications for the matrix
elements:

(J |4 |J ) = nearly constant for states |J ) in a pseudoer-
godic region (27)

and

(J |4 |K ) = verysmall, forstates |J ) inapseudoergodic
region and states |K ) of nearly equal ener-
gy- (28)

This result shows that the division of the classical energy
surface into distinct chaotic regions implies a corresponding
division of the quantum energy shell into sets of states having
roughly constant expectation values for properties 4 and
only small matrix elements of 4 to states of similar energy.
The F¢ simply provide numerical values that measure the
dispersion in the expectation values and the average square
of the off-diagonal matrix elements in the various regions.
Equations (27) and (28) provide a generalization of condi-
tions previously derived'® for matrix elements of a quantum
system whose classical counterpart is ergodic on the full en-
ergy shell.

An important question we have not yet addressed is how
small F¢ (7) must be for the quantum dynamics to be con-

sidered analogous to the corresponding classical ergodic be- -

havior. This is related to questions of how nearly constant
(J |4 |J) mustbeand how small (J |4 |K ) must be for states
|/} in ergodic regions. To state this question in yet another
way, we may express the “quantum ergodicity condition,”
.Eq. (16), as

F3(n)<¢, (29)

where ¢ €1 is a “cutoff” that distinguishes between values of
F¢ for ergodic and nonergodic regions, and inquire about
the value for ¢. Unfortunately, it is not possible to determine

a universally valid, precise value of the cutoff. The difficulty
is that, even in the case of classical ergodic or pseudoergodic
dynamics, F, (7) depends on the observation time 7 and,
thus, the degree to which relaxation of the C,, is complete by
the time quantum-classical differences appear or the pseu-
doergodic region breaks up. As a result, the condition for the
quantum system to display behavior that is similar to classi-
cal ergodicity or pseudoergodicity, Eqs. (15) and (16), is
necessarily somewhat imprecise. In part, this imprecision is
an unavoidable consequence of applying the essentially clas-
sical concept of ergodicity to quantum systems. In Sec. IV
we will discuss how the cutoff may be empirically deter-
mined under favorable circumstances.

Our final expression for F4%, Eq. (23), may be used to
search the quantum energy shell for groups of states that
exhibit dynamics analogous to classically chaotic behavior.
This is accomplished by partitioning the energy shell into
mutually exclusive regions, labeled by #, with corresponding
density operators

b= 3 WIPE—ENU],
states in
region n

where the |J ) are either energy eigenstates or “almost sta-
tionary” superposition states obeying Eq. (22). For each
region containing more than one such state, Eﬂ (23) is ap-
plied to compute F ¢ (7) for various properties 4. The behav-
ior within a region is identified as pseudoergodic if these
F4 (1) are €1 for all of the properties investigated. Finally,
this process is repeated for additional partitions of the energy
shell in an attempt to maximize the quantity

(30)

fi(E) = 3N, /Ny, 31)
~where
N, =Tr[p,], (32)

N is defined in Eq. (20), and the sum in Eq. (31) extends
over the various pseudoergodic regions on the energy shell.
Maximization of f; is appropriate here since participa-
tion of a quantum state in any nontrivial pseudoergodic or
ergodic region indicates the influence of classical chaos on
that state. Thus, we may not conclude that a quantum state is
uninfluericed by chaos simply because it does not form part
of an ergodic region for a particular partitioning of the ener-
gy shell; we must attempt to qualify the state as chaotic by
exploring all possible partitionings. When applied to the full
set of states on the energy shell, this procedure translates into
the search for a partitioning that classifies as many states as
possible as chaotic. Such a partitioning maximizes f;.

The maximal f; (E) obtained in this manner is the pro-
portion of the energy shell occupied by pseudoergodic re-
gions. This quantity is analogous to the classical degree of
chaos expressed as the proportion of the energy surface oc-
cupied by chaotic trajectories. This procedure for obtaining
the “quantum degree of chaos” is somewhat reminiscent of
the formal procedure for calculating a rather different mea-
sure of classical chaos—the K entropy.?! However, it is not
clear at this point whether this similarity has any deep sig-
nificance.
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Heller has introduced a quantity, denoted by F, which
measures the fraction of phase space cells visited by the evo-
lution of a wave packet.*® This quantity has been suggested
as a measure for the degree of ergodicity of quantum sys-
tems. Heller’s F'is, however, rather different from our f; (E).
In terms of the quantities used in our work, the fraction
introduced by Heller can be expressed as CAM/Z'A (o),
where A are density operators and the correlation functions
are defined over a microcanonical ensemble. Although the
most general formulation of Heller’s theory?® allows 4 to be
mixed-state density operators, they have been chosen to be
pure-state density operators for existing applications.** In
contrast, the requirement that properties 4 involved in our
calculations be acceptable functions eliminates pure-state
density operators from consideration in our work. Further-
more, the quantum behavior is deliberately investigated here
for finite times only, using autocorrelation functions that are
defined over local distributions in phase space. It is thus dif-
ficult to make specific comparisons between our results and
those that could be obtained using Heller’s procedure.

HIl. CALCULATIONS

To test the theory presented in last section, we apply it to
the quantum Henon-Heiles system and compare the nu-
merically computed results to those obtained classically.

The Hamiltonian for the Henon-Heiles® system can be
expressed as

H=4(p% +x*+p, + ) +A(xy* —x°/3) (33)
in Cartesian coordinates, or as
H=\(p} +r* +ps/r) — Ar* cos 30 (34)

in polar coordinates.

We examine the issue of ergodicity for two variants of
this system characterized by the values A = 0.1118 and 0.08.
The classical dissociation energy, D, = 1/64 2, for these two
cases is, respectively, 13.33 and 26.04. We set Planck’s con-
stant #i = 1 in both sets of quantum calculations but, by a
familiar scaling argument,** the variation of A can be shown
to be equivalent to a variation of #iso that the system with the
smaller value of A is more nearly classical than the other one.
States for the two systems with different energies £ but simi-
lar values of E /D, can be regarded as being in similar classi-
cal energy regions. The number of states with energies below
D, is 99 and 374 for A = 0.1118 and 0.08, respectively.

Eigenvalues and eigenvectors for both systems are ob-
tained by diagonalizing the Hamiltonian in a basis consisting
of isotropic harmonic oscillator wave functions satisfying

[Hy— (n+1D]|nl) =0, (35)

where H,is H of Eq. (33) or (34) with A set to zero [see Eq.
(36a) below].

For the case A = 0.1118, we use a 903-member basis set
that is identical to the one we used in our previous study of
the same system.'! The resulting eigenvalues and matrix ele-
ments are well converged. For the case A = 0.08, we use a
1225-member basis set that is apparently identical to one
used by Hose and Taylor*’ in a study of the same system.
Although the eigenvalues and matrix elements are not be-

lieved to be well converged in this case, we do not expect the
ergodic or nonergodic nature of the system to change qual-
itatively with further improvement of the basis.

Our procedure for detecting the quantum analog of cha-
os requires calculation of F,, (7) for a variety of properties 4.
Ideally, of course, we should include in this set all acceptable
properties that are “not too strongly localized.” In practice,
however, we must settle for a manageably small sample of
properties and hope that the results of the calculations are
effectively converged with respect to this set. In the present
investigation, we choose the set of properties to consist of

Hy=1(p2 +x*+p} +%), (36a)
L= (xp, —yps), (36b)
L?= (xp, —yp.)>% (36¢c)
D=}(p; +x* —p}, —»"). (36d)

These four properties are selected as being representative of
a somewhat larger set that we examined in a previous
study.!! Since these functions are constants of motion for the
unperturbed system (4 = 0) they should yield large values
of F4 for those quantum regions approximately correspond-
ing to classical tori of the unperturbed system. These proper-
ties are thus expected to be especially useful for distinguish-
ing between the regular and irregular regions.

Let us return to the question of how small the F¢ (7)
must be in order for a quantum region to be judged as pseu-
doergodic. As discussed in Sec. II, the incomplete relaxation
of the time-averaged autocorrelation functions for finite
times 7 make it impossible to specify a precise theoretical
cutoff value for F % which distinguishes chaotic from regular
behavior. Changing the cutoff, #, will generally alter the
classification of states as ergodic and nonergodic and thus
change the computed fraction of irregular states, f;. Never-
theless, under favorable circumstances an approximate “op-
timum” value of the cutoff can be determined by examining
values of f; that result from different trial values of ¢. If the
system under consideration behaves in a nearly classical
manner and if there is a large difference between the classical
F, values in chaotic and regular regions, then a moderate
increase in the cutoff above its optimum value should not
substantially change the number of states classified as ergo-
dic and the resulting f; should remain essentially un-
changed. We expect this behavior to contrast with a greater
sensitivity of the f; as the cutoff is varied below and well
above the optimum value. Hence, in our calculations, we
treat the cutoff value, @, as a parameter. We vary this param-
eter, repeat calculations of f; for each such value of ¢, and
attempt to identify the optimum value for the cutoff from the
criterion that the f; be relatively insensitive to these varia-
tions.

We now discuss our choice of the value for 7, the obser-
vation time used to evaluate the F4 (7). This choice deter-
mines (a) the range about the energy of each ergodic state
that must exclude other states that are strongly coupled to it
by properties A and (b) the energy separation between states
that may be combined to form the superpositions describing
pseudoergodic states. The selection of an appropriate value
for this time must actually take three factors into account.
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One of these imposes a lower limit to 7, while two impose an
upper limit. First, the time interval 7 must be long enough
forthe C4 () torelax to nearly constant values in pseudoer-
godic regions. Second, 7 must be short enough for the pseu-
doergodic regions to remain invariant. Finally, 7 must be
short enough for the purely quantum effects in the F (T) to
be negligible.

Our approach is to choose 7 so that the computed £ is as
large as possible for the given cutoff. This procedure tends to
ensure satisfaction of both the relaxation and the invariance
requirements described above. If 7 is chosen to be much
shorter than the relaxation time of a given pseudoergodic
region, the FY(7) for that region will be larger than the
cutoff, causing the f; to be smaller than necessary. On the
other hand, if 7 is chosen to be larger than the invariance
time for the pseudoergodic region, that region will become
ineligible as a member of the energy shell partition. The in-
ability to form the optimum partition will again cause f; to
be smaller than its maximum possible value.

This procedure yields 15 and 30 as approximate opti-
mum values of 7 for the cases A = 0.1118 and 0.08, respec-
tively. These values appear short enough to expect a close
correspondence between the quantum and classical behavior
during the indicated time scales. Our former calculations!
for the system with 4 = 0.1118, in fact, showed that there
was good agreement between the time-averaged classical
and quantum microcanonical autocorrelation functions for
times at least as long as 120. Thus, our choices of 7 appear
likely to obey the requirement that the observation time be
short enough for purely quantum effects in the F,, (T') to be
negligible. This issue is discussed further in Sec. IV.

The values specified above for 7 correspond to only
about 2-5 harmonic vibrational periods. Although such
times are very short, our calculations show that they are
actually long enough for the form of (temporary and local)
statistical equilibration needed here to be essentially com-
plete. Previous investigations have shown that the classical,
microcanonical autocorrelation functions for the Henon—
Heiles system have a rapidly decaying component,!!#647
and it is natural to associate this with the relaxation within
pseudoergodic zones. The lifetime of this component has
been related to the timescale for exponential separation of
nearby trajectories ( the reciprocal of the maximal Lyapunov-
number).*® At the energies considered here, this time scale is
in the range 10-30 time units*® which is, indeed, comparable
to our values of 7.

As in our previous work,'' we express the energy-shell
envelope p°(E — E,) function appearing in F% as a Gaus-
sian function:

p°(E —E,) = exp[ — (E— E;)*/25%]. (37)
The width parameter o is taken to have the form
o/D, = 0.08 — 0.045E /D, (38)

Inthe case A = 0.1118, this expression is identical to the one
used in our previous work.'! For both values of A considered
here, Eq. (38) is expected to satisfy the requirements of the
energy shell width presented in Refs. 10 and 11.

We perform our calculations for values of E /D, in the
ranges (0.60,0.95) for A =0.1118 and (0.50,0.95) for

A = 0.08. We restrict the upper limit of these ranges because
we wish to avoid energy eigenstates lying far above the disso-
ciation energy. We restrict the lower limit because our pre-
vious calculations’! on the Henon-Heiles system with
A = 0.1118 showed that classical and quantum microcanon-
ical autocorrelation functions sometimes are in substantial
disagreement, even at early times, at energies of 0.44D,. This
suggests that classical ergodicity is not a meaningful concept
for the system at such low energies.

We now turn our attention to the problem of partition-
ing the states in the quantum energy shell so as to maximize
f7- Finding this optimum partition is equivalent to identify-
ing the operators g, that project onto the various portions of
the quantum energy shell corresponding to classical pseu-
doergodic regions. To guide our search for such operators,
we consider the topology and nature of the pseudoergodic
regions in the classical Henon-Heiles system. At moderately
low energies, most of the invariant tori of this system belong
to one of two categories**: precessing (or circulating) tori
bearing trajectories that travel clockwise or counterclock-
wise around the potential energy surface, and librating (or
pendular) tori bearing trajectories that travel back and forth
along one of the three C, symmetry axes of the potential. As
the energy increases and the system becomes progressively
more chaotic, most of the tori are destroyed.® In many cases,
however, trajectories continue, at least for some time, to
move over restricted (2s — 1)-dimensional regions in the vi-
cinity of destroyed s-dimensional precessing or librating
tori.® The regions of phase space occupied by such trajector-
ies are called vague tori® and are examples of ergodic or pseu-
doergodic regions. Thus, some ergodic and pseudoergodic
regions of the Henon—Heiles system resemble precessing and
librating tori. Howeyver, other ergodic regions of this system
may have very complicated topologies with very little re-
semblence to the simple tori.

The above considerations provide hints concerning the
nature of the states |/ ) that span the pseudoergodic regions
and the projectors |J ) (J | that should be used to form the 3,
Combining these hints with the condition that the |J )’s can,
at most, be superpositions of nearly degenerate energy eigen-
states, leads us to consider the following types of states for
the purpose of forming the p,,:

Type A:

(1/42) a1} + ilaz) 1, (39a)

(A/A2)[|a,) —ila)], (39b)
or

le), (40a)

le*). (40b)
Type B:

(1/V3)|a,) +c(v273) e, ), (41a)

(1/43)]a,) — (e/V6) e, ) + (e/\2)le,), (41b)

(1/43)]a,) — (e/V6) e, ) — (e/2)]e,), (41c)
or

(1/43)|a,) + c(\273) e, ), (42a)
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(1/V3)]a2) — (c/VB) e, ) + (c/\2)e.), (42b)

(1/43)|az) — (c/6)le,) — (c/2)e,), (42¢)
where

c= +1. (43)
Type C:

|a,) (44)
or

Iaz> (45)
or '

le.) (46)
or

le,). (47)

The energy eigenstates appearing in these equations are clas-
sified according to symmetry species 4,, 4,, and E of the C;,
point group, as is appropriate for the Henon-Heiles Hamil-
tonian. In particular, the symbols |e) and |e*) represent two
degenerate, complex, energy states of £ symmetry that are
related to each other by complex conjugation, while
le.) = [le) + |e*)1/y2and |e,) = [|e) — |e*)]/+/2i repre-
sent the two real, orthogonal superpositions of these states.

Wave functions of type A, described by Egs. (39)
and(40), are complex valued. They are either certain energy
eigenfunctions of E symmetry or linear combinations of
pairs of real |a,) and |a,) energy eigenstates with nearly
equal energy (AE < 1/7). In the limit as A -0, such type A
states become eigenstates*® of the angular momentum opera-
tor L [Eq. (36b)] and correspond to ensembles of classical
trajectories precessing in the clockwise [Egs. (39a) and
(40a) ] or counterclockwise [ Eqgs. (39b) and (40b)] sense.
For this reason, we suspect that the 3, constructed out of
such |J ) may sometimes project onto regions corresponding
to vague, classically precessing tori. In these cases, quantum
pseudoergodic regions should arise in pairs, corresponding
to vague tori with trajectories that circulate in the two
senses.

Wave functions of type B, described by Eqs. (41)
and(42), are real valued. They are linear combinations of
triples of energy eigenstates that lie within a given energy
range of width AE. The coefficients appearing on the right-
hand side of Egs. (41) and (42) resemble those used to con-
struct sp? hybrid orbitals froms, p_, and p, orbitals. We thus
expect states of type B sometimes to be directionally oriented
along the three C, axes of the Henon-Heiles potential.
(Switching between the choices ¢ = + 1 or c = — 1 then
simply reverses the directions of the two “lobes” of these
states.) This property leads us to suspect that certain states
of type B may project onto regions corresponding to vague,
classically librating tori. Under these circumstances, quan-
tum pseudoergodic regions should arise in sets of three, cor-
responding to classical vague tori with trajectories that are
oriented along the three C, axes.

States of type C, described by Eqs. (44)—(47) are just
the uncombined energy eigenstates. Such states may corre-
spond to ergodic classical regions which do not resemble
simple precessing or librating tori.

B. Ramachandran and K. G. Kay: Local ergodicity and chaos

It may seem unlikely that superpositions as primitive as
types A and B could accurately describe pseudoergodic re-
gions, even if these regions were vague tori with the expected
symmetries. However, it should be noted that our superposi-
tions are directly formed from energy eigenstates, not arbi-
trary zero-order states. Such energy eigenstates already con-
tain information about the exact dynamics of the system.
Thus, these states, even uncombined, are expected to be con-
centrated mainly in regions of space where the classical mo-
tion is restricted during the period of classical-quantum
agreement. The principal reason that the uncombined eigen-
states fail to represent pseudoergodic regions is, thus, the
requirement that they transform as representations of the
C,, point group, which causes them to be delocalized over
regions associated with more than one symmetrically equiv-
alent vague torus. All that should be necessary, then, to rep-
resent the dynamically correct pseudoergodic zones is to ad-
just the symmetry of the energy eigenstates by forming the
simplest superpositions representing distinct, classical, lo-
calized distributions.

We now summarize our procedure for identifying pseu-
doergodic regions and for partitioning the quantum energy
shell. We first scan the full energy range of interest for our
system and pick out all sets of energy eigenstates with energy
spacings that permit formation of type A and type B super-
positions. These states and all remaining ones are also candi-
dates for type C states. We then tentatively and arbitrarily
assign states of the system to specific allowed types and
group together various sets of states of similar types to form
“trial” pseudoergodic regions. For each such region consist-
ing of two or more states, we calculate F9 for the four prop-
erties 4 previously described. The region is then classified as
pseudoergodic if all four of the F ¢ are smaller than the cut-
off and as nonergodic otherwise. At that point, it is possible
to use Eq. (31) to calculate f; as a function of energy for this
trial partitioning of the states. Finally, it is necessary to re-
peat the above procedure for each possible assignment of
states to the three types and for each different grouping of
states to form trial pseudoergodic regions. The choice of type
and grouping which yields the largest value of f; at each
energy is accepted as correct.

An aspect of our treatment that may seen puzzling is our
identification of pseudoergodic regions with vague tori. This
may appear to be inconsistent with semiclassical quantiza-
tion techniques for chaotic systems which assign specific
quantum numbers to certain vague tori. The basic question
here is whether the approximate integrals of motion (apart
from total energy), associated with these vague tori, really
serve to divide the phase space into disjoint regions charac-
terized by distinct quantum numbers. We investigated this
issue by generating quantized vague tori using the adiabatic
switching procedure. We propagated these vague tori for an
additional 30 time units on the fully coupled Henon-Heiles
potential with A = 0.08, to generate Poincaré surfaces which
can be compared to our pseudoergodic regions. We found
that although the regions associated with different quantized
states occupy somewhat different portions of the Poincaré
plane “on the average,” these portions seem to overlap sub-
stantially when the states under investigation are in the same
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ergodic region. We plan to present more details of these and
related classical studies elsewhere, but the results described
above strongly suggest that there is no conflict between the
quantization of states based on vague tori and the formation
of a pseudoergodic region by these same tori. The approxi-
mate integrals involved in the quantization of vague tori are
not sufficiently accurate constants of motion to prevent our
condition for pseudoergodicity from being obeyed with a
reasonably small value for the cutoff ¢.

We close this section by mentioning a potential theoreti-
cal problem associated with the use of our restricted set of
properties 4. Since this set does not include the exact inte-
grals of motion for the regular regions of the Henon-Heiles
system, a classical calculation, analogous to our present
quantum study, would not be able to distinguish between
very narrow ergodic and nonergodic regions. Regardless of
how small ¢ were chosen, sufficiently narrow nonergodic
regions would satisfy F, (7) < ¢, for any specified 7 < o0,
and would thus be misclassified as ergodic. Consequently,
such a classical calculation could, at best, reliably identify
only those ergodic regions having a “width™ phase space
greater than some minimum value, W,,. Since the quantum
calculations are, anyway, unable to identify ergodic regions
consisting of fewer than two states and since we believe that
such regions are wider than W,, for the cases under consi-
deration, we do not consider these restrictions to be impor-
tant for the current studies. This discussion does, however,
indicate that the present set of operators cannot be used to
identify ergodic behavior in the Henon-Heiles system as
#i—0 unless an auxiliary condition is imposed that specifies a
minimum width of W,, for the ergodic regions. :

IV. RESULTS AND DISCUSSION

We begin by examining the results for f;, the proportion
of the quantum energy shell occupied by ergodic regions.

In Fig. 1 we consider the case A = 0.08 with the observa-
tion time = set to 30. The figure shows curves representing
the proportion of the energy shell occupied by regular states:

Sr(E) =1~ fi(E). (48)

The various curves represent the calculated results obtained
for different values of the cutoff. Each of these curves begins
close to unity at low energy and decreases (not always mon-
otonically) as energy is increased.

An important observation is that the f; curves are rela-
tively insensitive to variations of the cutoff for values of this
parameter in the range 0.03-0.05. As discussed in Sec. III,
this suggests that a cutoff value near 0.04 is “optimum” for
distinguishing chaotic and regular motion. According to this
interpretation, the various pseudoergodic and ergodic re-
gions of the classical system have values of F, () that are
distributed mostly over a range between 0.00 and 0.03. As
the cutoff is varied within this range, the proportion of classi-
cal chaotic states on each energy surface that are correctly
identified as irregular changes rapidly from zero (for a cut-
off 0of 0.00) to nearly unity (for a cutoff of 0.03) and so the f;
curves change dramatically. There are relatively few states
of any kind—regular or irregular—having values for F, (7)
in the range between 0.03 and 0.05. Thus, variation of the
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FIG. 1. Proportion of the energy shell occupied by ergodic states for the
Henon-Heiles system with A = 0.08. The solid curves are quantum me-
chanical results obtained for r = 30 with the following values of the cutoff
¢: (A) 0.01, (B) 0.02, (C) 0.03, (D) 0.04, (E) 0.05, (F) 0.06, (G) 0.07.
The circles are the classical results of Powell and Percival, Ref. 8.

cutoff over this range causes only small changes in the f,
curves. Most classical regions having values of F,(7)
greater than 0.05 are regular. Thus, increasing the cutoff
above this value eventually causes the f; curves again to vary
significantly as regular states are misidentified as chaotic.

A closer look at Fig. 1 reveals that at high energies,
E>0.85D,, the fz curves for cutoffs 0.05 and 0.06 are less
sensitive to variations of the cutoff than the curves for 0.03—
0.05. This may imply that the optimum cutoff depends on
energy. In that case, the optimum cutoff would change from
approximately 0.04 for E<0.80 D, to about 0.05 for
E>0.85D,.

For the sake of comparison, we note that classical values
of the microcanonical F, (30) for our properties A have val-
ues that are as large as 0.5 at E = 0.95 D,.!! If we had chosen
a cutoff of approximately 0.5 in our present calculations, all
states at our highest energy range would have been classified
as belonging to a single ergodic region consisting of the entire
energy shell. Since our optimum cutoff is an order of magni-
tude smaller, we may expect the corresponding f; curve to
represent very different dynamics and a much finer assign-
ment of ergodic zones on the energy shell. Below, we will see
that these expectations are met.

Figure 1 also shows, as circles, the estimates obtained by
Powell and Percival® for the relative volume of classical en-
ergy shells (with width ~0.13D,) occupied by chaotic tra-
jectories. These results are more appropriate for comparison
with the quantum f; curves than are the well-known esti-
mates of Henon and Heiles.® The latter authors evaluated
the relative area of Poincaré surfaces of sectign occupied by
chaotic trajectories—a quantity that is less directly related
to the proportion we measure quantum mechanically.

The quantum f; curves for the optimum cutoffs of 0.04
(low energy) and 0.05 (high energy) are in generally good
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FIG. 2. Same as Fig. 1 but for observation time 15. The cutoff values asso-
ciated with the curves are as follows: (C) 0.03, (D) 0.04, (E) 0.05, (F)
0.06, (G) 0.07, (H) 0.08, (I) 0.09.

agreement with the classical values. It should be noted that
the Powell-Percival results were obtained using an ensemble
of only 100 trajectories for the entire energy range E < D, .
As a result, the statistical accuracy of their calculation is
expected to be limited and small differences between the
quantum and classical results may not be significant.

To explore the effects of varying the observation time 7
and to help relate the results for 4 = 0.08 to those for
A = 0.1118, we present, in Fig. 2, fx (E) curves obtained for
the case A = 0.08 with 7 = 15.

The results shown in this figure are qualitatively similar
to those displayed in Fig. 1, but the curves that most closely
resemble those of the previous figure are obtained with high-
er values of the cutoff. This is easily understandable. De-
creasing 7 causes the ¢ (7) values to increase as a conse-
quence of less complete relaxation of the C¥ (7). If the
energy and the cutoff are held constant, fewer states are clas-
sified as chaotic and f; increases. To maintain roughly the
same values for f, the classification criteria for chaos must
be relaxed by increasing the cutoff.

The curves in Fig. 2 generally seem to be more sensitive
to variations in the cutoff than those of Fig. 1. Although
there is still a range of cutoffs (e.g., 0.05-0.07) for which the
curves remain relatively unchanged as the cutoff is varied
and it is, thus, still possible to identify an approximate opti-
mum value for this parameter, the range of insensitivity is
less distinct than in Fig. 1. The more continual variation of
the curves with the cutoff suggests that, classically, there is a
smaller separation between F, values for chaotic and regular
regions for 7 = 15 than for 7 = 30.

As in the previous case, the cutoffs yielding the most
insensitive curves in Fig. 2 seem to vary with energy, perhaps
indicating that the optimum cutoff also is energy dependent.
With a little help from Fig. 1, it is possible to argue that the
optimum cutoff for 7 = 15 varies from 0.04 at low energies
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(E/D, <0.7) to 0.07 or even 0.08 at high energies
(E /D, >0.8). However, regardless of whether an artificial
Jfr curve is constructed to follow such a cutoff path or an
actual curve corresponding to any cutoff in the range 0.05-
0.07 is selected, the resulting curve is in generally good
agreement with the optimum curve obtained from Fig. 1 and

with the classical data.

Figure 3 presents f (E) curves for the case A = 0.1118,
and 7 = 15. Although there are obvious differences from the
A = 0.08 results of Fig. 2, there are also some important
similarities in the way the curves vary with the cutoff. In
both cases, the high energy portions of the curves change
significantly when the cutoff is varied from 0.03 to 0.04 and
from 0.07 to 0.08. In both cases, curves for cutoffs 0.05 and
0.06 remain close together for the full range of energies while
the curve for the cutoff of 0.07 breaks away from the 0.08
curve to join the 0.06 curve at high energy. The degree of
similarity between the cutoff dependence of the curves is
especially striking in view of the almost fourfold difference in
the state density for the two different values of A considered.
These results support our argument that the variation of the
curves with the cutoff refiects a purely classical phenome-
non.

The differences between Fig. 3 and Fig. 2 are, however,
also important. Each f; curve in Fig. 3 lies above the corre-
sponding one in Fig. 2, indicating a lower ability of the quan-
tum system with A = 0.1118 to emulate classical ergodicity
and pseudoergodicity. More specifically, the curves for
A = 0.1118 remain close to unity for significantly higher en-
ergies than those for 4 =0.08. Also, the curves for
A =0.1118, with cutoffs above 0.03, turn sharply upwards
for E/D,>0.8 and continue to increase as E/D, ap-
proaches 1.0. Although the curves for A = 0.08 also display
a tendency to decrease only slowly or even rise at high ener-
gy, this form of nonclassical behavior is much stronger in the
A =0.1118 case. We will explain these peculiarities later in

FIG. 3. Same as Fig. 2 but for the system with 4 = 0.1118.
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this section, after we have examined the states constituting
the ergodic regions.

For the case illustrated in Fig. 3, attempts to use the
insensitivity of the f; curves to determine the optimum cut-
off lead to ambiguous results. Successive variations of the
cutoff alternately appear to change the curves and leave
them unchanged, so that there is now more than one distinct
range of cutoffs over which the curves remain constant for
much of the energy range. This phenomenon is probably due
to the low density of states for A = 0.1118. Changes in the f,
occur in discrete units corresponding to the inclusion or ex-
clusion of single states. Since these states are associated with
relatively large portions of classical phase space for the pres-
ent case, the change in the curves with varying cutoffs is
more clearly discontinuous. This effectively obscures the
rather minor variations in sensitivity in the classical f; with
cutoff that are reflected in Fig. 2 and that must be resolved to
identify the optimum value of the cutoff.

Nevertheless, it is again possible to identify an approxi-
mate optimum value of the cutoff. Since this value is a classi-
cal quantity which does not vary with #, it must be the same
for the cases illustrated in Figs. 2 and 3. Thus, guided by our
conclusions for the case presented in Fig. 2, we continue to
accept a value of about 0.06 as the cutoff that best distin-
guishes chaotic from regular behavior for the present value
of 4 . We note that the f; curve corresponding to this cutoff
in Fig. 3 is not in good agreement with the classical results.
The causes of this discrepancy will be discussed below.

We now examine the partitioning of the quantum states
into ergodic and nonergodic regions which yields the opti-
mum curves in Figs. 1 and 3. This division separates quan-
tum states into groups with similar expectation values for
properties A4, and thus, similar physical characteristics.

Figure 4 identifies the quantum states forming various
ergodic and nonergodic zones for the case A = 0.08 with
7= 30 and the cutoff set to 0.04 (cf. curve D of Fig. 1). In
this figure, states of the Henon-Heiles system are represent-
ed by various symbols at “coordinates” (n,|! | ), wherenand /
are approximate quantum numbers that are assigned to the
states in a manner to be described below. Small diamonds
denote “nonergodic states” that do not participate in the

20 25

*e

FIG. 4. Ergodic regions of the Henon—Heiles system with A = 0.08, ob-
tained for 7 = 30 and ¢ = 0.04. The broken curve at the bottom of the figure
separates states above and below the dissociation limit. The remaining sym-
bols are explained in the text.

4639

formation of any ergodic region. Circles represent superposi-
tion states of type A (precessing states) formed from 4, and
A, energy eigenstates with the same » and |/| or from E
states. Chains of circles connected by solid lines represent
ergodic regions formed from such states. Each chain of cir-
cles actually corresponds to two distinct ergodic regions as-
sociated with clockwise and counterclockwise precession.
Pairs of boxes connected by dotted lines represent superposi-
tion states of type B (librating states) and chains of such
pairs connected by solid lines denote ergodic regions
spanned by these superpositions. In greater detail, the square
box in each pair represents two states of £ symmetry while
the smaller rectangular box stands for a state of 4 symmetry.
When two rectangles are located at a particular (»,|! |) coor-
dinate, the top one denotes a state of 4; symmetry while the
bottom one represents a state of 4, symmetry. The single
rectangle located at coordinates with / = O represents a state
of A, symmetry. Each chain of type B states actually repre-
sents three distinct ergodic regions corresponding to libra-
tions along the three C, axes of the Henon—Heiles potential.
No ergodic regions composed of type C states (uncombined
energy eigenstates) appear in this figure.

The n and / values used to label states in Fig. 4 are quan-
tum numbers for eigenstates of the zero-order Hamiltonian
H,,. They determine the energy and angular momentum of
these states, respectively. Quantum number » can take on
values of zero or any positive integer but, for a given n, [ is
restricted to values of —n, —n + 2,...,n — 2, n. The solid
staircase line appearing on the right of Fig. 4 marks the up-
per bound of the allowed |/ | range, |/ | = n. Valuesof nand /
were assigned to the eigenstates of H by comparing the ener-
gy eigenvalues to those obtained from the classical second-
order perturbative expression for H,*® by identifying domi-
nant projections of the exact eigenstates onto H,, eigenstates,
by approximately associating L > expectation values with val-
ues /2, and by examining trends in other matrix elements and
in A,~A4, energy splittings. Although the assignments are
necessarily approximate, they are useful because they allow
us to present the partitioning of the states in the illuminating
two-dimensional form of Fig. 4. To provide a key to this
figure, the energy eigenstates assigned to each (n,|/|) are
identified in Table I. We checked these assignments, in se-
lected cases, by comparing the computed energy levels to
those obtained by diagonalizing a quantized version®® of the
integrable Jaffe-Reinhardt Hamiltonian® and by the adia-
batic switching technique.’">? Apart from a few exceptions
(see Table I), these latter studies confirmed our original as-
signments. In cases of disagreement, we felt that the original
assignments were more credible than those obtained from
the semiclassical studies®*->? since these results then contra-
dicted all remaining evidence for the identity of the states.
Note that any reassignment of the states would change the
position of certain symbols in Fig. 4 but would not alter the
number or type of ergodic regions formed and would have no
effect on the results for f; displayed in Fig. 1.

Some observations regarding Fig. 4 now follow. At the
lowest energies (and the lowest values of n) treated, all the
states are nonergodic. As the energy is increased, small, pre-
cessing ergodic regions first appear for values of |/ | that are
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TABLE 1. Assignment of (#,{/|) quantum numbers for the states of the TABLE I (continued).
Henon-Heiles Hamiltonian with A = 0.08, represented in Fig. 4.

(njil)) State
(n|1}) State

(20,14) 75E
15, 1) 41E (20,16) T1E
(15, 3) 254, (20,18) 344,
(15, 3) 174, (20,18) 464,
(15, 5) 2E (20,20) 82E
(15,7) 43E (21, 1) T6E
(15, 9) 264, (21, 3) 444,
(15, 9) 184, (21, 3) 334,
(15,11) A4E 21, 5) T8E
(15.13) 45E (21, 7) 79E
(15,15) 274, (21, 9 454,
(15,15) 194, (21, 9) 354,
(16, 0) 284, (2L,11) 80E
(16, 2) 46E (21,13) 81E
(16, 4) 47E (21,15) 364,
(16, 6) 204, (21,15) 484,
(16, 6) 294, (21,17) 85E
(16, 8) 48E (21,19) 88E
(16,10) 49E (21,21) 394,
(16,12) 214, (21,21) 524,
(16,12) 304, (22, 0) 474,
(16,14) 50E (22, 2) 83E
(16,16) 52E (22, 4) 84E
(17, 1) 51E (22, 6) 374,
17, 3) 314, (22, 6) 494,
(17, 3) 224, (22, 8) 86E
(17, 5) 53E (22,10 87E
a7, n 54E (22,12) 384,
(17, 9) 324, (22,12) 504,
(17, 9) 234, (22,14) 90E
(17,11) 55E (22,16) 91E
(17,13) 56E (22,18) 534,
(17,15) 334, (22,18) 414,
(17,15) 244, (22,20) 95E
(17,17) S9E (22,22) 99E
(18, 0) 344, 23, 1 89E
(18, 2) ST1E (23, 3) 514,
(18, 4) 58E (23, 3) 404,
(18, 6) 254, (23, 5) 9NE
(18, 6) 354, (23, 7 9BE
(18, 8) 60E (23, 9) 544,
(18,10) 61E (23, 9) 424,
(18,12) 264, (23,11) 96E
(18,12) 364, (23,13) 94E
(18,14) 62F (23,15) 434,
(18,16) 64E (23,15) 564,
(18,18) 394, (23,17) 100E
(18,18) 294, (23,19) 103E
(19, 1 63E (23,21) 464,
(19, 3) 374, (23,21) 604,
(19, 3) 274, (23,23) 108E
(19, 5) 65E (24, 0) 554,
19, 7) 66E (24, 2) 97E
(19, 9) 384, (24, 4) 98E
(19, 9) 284, (24, 6) 444,
(19,11) 67E (24, 6) 574,
(19,13) 68E (24, 8) 101E
(19,15) 304, (24,10) 1076
(19,15) 414, (24,12) 624,
(19,17) TE (24,12) 494,*
(19,19) 74E (24,14) 105E
(20, 0) 404, (24,16) 102E*
(20, 2) 69E (24,18) 454,"
(20, 4) 70E (24,18) 584,
(20, 6) 314, (24,20) 11E
(20, 6) 424, (24,22) 115E
(20, 8) 12E (24,24) 524,
(20,10) 13E (24,24) 664,
(20,12) 324, (25 1) 14E
(20,12) 434, (25, 3) 594,
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TABLE I (continued).

(n,|1]) State
(25, 3) 474,
(25, 5) 106E
(25, 7) 109E
(25, 9) 614,
25, 9) 484,
(25,11) 1136
(25,13) 110E*
(25,15) 504,
(25,15) 644,
(25,17) 116E
(25,19) 118F
(25,21) 544,
(25,21) 694,
(25,23) 124F
(25,25) 128E
(26, 0) 634,
(26, 2) 112E
(26, 4) 114E
(26, 6) 514,
(26, 6) 654,
(26, 8) 117E
(26,10) 119E
(26,12) 534,
(26,12) 674,
(26,14) 121E
(26,16) 122E
(26,18) 704,
(26,18) 564,
(26,20) 127E
(26,22) 133E
27, 1) 120E
(27, 3) 684,
27, 3) 554,
27, 5) 123E
1,7 125E
(27, 9) 714,
27,9 574,
(28, 0) 724,
(28, 2) 130E
(28, 4) 132E
(28, 6) 594,
(28, 6) 754,
(29, 3) 634,
(29, 5) 142F

* Adiabatic switching and diagonalization of a quantized version of the
Jaffe-Reinhardt Hamiltonian suggest the following alternate assignments:
(24,10) = 102E, (24,16) = 107E, (24,12) =584,, (24,18) =624,,
(24,12) = 454,, (24,18) = 494,, (25,11) = 110E, (25,13) = 113E.

somewhat greater than n/2. These regions occupy zones
somewhat to the right-of-center in the figure but do not ex-
tend to the rightmost boundary, defined by |/| = n. The
states with the highest values of angular momentum thus
remain nonergodic. As the energy is increased further, larger
precessing ergodic regions appear, extending further to the
right-most boundary of the figure, ultimately including even
states with the highest allowed |/ |. Also, at higher energies,
librating ergodic regions appear for values of |/ | <n/2 and
occupy zones to the left-of-center in the figure. Although
these regions do not include every state with |/ | <n/2, they
do not seem to avoid states with the lowest values of |/ | in the

same manner as the precessing ergodic regions exclude states
with the highest values of |/ |.

A narrow zone, characterized by |/ | =n/2, separates the
predominantly librating and precessing regions. Most of the
states in this intermediate zone are classified as nonergodic.
Although not shown in the figure, it is relevant for future
discussion to note that the invariance times of ergodic states,
as measured by the reciprocal of the separation between en-
ergy components in the superpositions, generally increase as
one moves away from this central nonergodic strip. Ergodic
states nearest this strip have very short invariance times (as
low as 30 time units) while those toward the right and left
boundaries of the figure tend to have very long invariance
times (up to several thousand units). As previously dis-
cussed, such times may correspond to classical lifetimes of
pseudoergodic zones in certain cases but may represent max-
imum time scales of good classical-quantum correspondence
in others.

Most of the above observations can be explained as
straightforward reflections of the manner in which chaos
appears in the classical Henon—-Heiles system. To see this, let
us review the development of chaos in the classical system.
At low energies, the vast majority of trajectories are regular
and lie on invariant tori. There are two different kinds of
trajectories*: those with high angular momentum executing
precessing motion and those with low angular momentum
undergoing librating motion. The phase space surface separ-
ating the regions associated with the different kinds of mo-
tion is called the precessor-librator separatrix.>®> At these
low energies, the most significant, but still very narrow, zone
of chaos lies near the separatrix. As the energy is increased,
the chaotic region around the separatrix broadens. How-
ever, this region is still limited in extent to intermediate val-
ues of the angular momentum and trajectories with high and
low angular momentum remain regular. As the energy is
raised further, the chaotic zone surrounding the separatrix
continues to broaden, with regions of lowest angular mo-
mentum becoming chaotic before regions of highest angular
momentum.>* Finally, at energies near D,, the vast majority
of the trajectories become chaotic. It is, however, important
to note that, even at energies near D,, a large proportion of
the chaotic trajectories tend to remain in regions resembling
tori (vague tori) for various periods of time.® Such trajector-
ies temporarily execute motion that is qualitatively similar to
either regular precessions or librations, depending on the
initial values of the angular momentum. It is expected (but,
as far as we are aware, not yet demonstrated) that the length
of time that these trajectories undergo such restricted mo-
tion (i.e., the “lifetime” of the vague tori) generally in-
creases as one moves away from the separatrix to regions of
high and low angular momentum.

To relate this description to Fig. 4, we merely identify
the classical vague tori with the quantum pseudoergodic re-
gions. We then find that our discussion of classical chaos
provides an explanation of various phenomena appearing in
this figure, including the forms, positions, and patterns of
the pseudoergodic regions. The classical description is (per-
haps fortuitously) even consistent with the observed trends
in the invariance times of the pseudoergodic zones. How-
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ever, this discussion raises questions about the central noner-
godic strip. Since this strip separates regions of librating
from precessing motion, it must correspond to the zone
around the separatrix. This zone is, however, the most chao-
tic portion of phase space. The lack of ergodicity in this
quantum region is therefore disturbing. Below, we review an
investigation we carried out to understand this result.

A possible explanation for our inability to find ergodi-
city in the central strip is that, although ergodic regions are
present in that zone, relaxation to a statistical equilibrium
distribution is much slower than for other portions of phase
space. Thus, detection of ergodic regions in the central strip
requires evaluation of F'¢ for values of 7 that are substantial-
ly larger than 30. Use of a larger value of 7 for these cases can
easily be rationalized if these regions are spanned by differ-
ent types of states than those forming the precessing and
librating regions, e.g., uncombined energy eigenstates (type
C states). To investigate this possibility, we chose a value of
1 = 120 for regions potentially spanned by type C states. We
found that, indeed, a few states in the central strip, previous-
ly classified as nonergodic, now formed type C ergodic re-
gions. When we further increased 7 to 300 we not only de-
tected a few additional regions of this kind, but found that
maximization of f; required formation of type C regions
from states identified as part of type A and B regions in Fig.
4. -

Although these results appeared promising, the ergodic
regions in the central strip did not seem to correspond to
portions of phase space with well-defined classical analogs.
Of the eight new ergodic regions found with r =300 and a
cutoff of 0.04, seven were composed solely of states with 4,
and 4, symmetry and one was composed solely of states with
E symmetry. The different propensity of states with different
symmetry to form ergodic regions and the tendency of ergo-
dic regions formed from states with different symmetry to
remain separate are nonclassical effects. As #-+0, the
smoothed density functions obtained from energy eigen-
states of different symmetry become indistinguishable.
Thus, in the classical limit, there can be no distinction
between the phase space regions formed from states of 4 and
E symmetry.

Another possible explanation for the absence of ergodic
regions in the central strip of Fig. 4 is that such regions must
be constructed from as-yet unexplored superpositions of en-
ergy eigenstates, i.e., superpositions of types other than A
and B. These ergodic regions would, of course, have to re-
main invariant for long enough periods of time for relaxation
to be complete. However, a scan of energy differences shows
that there are only three possible, new, superpositions that
can be formed in the central strip with invariance times
greater than 1 time unit and the longest of these times is only
about 10 units (approximately 1.5 harmonic vibrational per-
iods). Complete relaxation on such short time scales seems
unlikely.

More generally, we find that with only two exceptions
for all the states in Fig. 4, the superpositions of type A and B
combine energy eigenstates with the smallest energy separa-
tions. Any new superpositions would represent regions that
are invariant for even shorter times than those we have al-
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ready considered. Therefore, apart from the type C regions,
there are almost no candidates to represent new ergodic re-
gions that might be formed once type A and B regions break
up.

The absence of ergodic behavior in the quantum central
strip is probably due to the instability? of the classical mo-
tion near the separatrix. As a result of this instability, any
vague tori that may appear in this strip are so short lived that
relaxation within these regions is incomplete. Thus, tempo-
rarily ergodic regions are not formed near the separatrix. On
the other hand, relaxation over larger portions of phase
space to form true (“permanently”) ergodic regions is so
slow that the times involved exceed the time scale of good
classical-quantum agreement. The reason for the slowness of
this relaxation is that it requires passage of phase space den-
sity across significant bottlenecks associated with the pres-
ence of vague tori. It is only when these vague tori break up
(and the pseudoergodic regions lose their invariance) that a
permanent form of relaxation is complete.

The following conclusions thus emerge from this study:
(a) the central strip really does appear to be nonergodic
insofar as quantum dynamics is concerned; (b) there is no
convincing evidence of the formation of ergodic regions of
type C for our system; (c) the time scale for classical-quan-
tum correspondence in our system is shorter than 120 time
units. The last conclusion results from the observation that
the new ergodic regions appearing for ~ = 120 are nonclassi-
cal in nature.

Throughout our investigation we have anticipated that
classical chaos can be reflected in quantum dynamics in the
form of ergodic-like behavior only if the classical ergodic
relaxation is complete prior to the breakdown of quantum-
classical agreement. Indeed, this principle underlies the se-
miclassical ergodic theory.'® What is surprising about our
results is the extreme shortness of the time scale for quan-
tum-classical agreement, even for a relatively “classical”
model. The very limited period for similarity of the two dy-
namics seems to prevent the quantum system from exhibit-
ing ergodicity over the full region that it is attained in the
classical counterpart.®

Our observation of short times for classical-quantum
agreement is consistent with results very recently reported
by Brown and Wyatt™ for a model system describing multi-
photon dissociation. These authors found that quantum den-
sity prepared in a classically chaotic region was unable to
cross a classical bottleneck as quickly as in the classical case.
This result can be interpreted as an indication that the classi-
cal invariance time of the region bounded by the bottleneck
is longer than the time scale for agreement between classical
and quantum dynamics. It is the resulting failure of quantum
mechanics to describe the classical diffusion across bottle-
necks that is responsible, in the present system, for the lack
of ergodicity over large classical regions.

The short time period for correspondence appears to be
inconsistent with our previous investigations'' which show
that classical and quantum microcanonical autocorrelation
functions are in good agreement for times of at least 120
units, even for the more quantum mechanical case of
A = 0.1118. However, we must bear in mind that the present
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results are related to the behavior of autocorrelation func-
tions that are rather different than those investigated pre-
viously. Our present autocorrelation functions probe the dy-
namics in very small regions in phase space, not the full
energy shell, and evidently tax the classical-quantum corre-
spondence to a far greater extent than before.

We now discuss the states with |/ | ~n and |/ | =0, which
are identified as nonergodic by our analysis. Our classifica-
tion of these states is consistent with the findings of other
authors. For example, Davis, Stechel, and Heller’® showed
that a wave packet prepared in a classically nonergodic, pre-
cessing region of the Henon—Heiles system (with
A = 0.1118) projected almost exclusively onto a certain set
of energy eigenstates. Examination reveals these states to be
just our high |/ | nonergodic states. Hose and Taylor*® con-
cluded that these same high |/ | states arise from classical
quasiperiodic motion since the absolute square of their pro-
jections onto specific eigenstates of a separable Hamiltonian
exceeds 0.5. The separable Hamiltonian used to test these
states was our H,, and the states qualifying as quasiperiodic
in this manner were called “Q " states. In a similar way,
another separable Hamiltonian was used to classify some of
the lowest |/ | states as quasiperiodic and these were called
“Q I states. The general quasiperiodic classification of such
extreme-motion states was later explained by Taylor and co-
workers®” on the basis of the adiabatic principle. However,
despite the above remarks, there does not appear to be truly
consistent agreement between extreme-motion states identi-
fied as nonergodic by the present analysis and those classi-
fied as Q! or Q™ by the original Hose-Taylor prescription.
For example, although the Hose-Taylor criterion classifies
the high |/ | states of the system with A = 0.1118 as @, it does
not classify the analogous states of the system with 4 = 0.08
as Q,* although our analysis shows both sets of states to be
nonergodic. Of course, it is possible that agreement between
our classification and that of Hose and Taylor may be
achieved by applying their criterion with other choices for
the separable Hamiltonian.

Let us briefly consider the mechanism responsible for
the formation of ergodic regions in our quantum system.
Since a characteristic of these regions is that the constituent
states have similar physical properties, one might expect all
such states in an ergodic region to be superpositions of the
same zero-order states and the mechanism for their forma-
tion to be simply the mutual coupling of the unperturbed
states in these zones. A glance at Fig. 4, however, immediate-
ly shows that this expectation is incorrect and that the pro-
posed mechanism is, at best, incomplete. Consider, for ex-
ample, one of the librating ergodic regions consisting of
states (n=17, |/|=9) and (n=17, |l|=11) [eg,
324, 4 i(234,) and 55E; see Table I]. Since the two states
in this region are of different symmetries and are obtained by
diagonalizing separate blocks of the Hamiltonian, they are
necessarily superpositions of different zero-order states. The
mechanism causing such states to have similar physical
properties must be more general than the interaction
between states of the same symmetry and, in fact, must tran-
scend purely quantum symmetry considerations. It appears
that such a mechanism must, in some way, rely on the corre-

spondence principle and the behavior of the system in the
classical limit.

Before leaving Fig. 4, we must comment on the reliabil-
ity of certain features appearing there. Ideally, all of the
boundaries separating the different ergodic zones in Fig. 4
should correspond to classical bottlenecks in phase space.
However, the quantum boundaries in the high-energy, li-
brating portion of the figure are subject to large uncertain-
ties, so that they may not always accurately reflect the classi-
cal division of phase space. The uncertainties arise because
the sizes and shapes of the high-energy, librating ergodic
regions are rather sensitive to variations of the cutoff. Al-
though the number and identity of the ergodic states do not
change significantly as the cutoff is varied by small amounts
about its optimum value, the form of the ergodic zones do.
Thus, if ¢ is taken to have the value 0.05 at high energy (a
choice that we have previously justified) it becomes possible
to form librating ergodic regions containing as many as four
states and involving both 4; — E and 4, — E superpositions.
As a result, the high energy librating ergodic zones may not
be quite as small as they appear in Fig. 4 and, in contrast to
the implication of that figure, there may be a tendency for
these zones to become larger as energy is increased, as in the
precessing case.

We now turn our attention to the case A =0.1118,
7= 15. Figure 5 shows the partitioning of the quantum
states that corresponds to the optimum cutoff of 0.05-0.06
(cf. curve E,Fin Fig. 3). The assignment of zero-order quan-
tum numbers to the states of this system is taken from the
work of Jaffe and Reinhardt.*

In many ways, this figure resembles Fig. 4: at suitably
high energies, states with low {/ | form librating ergodic re-
gions, those with high |/ | form precessing ergodic regions,
while those with the highest |/ | tend to form nonergodic re-
gions. However, this figure differs significantly from Fig. 4
in that proportionally fewer states fall into ergodic regions.
Many states that are classified as nonergodic in Fig. 5 corre-
spond to states that lie in ergodic regions of Fig. 4. Root
mean square energy deviations obtained in adiabatic switch-
ing studies®!*? verify that such “missing” ergodic states in
Fig. 5 are indeed located in classical chaotic regions.

These missing ergodic states explain the different ap-
pearance of the optimum f; curves for the two values of 4.
The relatively small number of ergodic states for n <11 in
the A = 0.1118 case is responsible for the tendency of curve
C in Fig. 3 to remain near unity until energies above 0.7 D,
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FIG. 5. Same as Fig. 4 except that 4 = 0.1118, 7 = 15, and ¢ = 0.05-0.06.
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The absence of ergodic states in the last row of Fig. 5 is
responsible for the sharp upturn in curve C at energies above
0.85D,. »

The reason for the missing ergodic states in Fig. 5 is the
small size of the ergodic regions in the classical limit. The
states missing in Fig. 5 are mostly those that would belong to
ergodic zones composed of only two or three states in Fig. 4.
In passing from A = 0.08 to A = 0.1118, however, the num-
ber of quantum states in a fixed region of phase space asso-
ciated with a vague torus decreases by a factor ranging from
about 2[ = (0.1118/0.08)?] to about 4[ ~ (0.1118/0.08)*],
depending on the shape of the region. Since our treatment
automatically classifies regions containing fewer than two
states as nonergodic, only those ergodic zones consisting of
many states for 4 = 0.08 remain ergodic for A = 0.1118.

Nonergodic zones, similar to the one observed in Fig. 5
for low |/ | and high energy, have been found in analogous
regions of phase space in other classically chaotic quantum
systems.?” Quantum systems, prepared in such zones, re-
main trapped there for long periods of time while the corre-
sponding classical systems may quickly leave these regions,
undergo substantial intramolecular energy transfer, and dis-
sociate. It is possible that the mechanism inhibiting the ergo-
dic behavior of these systems is similar to the one apparently
at work here: the division of classical phase space into nar-
row pseudoergodic regions by a dense distribution of bottle-
necks.

We have already noted that the f; curves for A = 0.08
(Fig. 1) also display some of the nonclassical features found
for A = 0.1118 (Fig.3), albeit to a much smaller extent. As
in the latter case, this nonclassical behavior may be due to
the small size of classical pseudoergodic regions. The crucial
point is, however, that the discrepancies between the classi-
cal and quantum values for f; do become much less pro-
nounced as A becomes smaller. The tendency for the classi-
cal and quantum degrees of chaos to become more similar
suggests that the influence of these small regions rapidly be-
comes negligible as # is decreased and supports the validity
of our approach for identifying the quantum manifestations
of chaos.

It is of some interest to compare our present conclusions
regarding the ergodicity of the Henon-Heiles system with
those arising from an earlier investigation. In a previous cal-
culation,'! we observed that the microcanonical versions of
the classical and quantum functions F, (T') for the Henon—
Heiles system were in good mutual agreement for the case
A =0.1118 and E = 0.95 D, . Thus, as measured by that test,
the quantum system displayed the same degree of ergodic
behavior as the classical system. In the present calculation,
however, we appear to arrive at just the opposite conclusion:
as measured by the current test, the quantum Henon—Heiles
system exhibits a much lower degree of ergodic behavior
than its classical counterpart.

This apparent paradox is resolved by recognizing that
the form of ergodicity probed in the earlier work was global
ergodicity, whereas the kind of ergodicity we examine here is
local pseudoergodicity. The present form of ergodicity is
more strictly obeyed by the classical system and is a more
reliable indicator of chaotic behavior.

B. Ramachandran and K. G. Kay: Local ergodicity and chaos

This does not, however, mean that the results estab-
lished here are necessarily more relevant for applications
than those obtained previously. Indeed, our former conclu-
sions have direct implications for theories that require statis-
tical equilibration on the full energy surface. They suggest,
for example, that the RRKM requirement of intramolecular
randomization is likely to be satisfied to the same extent by
the quantum Henon—-Heiles system at E = 0.95 D, as by the
corresponding classical system. On the other hand, our pres-
ent results are relevant to more recent and more detailed
statistical theories that require local pseudoergodicity.’”-3®
Thus, for example, our work suggests that the classical the-
ory of intramolecular relaxation proposed by Davis*® might
not be easily generalizable to the current quantum system at
high energy.

V. SUMMARY AND CONCLUSIONS

We have attempted to identify a form of quantum dy-
namical behavior that is a direct consequence of the chaos in
the corresponding classical system. Since agreement
between classical and quantum dynamics generally deterio-
rates for long observation times, we have sought a classical
characteristic property that could be used to identify chaos
even over short observation periods. This property is local,
nontrivial, pseudoergodicity.

We have examined the semiclassical analog of pseudoer-
godicity, the conditions under which a quantum system can
be expected to exhibit this form of behavior, and the relation-
ship between this property and the underlying classical cha-
o0s. We have concluded that the quantum states that lie in the
analog of a classical pseudoergodic region are generally su-
perpositions of energy eigenstates. All such states in a given
region have similar expectation values for operators that are
acceptable and not too highly localized. Furthermore, off-
diagonal matrix elements of these operators between states
in a pseudoergodic region and all other states of similar ener-
gy are small. The degree to which these conditions are satis-
fied can be determined by examining the values of F, (7) for
the various operators 4.

We have applied this analysis to the Henon-Heiles sys-
tem with two choices for the nonlinearity parameter A. To
judge the degree to which classical chaos is reflected in the
quantum dynamics, we have compared the proportion of the
quantum energy shell occupied by pseudoergodic regions to
the proportion of the classical energy shell occupied by chao-
tic trajectories. To further check our identification of the
quantum analog of pseudoergodicity, we have examined the
quantum states participating in ergodic regions and related
them to classical pseudoergodic zones.

For the version of the Henon-Heiles system with the
lower value of 4 we have found good agreement between the
classical degree of chaos and the corresponding quantum
measure but for the version with the higher value of A we
have found much poorer agreement. We have explained this
trend to be a consequence of the more quantum mechanical
nature of the latter system and the smaller size of the classi-
cal ergodic zones relative to 4 °.

Our investigation has shown that, even at high energy,
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the quantum energy shell is divided into several disjoint
pseudoergodic zones that are separated by what appear to be
quantum analogs of the precessor-librator separatrix and
other classical bottlenecks. Superposition states spanning li-
brating and precessing pseudoergodic zones are those that
would be expected to represent librating and precessing tori
when the classical dynamics of the Henon-Heiles system is
regular. We have, therefore, identified these pseudoergodic
zones as the analogs of vague tori.

Despite these results, however, a major conclusion of
our work is that classical chaos does not always show up as
ergodic-like behavior of the analogous quantum system.
Thus, even when the classical motion underlying a quantum
state is chaotic, such a state need not belong to a quantum
ergodic or pseudoergodic zone. For the chaotic motion to
influence the quantum dynamics in an identifiable way, the
associated ergodic or pseudoergodic region must be suffi-
ciently large ( consisting of two or more quantum states) and
the statistical relaxation in that region must be sufficiently
fast (faster than the breakdown of the quantum-classical
agreement). Indeed, our work has suggested that the neces-
sary time scale for relaxation is so short, even for fairly “clas-
sical” quantum systems, that it is pseudoergodicity, rather
than true ergodicity, that is generally reflected in the quan-
tum behavior of a classically chaotic system. Our calcula-
tions have not produced evidence of quantum behavior that
is analogous to true, “permanent” ergodicity over large por-
tions of the energy surface, such as is achieved in the classical
Henon-Heiles system at high energy.®

We conclude with a brief discussion of some difficulties
that may hinder routine application of our treatment to oth-
er systems.

Animportant practical problem with our approach con-
cerns the choice of the operators A that are used to test for
ergodicity. In principle, one should consider all operators
that are acceptable and that are not too strongly localized.
Although a “complete” set of such operators can be defined
and this set is finite for nonzero #, it is too large to permit
actual computations on systems such as the Henon-Heiles
model with A = 0.08. An alternative procedure is to select a
small number of operators that are expected to be most effi-
cient at identifying states that are nonergodic. Such opera-
tors are those that correspond to approximate classical con-
stants of motion for the system. In this paper we have
adopted this approach, choosing the set of 4 to consist of
simple operators that commute with the zero-order Henon-
Heiles Hamiltonian. A more systematic procedure would be
to select operators that correspond to the approximate ac-
tion variables produced by classical perturbation theory.*
Although this approach requires rather difficult calculations
it appears to be worthy of further investigation.

Another problem that obstructs application of our
method to other systems is the difficult task of finding the
optimal partitioning of states in the energy shell into pseu-
doergodic regions, in order to maximize f; (E). In the pres-
ent work, this process was carried out manually in a trial-
and-error manner. Of course, the same procedure can be
applied to systems with moderate state densities. However,
this approach is tedious, subject to human error and in any
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event, impractical for systems with truly high state densities.
Though not a simple task, development of an efficient, intel-
ligent algorithm for this step is not impossible for systems
with finite state densities, and would make the routine appli-
cation of our method much simpler.

The problem of forming the correct superpositions |J )
to represent pseudoergodic zones for other systems may not
be as severe as first appears. Given information about the
topology of classical vague tori, our experience suggests that
considerations of symmetry and energy level spacings often
uniquely determine the appropriate linear combinations. In-
deed, there is evidence that vague tori in symmetric triato-
mic systems have topologies similar to the librating and pre-
cessing pseudoergodic regions of the Henon-Heiles case.®
Thus, the states |/ ) for such systems should bear a close
analogy to the superpositions formed in our present work. It
should also be noted that our results do not rule out the
possibility that uncombined energy eigenstates suffice to
represent pseudoergodic regions for systems without sym-
metry. If that is true, the problem of forming the correct
superpositions never arises for such cases.

As this discussion suggests, successful treatment of oth-
er systems by the approach presented in this paper may re-
quire rather thorough preliminary studies of both the classi-
cal and quantum dynamics. Such investigations are needed
to compensate for the inability to consider all appropriate
operators A and to overcome the uncertainties concerning
the correct choice of the superposition states |J ). Ideally,
these studies should provide information about the topology
of the regular and the irregular (pseudoergodic) regions of
classical phase space, the good classical action variables, and
the shapes of the stationary wave functions. In the case of the
Henon-Heiles system, we were able to draw on the wealth of
results from previous investigations. Treatment of other sys-
tems may require additional calculations.

Finally, we mention that we have recently carried out
classical calculations of local ergodicity analogous to those
presented in this paper. These calculations corroborate
many of the claims we have made regarding the classical
interpretation of our work. We plan to present full details of
these investigations elsewhere.
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APPENDIX A: SUPPLEMENTARY APPROXIMATE
INTEGRALS OF MOTION

Systems with more than two degrees of freedom often
have approximate, isolating, constants of motion that tem-
porarily confine the classical chaotic dynamics to regions of
phase space with lower dimensionality than the full energy
surface.*®*? In this Appendix we discuss the modifications
to the theory presented in Sec. II that are needed when this
restriction of the motion persists for periods exceeding the
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time range of good classical-quantum agreement.

Let us assume that the chaotic motion is subject to a
total of m < sisolating constants of motion /,,7,,...,I..,, where
sis, as usual, the number of degrees of freedom of the system.
Some of these constants may be exact integrals (e.g., the
total energy) while others may be approximate constants.
Then the motion will be temporarily restricted to a region in
phase space of dimensionality 2s — m and we must redefine
nontrivial (pseudo)ergodicity to refer to (temporary) ergo-
dic behavior in such regions.

This new definition requires only two modifications of
the classical ergodicity conditions presented in Sec. II: (a)
the Dirac delta function § (£ — H) appearing in the classical
density function p (p,q) must be replaced by the multidimen-
sional delta function §(I —I') that projects onto the re-
stricted portion of phase space associated with the motion;
(b) the properties 4 that are used to test for ergodicity must
now exclude all functions depending only on I, since these
lead to indeterminate values of F,.

The modifications needed in the quantum conditions
are analogous to those described above: (a) The expression
for the quantum density operator p, presented in Eq. (18)
must be replaced by

ﬁ=2'|J)P"(IJ—I')(Jl, (Al)

J
where I’ is a vector of expectation values (J |I|J ) for opera-
tors J corresponding to the classical constants of motion, and
p’(IY —T') is a product of m decreasing flmctions of
|I{—1}| (e.g., Gaussians); (b) the operators A for which
F, are evaluated must now exclude all functions depending
only on I.

Modifications such as these allow one to identify the
semiclassical analog of ergodicity for regions of any dimen-
sionality. In particular, if m is permitted to be equal to s, the
considerations described above lead to a semiclassical defini-
tion of trivial ergodicity.

APPENDIX B: INVARIANCE AND SUPERPOSITION
STATES /)

Here we examine the consequences of the invariance
requirement for the choice of states |/ ). The effective invar-
iance of p over the time period 0< 7<7 implies that

p(T) =exp( — iHT /#H)p exp(iHT /%)

=p(0) for O<TKrT (B1)
Substituting Eq. (18) for 5 into this expression, we get
A = Z’exp( —iHT /8)|J )p°(E — E;){J |
J

Xexp(iHT /#). (B2)

Introducing complete sets of exact energy eigenstates (de-
noted by lower-case letters within bras and kets) into the
above expression, we obtain

p(T) =§:’;§I:lk)<k Ty

Xp°(E — E)(J 1)l |expliw, T),  (B3)
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where w, = (E, — E,)/#i. Thus, the requirement that
P(T) =p(0) for T<7 yields

33 Sl )k 0p7E = E)) T 1! lexpliaon T)

=;'22]k}(k V) (E—E) T {|.

We conclude that, in order for g (T) to remain invariant for
T'<r, the spacings between the energy levels of those eigen-
states that project onto each state |/ } must be small enough
that o, T <1 for T<. This condition will be satisfied if each
state |J ) is composed only of energy eigenstates that are close
in energy. More specifically, if AE is the largest energy sepa-
ration between two energy components of |J }, we demand
that

AET /%<1 for
1e.,
7<H/AE.

(B4)

I<7, (B5)

(B6)

APPENDIX C: EXPRESSION FOR Fj (1)

We now derive an explicit formula for F¢ (7). Equation
(14) expresses F'% (7) in terms of the time averaged autocor-
relation function C % (7) and its statistical equilibrium value
C4 oq- To evaluate C4(r) we apply the definition

Co(7) =D;](1/T)j dtexp( —t/7){A(1)]|4)% (Cl)
0

where
(A(1)|4 Y =Tr[pA(1)'4 ]

=YPp(E—-E)N{J|44|J) (C2)
J

and
D,={4]|4)". (C3)

Introducing complete sets of exact eigenstates (denoted by
lower-case letters) and superposition states (denoted by ca-
pital letters) into these expressions, we obtain

(ADNA4)Y =33 p(E—E)JANNK K |4T)
J K

= ;';ZEPG(E —E;){J |n){n|4T|m)

X (m|K ) (K |4 |[J Yexp(itr,m ) (C4)

and

D, = Z’PU(E -~ Ey) 10 IA 4 IJ) (C5)
J

Sufficiently near the classical limit, and with an appropri-
ately large value of ¢, the imaginary parts of (4(¢)|4 )?and
C4 () are negligible for real functions 4 (p,q), and we can
replace C ¢ (7) by Re{C¥ (7)}. Thus, substituting Eq. (C4)
into Eq. (C1), integrating, and taking the real part, we ob-
tain

Cy(=D;'S'S T Fp°(E—E){J |n)(nld [m)
J K n m
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X (m|KYK|A|T)/[1+ (@,,7)7] (C6)

By construction, the only nonzero terms in the sum are those
that satisfy E,~E, and E,=<E, where E,
=3,E,|(J|n)|> and Ex=23.E,|(K|n)|>. Hence,
®,, ~w;x = (E; — Ex)/#. Taking this into account, we
get

Ci(n=D7' Y (E—E)T|JI4|K)|/
J K

[14 (@x7)?] (o7))
Similarly, we obtain the following expression for C'% ,:

2
Clhea = [EIPU(E_EJNJ |4 |J)]/
7

o e-52]

Substituting these results into the expression for F4 (7) in
Eq. (14) and rearranging, we obtain the result presented in

Eq. (23).
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