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This work describes an approximate and temporary form of ergodicity, called
pseudoergodicity. This is a classical phenomenon that is of particular interest since it has a
straightforward quantum analog and can be expected to influence the dynamics of a quantum
system more directly than rigorous ergodicity. A procedure is described for locating phase
space regions where classical motion is pseudoergodic (pe) and this technique is applied to the
Henon~Heiles system excited to near its escape energy. Certain pe zones containing chaotic
trajectories appear to coincide with the vague tori of Reinhardt and co-workers while other
such zones have less familiar forms. When the Henon—Heiles system is observed for long times,
a single pe region becomes larger than others, thus marking incipient ergodicity on much of the
energy shell. The classical pe regions are compared to quantum pe zones, calculated by a slight
modification of a technique presented in an earlier paper. It is found that certain classical pe
regions have close quantum analogs while others do not, for reasons probably related to the
short time scale for quantum-classical correspondence. Among the classical regions that do not

have quantum analogs is the aforementioned dominant pe zone. The implication is that the
present quantum system does not display behavior similar to the truly large-scale ergodicity

that occurs in the classical system.

I. INTRODUCTION

Ergodicity'~ is a fundamental concept in classical me-
chanics. Motion of a classical system is always ergodic in
some portion of phase space* and the region of ergodicity
serves to characterize the motion. Ergodicity over the region
constituting the entire energy surface is one of the conditions
which lead to the validity of various statistical theories.® The
importance of the notion of ergodicity is, thus, self-evident.

Ergodicity, however, is basically a classical concept.
There does not exist a unique, truly analogous counterpart to
this notion in quantum mechanics. Although it is possible to
identify the consequences of ergodicity for a quantum sys-
tem in the classical limit,% it is not possible to extend this
analysis rigorously to systems with #> 0. Thus, a definition
of ergodicity can be presented for quantum systems>*'!
only by abandoning the vital requirement that it tend to the
classical definition as #i—0 or by introducing arbitrary ele-
ments or auxilliary hypotheses that are not strictly related to
ergodicity.

Despite the specifically classical nature of ergodicity,
however, the Bohr correspondence principle suggests that
the evolution of a quantum system with small enough #
should resemble that of its classical counterpart. In particu-
lar, a quantum system that is close enough to the classical
limit should display behavior that is, in some sense, similar to
the ergodic behavior of its classical analog. It is clearly of
interest to specify more precisely the sense in which quan-
tum evolution can mimic ergodic behavior and to measure
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the extent to which this actually occurs in given cases. To
enable such judgments, we have found it useful, in earlier
work,'? to introduce an approximate form of ergodicity
called psuedoergodicity (pe). Pseudoergodicity is an espe-
cially helpful concept because it can be made to approach
strict ergodicity as closely as desired but has a quantum ana-
log that is much freer from ambiguity than that of ergodicity.
Thus, it is much more straightforward to compare pe behav-
ior in quantum and classical systems than it is to make simi-
lar comparisons about ergodicity. With the introduction of
pe, one judges how well ergodicity is reflected in the dynam-
ics of a quantum system by a two-step process: one compares
quantum pe to classical pe and then compares classical pe to
ergodicity.

In our earlier work,'> we performed rather extensive
calculations of pe for a particular quantum system—the
quantum Henon-Heiles'® system. However, those calcula-
tions were not accompanied by comparative classical stud-
ies. In this paper, we describe a practical technique for per-
forming classical computations of pe and apply this method
to the classical version of the Henon—Heiles system.'* These
calculations establish the classical interpretation of the
quantum results, provide a clearer idea of the extent of ergo-
dic behavior in a quantum system, and reveal some interest-
ing classical phenomena.

The plan for the remainder of this paper is as follows. In
Sec. I we review the classical concept of ergodicity. In Sec.
III we use these ideas to develop the notion of pseudoergodi-
city. In Sec. IV we present a practical technique for perform-
ing classical calculations of pe and apply this procedure to
the Henon-Heiles system. In Secs. V and VI we, respective-
ly, present the resuits of these calculations and compare
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them to those of analogous quantum calculations. Finally, in
Sec. VII, we summarize our work and offer our conclusions.

Il. CLASSICAL ERGODICITY

The review of classical ergodicity presented here will
help us relate the definition of pe to that of ergodicity and
will lead to a procedure for performing calculations of pe.

We consider an autonomous, bound, physical system
described by the Hamiltonian H(p,q), where p and q are,
respectively, momenta and coordinates. To define ergodi-
city, we must introduce the idea of an invariant region & in
phase space. This is a portion of the energy surface that is
carried into itself by the dynamical evolution of the physical
system. Trajectories never cross the boundaries of 7, so that
points initially within 22 never leave this region while points
outside of Z never enter it. We associate a density function

P
p(p,q) =6[E— H(p,q)ly(p,q) n

with the invariant region, where the delta function places the
density on the energy surface H(p,q) = E, while the charac-
teristic function

1 for (p,q)eZ#
2
0 otherwise 2)

picks out points on the energy surface that are within Z%.
Note that the specification of & as an invariant region im-
plies that p is independent of time:

p(p(0),q()) =p(p.q) . (3)
We identify the phase space average of a dynamical function
A(p,q) over Z# as

<A)=fdpfdqp(p,q)A(p,q)/fdpqup(p,q).

(4)

Although such phase integrals should be properly expressed
in terms of Lebesgue integrals, we adopt the above lax nota-
tion to make the comparison with the quantum definitions
more transparent.

We are now in a position to define ergodicity. Let A(?)
denote A(p(#),q(2)), the function 4 that is obtained by al-
lowing the coordinates and momenta of the system to evolve
from initial values (p,q) at time O to the values (p(2),q(#))
at time ¢. Futhermore, let

x(pq) = [

A= (1/7)f exp( — t/D)f(t)dt (5)
0

represent the (exponentially weighted) time average of
function f{#). Then the evolution of the system is said to be
ergodic in region % if

lim {4()*4) "= |(4) (6)

T— oo
for all 4eL ?, i.e., for all functions obeying

(J41?) < oo . (7N
This definition relates ergodic behavior to the decay of the
time-averaged autocorrelation functions (4(1)*4) ” to

their statistical equilibrium values | (4 ) |>. Although Eq. (6)
seems to differ from a more conventional definition of ergo-

dicity that is expressed in terms of the unweighted time aver-
age,® we have shown elsewhere® that these definitions are, in
fact, equivalent.

Equation (6) can be cast into the interesting form

lim ([A() "~ (4)]*) =0 (8)

by performing a few elementary steps and applying the in-
variance of 7. We may deduce from this result that ergodi-
city implies that time averages of all L 2 properties converge
to their phase space averages in the L > mean. It is possible to
derive a stronger result by applying further analysis.? It can
be shown that ergodicity implies that

lim A(f) "= (4) (9)

T—w
for almost all points (p,q) in % and all functions AeL 2. This
equation is often quoted as the primary definition of ergodi-
city.

From a physical standpoint, Eqs. (8) and (9) reveal the
same crucial feature of ergodicity: the independence of infi-
nite-time averages from initial conditions chosen in the re-
gion. Performing the infinite time average of 4(p,q) along
almost any trajectory in % yields the same value A(z) .
This value is just the phase-space average (4 ) or, equivalent-
ly (due to invariance of #), ( A() 7).

More valuable insight into ergodicity is provided by
BirkhofP’s theorem'~* which states that ergodicity is equiva-
lent to the metrical indecomposability of 7. This means that
motion in Z is ergodic if and only if this region cannot be
broken down into two invariant regions, each of nonzero
measure. The immediate implication is that ergodicity is,
indeed, ubiquitous: all motion is ergodic in some portion of
phase space.* In rough terms, the region explored by each
trajectory defines a zone of ergodicity. Under these circum-
stances, the only issue that remains to be settled is the identi-
ty of the various ergodic regions of a system.

Actually, the definitions of Eqgs. (8) and (9) provide a
way to find the ergodic zones, in principle. Since ergodicity is
associated with independence of time averages from initial
conditions, we could imagine initiating trajectories from
each point (p,q) on the energy surface and computing the
infinite time averages A(p(t),q(z)) *. Points (p,q) for
which A(p(#),q(¢)) © are identical, for all 4€L ?, belong to
the same ergodic region. Although this is obviously not a
practical procedure, it illustrates ideas that we will exploit
later when we discuss pe.

It is important to discuss briefly the relationship be-
tween ergodicity and the conventional statistical theories of
unimolecular chemical kinetics.’ These theories are based on
the fundamental assumption that a form of statistical equili-
bration, involving all the quasibound states on the energy
shell of an isolated molecule, occurs prior to reaction. If this
equilibration process results in the statistical relaxation of all
L * functions 4(p,q), then, in the limit of low reaction rates,
these theories imply a “global” form of ergodicity, i.e., ergo-
dicity in a region # of molecular phase space that corre-
sponds to the entire bound portion of the energy surface. In
contrast, the form of ergodic behavior we discuss in this pa-
per is “local”—it applies to a region £ that is a limited por-
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tion of the bound energy surface. Although this form of ergo-
dicity is not closely related to the usual statistical theories, it
is, by far, the most common form of ergodic behavior and is,
therefore, a worthy subject for investigation.

It is also important for our discussion to relate ergodi-
city to chaos.* Since all motion—even the regular motion of
a completely integrable system—is ergodic in some region
4, it is clear that ergodicity does not imply chaos. However,
given an ergodic region, there is a simple diagnostic to deter-
mine whether the motion therein is chaotic. In the case of
regular motion of a system with more than one degree of
freedom, the ergodic regions are invariant tori having lower
dimension than the full energy surface. Thus, the Liouville
measure of the ergodic regions is zero. In the case of chaotic
motion, however, the ergodic regions are not confined to
low-dimensional portions of the energy surface, except in
special circumstances.'>~'® The Liouville measure of chaotic
ergodic regions is thus expected to be positive (although
generally less than the measure of the full energy surface).
Therefore, it is the measure of the region Z that indicates the
chaotic or regular nature of the motion. In the present work,
we are especially concerned with ergodic regions associated
with chaotic motion since we are interested in the conse-
quences of chaos for quantum mechanics.

lli. CLASSICAL PSEUDOERGODICITY

The discussion of the previous section makes it clear
why ergodic behavior of a classical system does not imply
strictly analogous behavior in its quantum counterpart.
Classical ergodicity is a property of the dynamics averaged
over an infinite time period. However, for nonlinear systems
in general and chaotic systems in particular, the behavior
predicted by quantum mechanics differs greatly from that
obtained by classical mechanics after a finite time has
elapsed.®® Thus, it is futile to expect the ergodicity of a typi-
cal classical system to be reflected in the dynamics of its
quantum counterpart in a completely faithful manner.

Despite this conclusion, we should expect certain indi-
cations of classical ergodic behavior to show up in a quan-
tum system under appropriate circumstances, even if the
symptoms are not completely free of ambiguity. After all,
even though quantum and classical dynamics differ greatly
over long time periods, they often agree very well for short
time periods.'® Thus, if ergodic behavior of a classical system
is approximately established on a short enough time scale
(e.g., if time averages converge quickly enough to phase
space averages) some consequences of this behavior should
appear in the quantum system. Such approximate ergodi-
city, established in a finite time period, is called pseudoergo-
dicity. It is a phenomenon that can be realized in both classi-
cal and quantum mechanics.

To define pseudoergodicity more precisely, we intro-
duce the quantity!>?°

FuD=[U®*4) "

— KP4 1P — K41, (10)

where, as before, the brackets denote the phase space average
over the invariant region . The interest in F, arises from
the following properties®:
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(1) 1>F,(T)>0for all T;

(2) F,(0) = 1;

(3) F,(T) is amonotonically nonincreasing function of

T

(4) F,(T) =1 for all T, for some AeL? (excluding

functions of H) if and only if the motion in % is noner-

godic;

(5) F () =0 for all 4cL ? (apart from functions of

H), if and only if the motion in & is ergodic.

Thus, the ergodic or nonergodic nature of the evolution can
be deduced from the values of F, ( o), determined for all
dynamical functions A€L ? except for functions of the Hamil-
tonian. For each such 4, F, ( « ) will have a value between 0
and 1. The evolution of the system is ergodic if and only if
this limiting value is 0 for every such 4.

It is now easy to make a transition to pe. We say that the
motion in an approximately invariant region & is pseudoer-
godic with respect to time 7 < o0, cutoff 0<¢< 1, and set of
properties o/ CL? if

F,(n)<¢ (1

for all Ac/. By approximately invariant, we mean that, al-
though p(p(¢),q(¢)) may not be truly constant in time, it
varies slowly enough over time 7 that replacement of p(p,q)
in the numerator of Eq. (10) by its time average
p(p(2),q(2)) " would not affect the validity of Eq. (11).

Let us briefly review and discuss the aspects that distin-
guish the above definition from that of ergodicity.

(1) The finite value of 7. The time 7 for the evaluation of
the F, in Eq. (11) has been made finite so that observation of
the dynamics can be confined to the time scale over which
classical and quantum dynamics are similar. This condition
is necessary for our goal of identifying a form of classical
behavior that will be reflected in the evolution of its quantum
counterpart. As mentioned earlier, the association of ergodi-
city with infinite-time behavior prevents ergodicity from be-
ing faithfully mirrored in quantum mechanics.

(2) The nonzero cutoff ¢. It is necessary to replace the
condition F, = 0 with the more lenient one of Eq. (11) since
F, will not generally attain the asymptotic value of zero in
the finite time 7 even when the motion in £ is rigorously
ergodic.

(3) The restricted set of functions .o/. We have confined
application of the pe criterion to a subset .« of L ? functions
for two reasons: (a) there exist functions AL ? that are so
highly convoluted or localized that F, () evolves arbitrarily
slowly and remains arbitrarily close as to 1 for any fixed 7;
(b) functions A€L ? that are too highly localized in phase
space evolve very differently according to quantum and clas-
sical mechanics, even over short time periods. Thus, the pe
condition will never be obeyed classically and will not be
suitable for the desired quantum-classical comparisons un-
less we restrict the class of allowable phase space functions.
We note that the requirement that the functions 4 be not too
highly localized (i.e., that their analogous quantum opera-
tors effectively project onto more than one quantum state)
implies that it is possible to construct a finite (though possi-
bly very large) “complete” set of “independent” functions
that “spans” all conceivable members of /. Adding new
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nonlocalized functions to this set will not change the result-
ing pe regions. The set ./, with respect to which pe is defined
may, but need not, be this complete set.

(4) The approximate invariance of . We have re-
placed strict invariance of % with approximate invariance to
achieve consistency with the above three modifications of
the ergodicity condition. Since the time 7 for examination of
the system is now finite, we can relax the requirement of
invariance to apply to this time range. In addition, since the
restriction on the set of functions 4 and the nonzero value of
¢ introduce a further looseness in the definition of pe, we are
able to relax the invariance requirement further without
causing the pe concept to loose its physical interest.

Specifically, the approximate invariance property al-
lows us to carry out steps that are analogous to those leading
from Eq. (6) to Eq. (8) in the case of ergodicity. Proceeding
in that manner, we obtain the following interesting new form
for F,:

F (r) = (| A() "= (A )/(|4 = 4[> . (12)

We can see from this expression that pe condition,
F (1) < &, implies that the variances in time averaged func-
tions A(p(2),q(¢)) " are smaller than those of the unaver-
aged functions 4 (p,q) by the factor ¢. Put another way, a pe
region is a portion of phase space where time averaging de-
creases the variances in the functions 4 by a certain factor.
Thus, although pe does not require (as does ergodicity) that
the time averages of 4 be strictly constant almost everywhere
in 4, it does require that they be nearly constant in % in the
sense that their variances be small.

It is worthwhile to restate the definition of pe in a few
additional, physically transparent, ways. In rough terms, a
pe zone is an almost-invariant part of phase space that is
explored by a set of “similar” trajectories during a finite time
7. Equivalently, a pe region is a nearly invariant portion of
phase space that consists of points close to a single trajectory
of finite duration. This last restatement brings out the simi-
larity between the definition of pe and that of “quasiergodi-
city”’? which requires that an arbitrary trajectory in an invar-
iant region come arbitrarily close to every other point in that
region in the course of an infinite time period.

These different ways of understanding pe help empha-
size that this phenomenon is expected to occur quite general-
ly in a region that remains nearly invariant long enough for a
typical trajectory to sample a large part of it. Such approxi-
mate invariance may be caused by the presence of “‘bottle-
necks”?"?? which temporarily confine the phase space flow
to certain parts of the energy surface. We, therefore, antici-
pate that pe regions will sometimes be associated with bottle-
necks and their various manifestations, including “‘vague
tori.”?

It is possible to make the pe condition approach that of
ergodicity as closely as we wish by choosing 7 to be suffi-
ciently large, ¢ to be sufficiently small, and by suitably en-
larging the set .=#. However, as long as the appropriate limits
have not been achieved, pe and ergodicity are not the same.
We now turn our attention to the differences between these
two concepts.

First, it is necessary to understand that pseudoergodi-

city does not imply ergodicity. There are at least two reasons
for this:

(a) Although % may be approximately invariant, it is
generally not truly invariant. For example, a region enclosed
by bottlenecks is not truly invariant since the bottlenecks
restrict the system’s motion for only a limited time. If 7 is
chosen to be sufficiently small, the region may satisfy the
approximate invariance condition and the motion therein
may qualify as pe. However, since the system’s trajectories
eventually cross the bottlenecks, this region is not truly in-
variant and the motion cannot be ergodic in this portion of
space.

(b) The dynamics in a region may qualify as pe only
because the set . of functions is limited. It is possible that
calculation of F, (T) for L ? functions that are omitted from
& would yield nonzero values as T— 0, thus signifying
nonergodic behavior.

It is also important to realize that ergodicity does not
generally imply pseudoergodicity for a particular choice of
7, ¢, and 7. The convergence of F, (T) to zero implied by
ergodicity may be too slow for the pe condition [Eq. (11)]
to be obeyed.

A final feature of pe that distinguishes it from ergodicity
concerns the nature of the phase space regions wherein the
motion is pe or ergodic. The equivalence of ergodicity to
metrical indecomposability implies that ergodic regions are
uniquely defined and that different ergodic regions are dis-
joint. The absence of a relationship between pe and metrical
indecomposability, however, leaves pe zones with vaguely
defined boundaries and allows points in phase space simulta-
neously to belong to more than one such region. Thus, there
is no unique partitioning of phase space into pe regions and
different pe zones may overlap. Although it is possible to
impose additional conditions on pe regions in an attempt to
define them more sharply (see below), these do not change
their fundamental vagueness. The lack of uniqueness of the
partitioning of phase space into pe regions is the most dis-
turbing feature of pe.

As the above discussion makes clear, the concept of pe is
not as powerful or robust as that of ergodicity. The price for
relaxing the conditions of ergodicity may be high but it must
be paid if we wish to identify a form of behavior in a classical
system that bears some relation to ergodicity and yet can
directly influence the dynamics of its quantum counterpart.

IV. CALCULATIONS

We now illustrate the notion of pe by describing calcula-
tions on the well-known Henon—Heiles'* system, defined by
the Hamiltonian

H=1(p2 +x*+p +y°) + A(xy* — §x%) (13)

with A chosen to be 0.08. The escape energy for this system is
26.04,

The set .o« for our calculations is chosen to consist of the
following five functions:

D=4(pi +x*—p, — "), (14a)
P=p.p, +xy, (14b)
L=xp, —yp,, (14¢c)
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L2 = (xp, —yp,)?, (14d)

and
Hy=4(p: +x* +p2 +)7). (14e)

Since the Poisson bracket of the separable, zero-order, Ham-
iltonian H,, with each of these functions vanishes, these func-
tions are zero-order constants of motion. The condition
F, < ¢ implies the destruction of these constants, as is con-
sistent with chaotic behavior. Apart from the function P,
these same functions were used in our earlier quantum me-
chanical study of pe. Although the above five quantities by
no means constitute the “complete” set of not too strongly
localized functions, discussed in the previous section, they
are certainly members of that set and form a valid choice for
.

To facilitate comparisons with our previous quantum
work,!? we carry out our classical calculations with the pa-
rameter ¢ set to 0.04. Our quantum studies:suggested that
values of ¢ in this range produce pe regions that coincide
with chaotic zones of phase space.?* From the viewpoint be-
ing developed here, however, the value 0.04 is arbitrary and
any other value could be used.

Again, to allow straightforward comparisons with the
earlier quantum computations,'? we choose the observation
time 7 to be 30 time units for most of our classical calcula-
tions. We do, however, briefly investigate the effect of vary-
ing this parameter in the range of 15 to 130 units.

As discussed in Ref. 12 and reviewed in Sec. VI, the
quantum mechanical analog of a pe region is a set of states.
Furthermore, this set must consist of at least two members.
To maintain a close analogy to these quantum regions, the
classical pe zones obtained here are required to occupy a
correspondingly large portion of phase space. Thus, pe zones
that occupy a volume of phase space that is smaller than
about 24 2 are neglected in the present classical calculations.

The invariance condition described in the previous sec-
tion is rather difficult to impose in either the classical calcu-
lations or in their quantum mechanical counterparts. There-
fore, for our actual calculations, we have replaced this
condition with one that is more easily applied. We have re-
quired that the density function p(p,q) for region & be near-
ly independent of time in the sense that

| (A(D)) "= (/{4 7Y — [{4) 1212 < Bg'/? (15)

for all Ae.o7, where B is a number which we have chosen as 1
for our calculations. The relationship of Eq. (15) to the in-
variance condition of the previous section is as follows: if Eq.
(15) is imposed not only in its present form (with a suitably
small value of B) but also with the functions 4(¢) and 4 in
the numerator replaced by 4(#)*4 and |4 |?, respectively,
then the previously stated invariance condition will also be
obeyed. We point out that the replacement of the original
invariance condition by Eq. (15) does not affect the validity
of our quantum-classical comparisons since our quantum
mechanical calculations apply an invariance condition that
is analogous to Eq. (15).

The computational procedure for locating the pe zones
is a suitably modified version of the idealized method for
finding ergodic regions described in the previous section. A

more detailed description is presented in the Appendix, buta
rough outline is as follows: First, we scatter points at random
on the energy surface of the system. Next, we evolve trajec-
tories from each of these points and calculate the time aver-
ages along these trajectories of the functions in .. Finally,
we group together trajectories with similar values for the
time averages, compute phase-space averages of the func-
tions for these groups, and add or remove trajectories from
the groups until the conditions for pe [ F, (7) <@, with F,
given by Eq. (12)] and invariance [Eq. (15)] are obeyed.

It is important to mention two details of this procedure
which impose requirements on pe zones that extend beyond
those we have previously described. First, when we collect
trajectories with similar values of the time averages, we at-
tempt to include as many trajectories as possible in these
groups, subject to the pe and invariance conditions. This has
the effect of making the pe regions as large as possible. Sec-
ond, we identify the pe regions one at a time and, when we
locate such a region, we exclude the corresponding trajector-
ies from consideration for the formation of further pe zones.
This produces pe regions that are disjoint. The maximum-
size and disjointness properties of the pe regions neither con-
flict with the definition of pe presented above, nor necessar-
ily follow from it. They are new requirements that remove
some of the arbitrariness in the specification of the pe regions
inherent in Eq. (11).

These new conditions, however, still do not lead to
uniquely defined regions. The remaining nonuniqueness
shows up as a dependence of the pe zones upon another de-
tail of the computational procedure. In the calculations, the
functions 4 in .7 are considered in a particular order and the
groups of trajectories are subjected to possible modification
according to the value of F, for the current function 4. It is
found that the resulting pe regions generally depend on the
order in which the functions are considered. To eliminate
this arbitrariness, we impose yet another condition on the pe
regions. We require that the order for treatment of these
functions cause as large a proportion of phase space as possi-
ble to be assigned to pe regions. We find that this order is
usually D, P, L, L?, H,, and the results reported here are
obtained using this specific order.

As we have mentioned above, pe zones are not necessar-
ily regions of predominant chaos. Since we are mainly inter-
ested here in pe regions containing chaotic motion, we seek a
characteristic of the regions that indicates chaos. If we were
dealing with true ergodicity instead of pe, we could examine
the Liouville measure of the region; a value of zero would
indicate a regular region (at least for systems with two de-
grees of freedom ), '®!® while a nonzero value would indicate
a chaotic region. In a Poincaré surface of section plot, the
measure would be reflected in the “width” of the region. A
regular region, associated with an invariant torus, would
show up as a one-dimensional curve of zero width while a
chaotic region would appear as a more diffuse scatter of
points of nonzero width. Unfortunately, this analysis does
not apply to pe zones, since these generally have measures
and Poincaré widths that are nonzero even when the motion
is regular. To understand this point, consider a narrow regu-
lar region of phase space containing invariant tori with simi-
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lar values for action variables. Motions on these tori yield
similar values for the time averages A(p(2),q(#)) " . Indeed,
if the tori are sufficiently close to each other in phase space, it
is easy to show that they will fall within the same pe region
unless the set .7 includes the exact constants of motion for
the system. Despite these comments, however, we expect the
Poincaré widths or measures of such regular pe regions to be
smaller than those bearing “large-scaled chaotic” motion,
provided that .7 includes reasonably good approximate
constants of motion. Thus, it should still be possible to classi-
fy most pe regions of interest here as regular or chaotic by
examining their widths.

Poincaré widths of regular regions may be estimated
from the rms deviations (taken over these regions) of the
exact action variables. More generally, we expect the widths
of both regular and chaotic regions to be roughly reflected in
the rms deviations of approximate constants of motion. Em-
pirically, we find that the rms deviation of property L,

o = ((L?) —(L))'? (16)

is well suited for distinguishing regular from chaotic motion.
Examination of Poincaré surfaces and calculation of maxi-
mal Lyapunov numbers for individual trajectories show that
regions for which o is greater than 1.6 are predominately
chaotic while those for which o is less than 1.6 are predomi-
nately regular. Thus, in order to restrict our present study to
pe regions that are chaotic, we impose the condition o, > 1.6
upon these zones. Only regions that satisfy this test are con-
sidered here.

V. RESULTS

Figures 1-5 show Poincaré surfaces of section of the
Henon—-Heiles system at an energy of 25 (about 96% of the
escape energy). Each of these plots is a composite obtained
by selecting approximately 50 trajectories from a particular
pe region and propagating them for 30 time units. Some of
these figures resemble Poincaré surfaces for regular mo-
tion'>? associated with invariant tori. However, as empha-
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FIG. 1. A composite Poincaré surface of section of a precessing pseudoergo-
dic region of the Henon-Heiles system with £ = 25.0.
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FIG. 2. A composite Poincaré surface of section of another precessing pseu-
doergodic region of the Henon—Heiles system with £ = 25.0.

sized above, the pe zones obtained here always contain pre-
dominately chaotic motion. Thus, the regions illustrated in
these figures are vague tori>>—approximately invariant re-
gions that temporarily trap chaotic trajectories, rather than
true tori—rigorously invariant regions that permanently
hold regular trajectories. It is interesting to reflect on the
parallel between vague tori, as regions of pseudoergodicity
for chaotic motion and true tori, as regions of ergodicity for
regular motion. To a certain extent, the pe concept allows us
to quantify the notion of the vague torus.

We now consider these figures in more detail. Figures 1
and 2 resemble Poincaré plots for regular precessing trajec-
tories?® of the Henon—Heiles system. Such trajectories have
the characteristic of circulating around the potential energy
surface and form one of the two main classes of regular tra-
jectories for this system. Since the circulation may occur in
the clockwise or counterclockwise sense, regular presessing
trajectories occur in pairs. Our figures are reminiscent of the
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FIG. 3. A composite Poincaré surface of section of a librating pseudoergo-
dic region of the Henon-Heiles system with E = 25.0.
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FIG. 4. A composite Poincaré surface of section of an unconventional li-
brating pseudoergodic region of the Henon—Heiles system with £ = 25.0.

Poincaré plots associated with regular motion in only one of
the two senses. Regular motion in the opposite sense would
form a crescent-shaped region in the empty area in the left
portion of the figures. Indeed, the pe regions illustrated are
members of pairs, the other member (not shown) forming
crescent-shaped regions in the expected areas of the plots.
The two pe regions that form a given pair have the same
values for phase space averages (4 ) for all functions 4 con-
sidered except L. For this last function, the two regions have
averages that are equal in magnitude but opposite in sign.
Since L represents the angular momentum of the trajector-
ies, the opposite signs of L are consistent with the opposite
senses of motion for the constituent trajectories.

Figure 3 resembles the Poincaré plot for librating regu-
lar trajectories?® of the Henon—Heiles system. These trajec-
tories have the characteristic of being approximately con-
fined to the C, axes of the potential and form the second
main class of regular trajectories for this system. Since there

-8.0 - 1 r 7 1 1 7 1T 71 T
-7.0-5.0-3.0-1.01.0 3.0 5.0 7.0 9.0 11.0

X

FIG. 5. A composite Poincaré surface of section of a global-like pseudoergo-
dic region of the Henon-Heiles system with E = 25.0.

are three C, axes (the potential has C,, symmetry), librating
trajectories occur in sets of three. Figure 3 is reminiscent of
the Poincaré plot for only one of these three trajectories. One
of the other two trajectories would form the mirror image of
Fig. 3 in the bottom portion of the Poincaré plane and the
last trajectory would form a sequence of points that lie
around the periphery of the energetically allowed portion of
the plane. In fact, the pe region illustrated is only one of three
symmetry-related pe regions; the other two (not shown) are
located in portions of the Poincaré plane similar to those
described above for regular librators.

The three symmetry-related librating pe zones have the
same values for (L ), (H,), and (L 2) but different values for
(D) and (P). The symmetry relations among these regions
are revealed by examining the polar-like quantities » and 6,
defined by

r=((D)*+(P)»)'? (17)
and
f=tan"'({P)/(D)). (18)

To obtain a geometrical interpretation of these quantities,
we need to recognize that librating-like pe zones appear
roughly elliptical in configuration space with a major axis
that emanates from the center of the Henon-Heiles poten-
tial. It can be shown that r measures the “eccentricity” of
this ellipse. A high value of r signifies that the trajectories are
confined to a region that is rather close to the axis while a low
value of r implies that the trajectories occupy a more diffuse
region. The quantity 8, on the other hand, measures the ori-
entation angle of the major axis of the ellipse from one of the
C, axes of the potential. Not surprisingly, then, it is found
that the three symmetry-related librating pe zones have the
same value for r but values of 0, 27/3, and 47/3 for 6, indi-
cating that the regions have the same shape but are oriented
about different C, axes.

Figure 4 illustrates a pe region that looks much like the
librating zone shown in Fig. 3. However, the pattern in Fig. 4
is more diffuse and there are now a substantial number of
points that do not lie in the region expected of a regular
librating trajectory. We call the region illustrated in Fig. 4 an
unconventional librating zone. In contrast to conventional
librating regions such as illustrated in Fig. 3, the unconven-
tional zones appear to occur in symmetry-related sets of
six.2® Each member of such a set has the same values for (L ),
(L?), (H,), and r, but different values of 0. If we call the
lowest absolute value of @ for these regions 8,, then the val-
ues of @ for the six regions are + 6, 27/3 4+ 6,, and 47/
3 + 6,. It may thus be said that unconventional librators
differ from conventional librators in that they have nonzero
angles of orientation + 6, about the C, axes. Another differ-
ence between the two kinds of zones can be established by
close examination of Figs. 3 and 4: the unconventional re-
gions lie closer to the (destroyed) main separatrix of the
Henon-Heiles system.'>?>2” This is a curve which separates
the librating and precessing portions of the Poincaré plane.
It is about this curve that large-scale chaos first appears as
the energy of the system is raised.*’

Figure 5 illustrates still another kind of pe region. Un-
like the ones previously described, this region does not have
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any symmetry-related partners. It appears to lie about the
main separatrix and to be the most diffuse of the pe zones.
We call such a region global-like.

We have located pe zones for the Henon—Heiles system
at energies E = 17.0, 17.5, 18.0, 18.5,..., 26.5. To summarize
the results of these calculations, we present, in Figs. 6-9,
plots of the phase averaged functions (4 ) vs energy for each
of these zones. For now, attention should be focused on the
open symbols which denote the classical results. The closed
symbols, which represent quantum results, will be explained
in Sec. IV. In these figures, circles, squares, diamonds, and
triangles describe data for precessing, conventional librat-
ing, unconventional librating, and global-like pe zones, re-
spectively. Examination of these results shows that different
kinds of pe regions occupy different portions of these figures
and thus have different characteristic values for the phase
space averages. Precessing regions have relatively high val-
ues of (L 2), low values of (H,), nonzero (L ), and nearly
zero values of 7. In contrast, conventional librating pe zones
tend to have relatively low values of (L 2), high values of
(H,), nearly zero value of (L ), high values of r, and nearly
zero values of 8,. Unconventional librators have somewhat
higher values for (L ?) and lower values for (H,) than the
conventional ones. Although both conventional and uncon-
ventional librators have nearly zero values of (L ) and non-
zero values of r, the values of r for the unconventional zones
are lower than for the conventional regions and the values of
6, are nonzero. The phase averages for unconventional libra-
tors, thus, lie closer to the precessing values than do those for
the conventional librators. The global-like zones are charac-
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FIG. 6. Classical phase space averages (L *) and quantum phase space aver-
ages (L?) for pseudoergodic regions found at various energies of the
Henon-Heiles system. Unfilled symbols describe results for the classical
regions: circles denote precessing regions, squares denote conventional li-
brating regions, diamonds denote unconventional librating regions, and tri-
angles denote global-like regions. Filled symbols describe results for the
quantum regions: circles denote precessing-type regions and squares denote
librating-type regions.
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FIG. 7. Classical phase space averages ( H, — H ) and quantum phase space
averages (H, — H ) for pseudoergodic regions found at various energies of
the Henon-Heiles system. The code for the symbolsis asin Fig. 6. (H,) — E
is plotted here instead of (H,) to avoid a secular increase in the values as a
function of E.

terized by phase averages that lie still closer to the precessing
regions. For these zones, the (L ) are lower and the (H,)) are
higher than for unconventional librators. As in the case of
the librators, the (L ) are nearly zero while, as in the case of
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FIG. 8, Classical phase space averages (L ) and quantum phase space aver-
ages (L ) for pseudoergodic regions found at various energies of the Henon—
Heiles system. Only classical precessing zones (unfilled circles) and quan-
tum precessing-type regions (filled circles) are indicated; the values for (L)
and (L ) for the remaining regions are close to 0.

J. Chem. Phys., Vol. 88, No. 9, 1 May 1988

Downloaded 28 Jan 2005 to 138.47.30.134. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5696 K. G. Kay and B. Ramachandran: Pseudoergodic regions

T T T T T T T 7T
26 o _
O pBapg
[u]
o O Lo
22+ . ™ _
- ag"” .m
]
]
18— —
. u]
[u]
o
14+ ® e
® 090
10 T T T T T T T 1T
0.6 _
0.4+ o
6 L4 [y ooo
0.2+ ¢ —
0.04—9meo @’ cmenapsy
17 19 21 23 25 27
ENERGY
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squares) are indicated. For the remaining kinds of regions, ris close to 0 and
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precessors, the r are nearly zero. These values, which are
intermediate between those of librators and precessors, seem
to characterize portions of phase space lying near the separa-
trix.

Closer inspection of the figures shows that there appear
to be subfamilies within the precessing and librating areas
that form separate patterns. The quality of the results makes
it difficult to be certain but, at particular energies, some fam-
ilies seem to break off, bifurcate, or “collide” with others. It
also seems that these phenomena are connected with the
birth of new chains of unconventional librating and global-
like families. Although we have not investigated these inter-
esting subjects here in any detail, we believe that they merit
future study.

We now investigate how these results depend on 7, the
observation time. We find that different values of 7 result in
the same basic types of pe zones but that the relative sizes of
these regions change. This is illustrated in Fig. 10 which
describes results obtained at E = 25.0, the same energy used
for Figs. 1-5. We recall that,. at this energy, there are five
different symmetry-related sets of pe zones for 7 = 30: two
precessing sets, a conventional librating set, an unconven-
tional librating set, and a global-like set. As 7 is varied from
15 to 135, the sizes of the precessing regions remain roughly

0 20 40 60 80 100 120 140
Time

FIG. 10. The proportion of the energy surface occupied by various sets of
symmetry-related pseudoergodic regions as a function of the observation
time 7 for the classical Henon-Heiles system with E = 25.0. (A) a set of
high angular momentum precessing regions (see Fig. 2 for one such region
at 7 = 30); (B) aset of low angular momentum precessing regions (see Fig.
1); (C) a set of conventional librating regions (see Fig. 3); (D) a set of
unconventional librating regions (see Fig. 4); (E) the global-like region
(see Fig. 5).

constant or slightly decrease, the size of the conventional
librating set first increases and then decreases to O for 7> 30,
the size of the unconventional librating set rises from practi-
cally zero at 7 = 15 to amaximum near 7 = 65 and decreases
for larger 7, while the size of the global-like zone increases
monotonically with 7 from a value of zero at 7 = 15 to the
large value of 0.36 at 7 = 135. Thus, as 7 increases, the mea-
sure of the global-like and unconventional librating regions
increase at the expense of the conventional librators and, to a
lesser extent, one of the precessors. This means that, as 7
increases, the time averages of the functions in 7 creep
towards the separatrix values that characterize the latter two
kinds of pe regions.

The variation in the sizes of the zones shows that the pe
regions are generally transitory phenomena; the zones are
not truly invariant, but only approximately invariant. Put
another way, the boundaries that separate regions such as
shown in Figs. 1-5 are not impervious barriers but, at best,
bottlenecks that impede but do not totally stop phase space
flow. Based on the analyses of other systems by other
workers,?""?? it seems probable that the regions illustrated in
Figs. 1 and 2 are separated by a cantorus while it seems
obvious that the regions shown in Figs. 2 and 3 are separated
by the (destroyed) main separatrix of the system.

The observation that the global-like region becomes the
largest single pe zone for large 7 is worth discussing. Henon
and Heiles'® have shown that, when the energy of this system
is equal to the escape energy, a single trajectory, propagated
for a long time, “ergodically” visits most regions of the ener-
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gy shell. The plot of the global-like pe region in Fig. 5 is, in
fact, reminiscent of the Poincaré surface of that trajectory.
Evidently, the emergence of the dominant global-like region
for large 7 is a manifestation of the phenomenon discussed by
Henon and Heiles and signals the onset of ergodicity in a
large portion of the energy surface.

Although these results are interesting, we must bear in
mind that the pe regions described above are not unique. We
recall that they were obtained by testing the condition F, < ¢
with a particular ordering of the functions 4. Although this
ordering maximizes the proportion of pe regions on the ener-
gy surface, other possibilities certainly exist and these are
found to generally result in different pe regions. Thus, when
different orderings are used, the pe regions described above
may reorganize, combine, or split up. In some cases, this
results in pe zones of the kind already discussed but with
altered values of the {4 ). In other cases, this causes the for-
mation of new kinds of regions. For example, certain order-
ings result in the creation of “librating precessor” zones
which appear to occur in symmetry-related sets of six and
are characterized by nonzero values of (L ) and ». Changes in
the ordering tend to affect regions farthest from the main
separatrix (precessors and conventional librators) to the
least extent and those closest to this separatrix (unconven-
tional librators, global-like regions, and librating preces-
sors) to the greatest extent.

The observation that different procedures for locating
the pe regions produce different results immediately raises
the question of whether these regions (especially the ones
near the separatrix) have any physical meaning. Since these
regions are obtained by imposing the pe condition of Eq.
(11), perhaps we should apply the question to the pe crite-
rion itself. The pe condition, however, certainly does have
physical significance. It describes an approximate, tempo-
rary form of ergodic classical behavior that can be imitated
quantum mechanically. On the other hand, it is much more
difficult to provide physical justification for our ordering of
the functions 4 or for our choices of 7, ¢, or .27; these are
essentially arbitrary. Nevertheless, the imporant point for
our purposes is that, once these choices have been made, the
pe regions found are well-defined classical phenomena that
should have quantum analogs for sufficiently small #. Thus,
having established the nature of the classical pe zones, we
may inquire about the corresponding quantum behavior. We
do this in the next section.

VI. COMPARISON WITH QUANTUM RESULTS

Although we have previously reported quantum calcu-
lations of pe zones for the Henon—Heiles system,'? these are
not exactly analogous to the present classical calculations
since they resolve the nonuniqueness problem for the pe re-
gions in a rather different way and do not take into account
the current selection criterion of chaotic regions based on the
value of o,. We therefore present a recalculation of the
quantum pe zones.

We begin with a summary of the quantum pe concept.
The quantum analog of the region 2 is formed by a set of at
least two quantum states |J ) having energy expectation val-
ues E; that lie within the energy shell about E. This energy

5697

shell has a width o that is determined by applying certain
conditions described previously.®?° The density operator
p= > |J)exp[ —(E—E;)*/20° (/| (19)
Jex
projects onto region 47 . This operator must be chosen so that
Z obeys an approximate invariance condition that is analo-
gous to the classical property described by Eq. (15). This
condition, obtained by applying Wigner—-Weyl?® correspon-
dence arguments, is found to be

KAy — /A — (D) P12 < B2,

(20)
where 4 is the operator corresponding to classical function
A(p,q), A(t) is A propagated to time ¢ in the Heisenberg
picture, and

(4) =Tr(p4)/Tr(p) 1)

is the quantum analog of the phase space average. Similarly,
the analog of the classical function F,, defined in Eq. (10), is

found to be
Fy(T)=[ An'4)T - 1A )P]

(22)

CAYPI/IGA P —

The quantum condition that is analogous to the classical pe
criterion is, thus,

Fi(r)<¢ (23)

for all Ac.«/ and with the same choices of 7, ¢, and .7 as in
the classical case.

As described previously,'? insertion of complete sets of
energy eigenstates into the traces of Eq. (22) results in an
explicit formula for F¢ in terms of the matrix elements of 4
and the energy eigenvalues [see Eq. (23) of Ref. 12]. This
expression can be seen to be the quantum analog of Eq. (12)
above and it is this formula that is actually used to calculate
F%. When this expression is substituted into Eq. (23), the pe
condition is found tg imply the following two conditions for
matrix elements of 4: (a) expectation values (J |A |J) are
nearly independent of states |.J ) belonging to a pe region, and
(b) off-diagonal matrix elements (J |4 |K ) between states
|/ ) ina peregion and states | K ) with nearly equal energy are
small. These are the analogs of the classical pe condition that
the (finite) time averages of 4 are nearly independent of
initial conditions in the pe zone.

By inserting complete sets of energy eigenstates into the
traces appearing in Eq. (20), it becomes clear that the condi-
tion of approximate quantum invariance implies that the
states |J ) spanning Z are either energy eigenstates or super-
positions of such eigenstates with energy separations AE
that are suitably small compared to #/7. We find, in fact,
that acceptable superpositions always have values of AE that
are less than 7/r. Thus, a practical way to find invariant

regions is to form various superpositions [J) obeying
AE <#/7, use these superpositions to define density opera-
tors p, and test for satisfaction of the invariance condition by
substituting these operators into Eq. (20).

The computational procedure for partitioning the ener-
gy shell into quantum pe zones, in close analogy to the classi-
cal method, is as follows. We take the states in the quantum
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energy shell, form various superpositions |J ), and consider
various groupings of two or more of such |J) into tentative
pe regions. We identify the largest such region that obeys the
approximate invariance and pe conditions. We then remove
the states belonging to this region from the energy shell and
repeat the above procedure with the remaining states. We
continue identifying and removing the largest regions until
all pe regions have been removed. The collection of pe re-
gions identified (and subsequently removed) in this way is
to be compared with the classical set of pe regions. If, at a
given stage of this procedure, an ambiguity arises because
there are two or more equally large regions that are candi-
dates for consideration, the one ultimately causing the lar-
gest number of states to be assigned to pe regions is taken as
the correct choice. Finally, we examine the quantity

o1 = [(L?) — (L) (24)

for each of the pe regions in our set and reject regions with
o < 1.6 as involving predominately regular motion. The re-
maining pe regions should then be closely analogous to the
chaotic pe zones obtained by our classical technique.

We have carried out the above procedure for the quan-
tum Henon—Heiles system described by Eq. (13) with# = 1.
This system has 374 states with energies below the escape
energy. Details concerning the diagonalization of this Ham-
iltonian have been presented previously.!” The set o/ of
functions used for the quantum calculations is the same as
the classical set [Eqgs. (14)] except that P is omitted. Since
the sole effect of including this function in the classical calcu-
lations is to distinguish between different symmetry-related
librators and since this can be done by inspection in the
quantum calculations, the omission is not expected to influ-
ence the quantum-classical comparisons. The energy shell
width o is chosen as in Ref. 12.

As discussed in Ref. 12 and further elaborated below,
symmetry considerations and the invariance requirement
greatly restrict the choice of superposition states that can
participate in pe regions. Thus, there are only three possible
candidates for the states |/ ): (a) complex energy eigenstates
of E symmetry or certain complex linear combinations of
nearly degenerate pairs of eigenstates of 4, and 4, symme-
try; (b) certain real linear combinations of two degenerate
states of £ symmetry with a single nearly degenerate state of
A, or A, symmetry; (c¢) uncombined energy eigenstates. The
coefficients for the different kinds of superpositions are pre-
sented in Ref. 12. States of the first and second kinds are
called, respectively, precessing-type and librating-type
states since they are expected, on the basis of symmetry, to
form pe regions that correspond to their names. Precessing-
type states occur in symmetry-related sets of two while li-
brating-type states occur in symmetry-related sets of three.
States of the third kind might be considered as candidates for
the formation of global-like pe regions.

The quantum pe zones in our previous calculations'?
were identified by applying the alternative invariance condi-
tion AE < i/ instead of the current condition expressed by
Eq. (20). As we have mentioned above, this alternative con-
dition appears to be less strict than the one applied here.
Nevertheless, to allow comparisons to our earlier work and

to establish some other points, we first present results for
quantum pe regions obtained using the weaker invariance
condition of AE < #/7 and then describe how these results
change when Eq. (20) is imposed.

Figure 11 shows the states involved in pe zones. Symbols
at coordinates (#,|/|) represent energy eigenstates that have
been assigned zero-order quantum numbers n =0, 1, 2,...
(the principle quantum number) and /= —n,

— n + 2,...,n (the angular momentum quantum number).
The detailed assignments are described in Ref. 12. In this
figure, a small diamond represents a state that does not par-
ticipate in pe zones. A circle denotes a pair of symmetry-
related precessing-type states. Such states can be denoted by
a single symbol centered about a particular value of » and /
since, even when these are superpositions of 4, and 4, states,
both such states have the same n and / quantum numbers. A
chain of these circles, connected by a solid line, denotes two
pe regions formed from the two symmetry-related kinds of
precessing-type states. A pair of boxes connected by a dotted
line denotes three symmetry-related librating-type superpo-
sitions and a chain of such pairs connected by a solid line
represents three pe regions formed from such states. Note
that there are no pe zones that are formed from uncombined
energy eigenstates. The inability to form such regions has
been discussed in Ref. 12.

Pseudoergodic zones are concentrated in two main
areas of Fig. 11. Regions formed from librating-like states
are clustered towards the left of the figure, while regions
formed from precessing-like states are located towards the
right of the figure. This arrangement is consistent with the
expectation, based on classical mechanics, that librating mo-
tion should occur in phase space regions of low angular mo-
mentum (low /) and precessing motion should occur in re-
gions of higher angular momentum (high /). (Also see the
classical values of (L ?) for precessing and librating pe zones
in Fig. 6.) Areas devoid of pe regions are found along the
top, the left-most edge, the right-most edge, and in an ap-
proximately vertical strip passing through the middle of the
figure. The absence of chaotic pe regions along the top is
consistent with classical expectations since low » corre-
sponds to energies below the threshold for the onset of large-
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FIG. 11. States spanning the chaotic pe regions of the Henon-Heiles sys-
tem. The broken curve at the bottom of the figure separates states above and
below the escape energy. The remaining symbols are explained in the text.
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scale chaos.” Similarly, the blank area to the right of the
figure has a classical analog as discussed in Ref. 12. The
absence of pe zones along the left edge and through the mid-
portion of the figure are, however, nonclassical effects and
will be discussed in greater detail below.

Figure 11 differs in some respects from Fig. 4 of Ref. 12
which presents similar information. There are fewer pe re-
gions in the current figure and these regions do not always
consist of the same states as described previously. One rea-
son for the differences is that the condition 0% > 1.6 was not
invoked in the earlier work since it was assumed that the
requirement for quantum pe regions to consist of at least two
states would lead to zones that are “wide” enough to be
chaotic. In the present work, however, we have found that
this assumption is not always borne out. Imposing the mini-
mum width condition on the pe zones serves to eliminate
several regions found previously. A second reason for the
differences between Fig. 11 and Fig. 4 of Ref. 12 is that the
present criterion for formation of pe zones differs from that
used previously. Instead of attempting to partition the ener-
gy shell so that as many states as possible are included in pe
regions, as in Ref. 12, we adopt a procedure that is more
directly analogous to the classical technique for identifying
pe regions: we attempt to form pe regions that are individual-
ly as large as possible and only secondarily try to assign as
many states as possible to pe regions when this recipe leads to
ambiguities. Changing this procedure changes some of the
resulting pe zones. This sensitivity of the results shows that
the quantum pe regions are nonunique in the same sense as
the classical regions.

The quantum ensemble-averaged values for the opera-
tors A are plotted in Figs. 6-9 along with the classical phase
space averages. Filled circles denote values obtained for pre-
cessing-type states, while filled squares represent values ob-
tained for librating-type states. Although quantum averages
of P have not been explicitly calculated, their values can be
deduced from symmetry considerations and the plot for §,in
Fig. 9 is obtained from these values.

As we have already mentioned, all the preceding quan-
tum results were obtained using AE < i/ as the invariance
condition instead of Eq. (20). We now discuss how these
results change when, in closer analogy with the classical cal-
culations, Eq. (20) is used as the invariance condition and 8
is set equal to 1. We find that applying the latter condition
has no effect on the quantum regions formed from precess-
ing-type states; the identity of these zones and their values

for (2 ) remain unchanged from the results reported in Figs.
6-9. However, application of this invariance condition does
have a significant effect on the quantum regions formed from
librating-type states; none of these regions satisfy this
stricter invariance condition so that none of these regions
survive as legitimate pe zones. Strictly speaking, then, all
results presented above for such regions should be disregard-
ed. It is worth noting, however, that these regions do not fail
this invariance test by very large margins. In fact, these re-
gions do satisfy the invariance requirement of Eq. (20) if Bis
increased to the range of 2-5. Since we have found that the
classical librating zones do not change drastically when they
are required to obey the invariance condition with such val-

ues of 5, comparisons of the quantum librating zones to the
classical regions are still of interest. Thus, although we dis-
cuss below the reasons these quantum zones fail the invar-
iance condition, we continue to treat these zones as valid pe
regions for most purposes.

We now proceed with a comparison of the classical and
quantum results for the ensemble averages (4 ), as presented
in Figs. 6-9. Comparison of the filled and open circles in
these figures shows that there is good quantum-classical
agreement in the case of precessing motion. The quantum pe
regions formed from precessing-type states are character-
ized by average values for the functions 4 that are similar to
those for the classical precessing regions. This shows that the
quantum precessing-type regions are indeed analogous to
classical precessing regions. Comparison of the filled boxes
with the open boxes, however, indicates that there is less
satisfactory quantum-classical agreement in the case of li-
brating motion. The quantum pe regions formed from librat-
ing-type states tend to have average values that are not very
close to those of classical librating pe zones. Instead, they
tend to be displaced toward the separatrix area of the figures
(i.e., in the direction of areas occupied by classical precess-
ing states). In particular, a family of classical librating re-
gions with high energy, low (L ?), high , and high (H,) is
represented very poorly, if at all, by the quantum results. As
discussed below, these quantum-classical discrepancies are
also responsible for the nonergodic region that appears on
the far left of Fig. 11. Finally, neither the filled circles nor the
filled boxes of Figs. 6-9 consistently lie in areas occupied by
open diamonds and triangles. Thus, we have not identified
quantum analogs of the unconventional librators or the glo-
bal-like regions. The absence of analogs to these regions
shows up in Fig. 11 as the nonergodic vertical strip through
center of the diagram. Because the analogs to such regions
are missing, the quantum pe regions occupy a smaller pro-
portion of the energy shell than do the classical zones.

The question that naturally arises here is whether we
have indeed examined all possible kinds of superposition
states that can form quantum pe zones. Might certain, unex-
plored, linear combinations |J ) of energy eigenstates be used
to construct quantum pe zones that are analogous to the
classical unconventional librating or global-like regions?
The answer, for the value of Planck’s constant investigated
here, appears to be no. The pe condition F% < ¢ together
with the invariance condition and restrictions due to symme-
try practically rule out linear combinations other than those
already mentioned. For example, to construct quantum ana-
logs of the unconventional librating regions, it would be nec-
essary to form superpositions of at least six states since these
classical regions occur in sets of six. However, inspection of
eigenvalues reveals the energy range #i/7 never contains six
consecutive energy levels of the required symmetry, so that
superpositions cannot be formed that obey even the lenient
invariance requirement. Similarly, attempts to form the ana-
logs of global-like regions from superpositions of energy ei-
genstates (instead of individual, uncombined, eigenstates)
fail because, to eliminate large off-diagonal matrix elements
between states in the pe region and other states, as required
by the pe condition, eigenstates that lie farther apart in ener-
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gy than #/7 would have to be included in the superpositions.
Thus, any quantum regions resembling classical unconven-
tional librating and global-like zones would violate the in-
variance condition much more seriously than do the quan-
tum conventional librating zones. The conclusion that
emerges is that there really are no quantum analogs to the
unconventional librating or global-like classical pe zones for
the present value of 7.

We now discuss the discrepancies between the quantum
and classical results. First, we address the inability of the
quantum librating zones to obey the same invariance condi-
tion as the classical regions. The lack of invariance of the
quantum regions, as reflected in the failure of Eq. (20), can
be traced to the relatively large values of energy splittings AE
between the pairs of levels of E and A, or 4, symmetry which
combine to form states |J ) spanning these regions. In the
case of regular motion, these splittings are associated with
quantum tunneling between the three symmetry-related li-
brating regions and it is reasonable to assume that the same
association often remains valid in the case of chaotic motion.
This tunneling phenomenon, which occurs on the relatively
short time scale of #i/AE, leads to a breakdown of the quan-
tum-classical agreement for the dynamics of the functions
Ae.o/ during the observation time 7 = 30. For this reason,
agreement between classical and quantum pe for librating
cases is, at best, restricted to smaller values of 7 or to regions
obtained with larger values of 5.

This discussion does not, however, explain why none of
the quantum librating regions we have found form adequate
analogs of the classical librating pe regions with low(L ),
high 7, and high (H,). We, therefore, turn our attention to
this matter. If quantum regions analogous to these classical
zones were present, they would lie in the leftmost portion of
Fig. 11 where quantum pe regions are currently absent. In
fact, Fig. 4 of Ref. 12 shows that quantum pe zones are pres-
ent in this area of (n,/) space. These regions are not dis-
played in Fig. 11 because they have values of 0% that are less
than 1.6 and are thus considered to be nonchaotic. Nonchao-
tic quantum pe regions with n <21 appear to have classical
analogs since our calculations show that there exist classical
nonchaotic pe zones having Ex~n + 1 <22 and values of the
(A ) that are somewhat similar to those of the (A ). However
the agreement between these quantum and classical averages
is not really very close for these zones (e.g., the values for the
(L 2) are too low) so that the analogs are not very accurate
ones. On the other hand, nonchaotic quantum pe zones with
low / and n>21 do not have classical analogs at all since
every librating classical pe region in this energy range that is
large enough to show up quantum mechanically is chaotic.
These chaotic classical regions, in fact, form part of the li-
brating series with low (L 2), high and high (H,) thatis not
reproduced quantum mechanically. The conclusion we
reach is that the states on the far left of Fig. 11, and especially
those with high energy, behave very nonclassically. They do
not display symptoms associated with classical chaos such as
the tendency to form pe regions that spread out and attain
relatively large Poincaré widths.

This nonclassical behavior is very reminiscent of a phe-
nomenon that occurs in other quantum mechanical systems

K. G. Kay and B. Ramachandran: Pseudoergodic regions

of coupled oscillators'®®?° and that we have called quan-

tum trapping. When such systems are prepared at energies
close to the escape energy, with high energy in an anhar-
monic degree of freedom and low energy elsewhere, they are
found to remain trapped in that initial state long after the
classical counterpart evolves to other regions. The “reduced
degree of ergodicity”'*® that describes such quantum be-
havior has been explained'*® to be a result of the narrow-
ness of the nonlinear resonances that are responsible for the
classical chaos in this region of phase space. An alternative
explanation,®® that may be complementary to the one above,
is that the classical flux out of the trapping region is lower
than £ 2%2!-33 5o that the classical escape from these zones is
quantum mechanically irrelevant.> Since the Henon—Heiles
states under consideration are indeed characterized by a to-
tal energy near the escape energy with most of this energy
concentrated in an anharmonic degree of freedom, we be-
lieve that the nonclassical behavior observed here is an ex-
ample of the trapping effect.

The above discussion helps explain the observation that
the (A ) values of the quantum librating zones lie closer to
the separatrix regions of Figs. 69 than do those of the classi-
cal zones. The quantum states discussed in the previous
paragraph have values for the (4 ) that lie farthest from the
separatrix region of Figs. 6-9. Presumably, were it not for
the trapping effect, these states would contribute to quantum
pe zones resembling those classical pe librating regions that
are farthest from the separatrix. However, the trapping ef-
fect prevents these states from participating in the formation
of such regions. Removal of these states from the quantum
librating zones causes the “center of gravity” of these regions
to shift toward the separatrix.

In a similar way, the trapping effect may provide an
alternative explanation for the lack of invariance of the
quantum librating regions. In contrast to these chaotic re-
gions, we find that the nonchaotic quantum librating pe re-
gions, associated with trapping, satisfy the invariance condi-
tion of Eq. (20) very well. The effective removal of the
trapping states from the quantum librating regions may de-
crease the mean invariance time of the resulting zones, caus-
ing them to fail the invariance test.

We now discuss the absence of quantum analogs to the
unconventional librating and global-like regions. Although
this may be, in part, an indirect consequence of the trapping
effect for the librating states, we believe that it is a separate
phenomenon. The probable cause for the quantum-classical
discrepancies for these regions is that their formation times
are longer than the maximum time scale of close correspon-
dence between classical and quantum mechanics. Indeed,
Fig. 10 suggests the global-like and unconventional librating
zones take somewhat longer to become large than do the
precessing and conventional librating regions. However,
there is reason to suspect that the problem is not so much
that the formation time for these zones is too long as that the
quantum-classical correspondence time for these regions is
exceptionally short. Indeed, as we have discussed briefly
above, the main obstacle to the formation of such quantum
pe regions is that the energy separations between states
which must be superposed to span such regions are too great
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for the invariance criterion to be obeyed. Since the classical
regions certainly appear to be large enough by time 30 for
their quantum analogs to exist, a quantum mechanical effect
seems to be at work causing level separations to be unusually
large, thus limiting the correspondence time. This effect
may, again, be a tunneling phenomenon. Strong tunneling is,
in fact, expected for unconventional librating and global-like
regions since these lie near the separatrix which marks a kind
of barrier maximum in phase space. Apart from the tunnel-
ing between different symmetry-related librating regions
discussed above, states in the present regions may also un-
dergo appreciable tunneling between librating and precess-
ing regions and, perhaps, more complicated forms of tunnel-
ing, as well. Additional evidence that the states near the
separatrix are severely affected by tunneling comes from the
difficulty in assigning zero-order (n,/) quantum numbers to
these states, ' the irregular progression of expectation values
for these states as a function of /,> and the presence of energy
level curve crossings, as a function of 4,>° between these
states and others with very different quantum numbers.>® It
is possible that purely classical treatments of unconventional
librating and global-like regions are necessarily inaccurate
and that approaches on at least the semiclassical level are
needed to describe the quantum behavior in this portion of
phase space.

Figure 12 is the quantum analog of Fig. 10 and shows
how the sizes of the quantum pe zones near E = 25.0 vary
with 7. At this energy, the quantum mechanical system has,
at most, two precessing pe regions and one librating pe re-
gion. Comparison with Fig. 10 shows that the agreement
between the sizes of the quantum and classical regions is not
very good. One reason for this is that the quantum relative
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FIG. 12. The proportion of the energy shell occupied by various sets of
symmetry-related pseudoergodic regions as a function of the observation
time 7 for the quantum Henon-Heiles system with E = 25.0. (A) high an-
gular momentum precessing-type regions; (B) low angular momentum
precessing-type regions; (C) librating-type regions.

weights plotted in Fig. 12 were obtained by the crude proce-
dure of dividing the number of states in the regions by the
total number of states falling within the width of the energy
shell. Reference 12 describes a method that would be expect-
ed to yield more accurate agreement with classical weights.
A second reason for the unimpressive quantum-classical
agreement for regions sizes is that these regions consist of
only a few quantum states so that even uncertainties on the
order of one state cause large relative changes in their sizes.
Despite these differences, however, Figs. 10 and 12 show
some important similarities. In both cases the sizes of the
precessing regions remain approximately independent of =
over the full range of values explored. Also, in both cases, the
size of the librating regions first increases and then decreases
to 0 as 7 is increased. However, unlike the classical case, the
quantum mechanical system displays no compensating
growth in the sizes of unconventional librating and global-
like regions as the librating zones get smaller. The observa-
tion that such quantum regions do not appear even at large 7,
when their classical counterparts occupy one-third of the
energy surface, again confirms that their absence is not due
to their small size relative to 4 but to the short classical-
quantum correspondence time relative to the time scale re-
quired for the formation of these zones.

Classically, the precessing and librating pe zones ac-
count for only a minor part of the chaotic region of phase
space. For large 7, much of the remaining part of the chaotic
region is occupied by unconventional librating zones and,
especially, the single global-like zone. We should again recall
the Poincaré map of Henon and Heiles'® at the escape energy
and its apparent relation to this global-like zone. The impli-
cation of our results is that the truly large scale classical
ergodic behavior represented by the Henon—Heiles Poincaré
plot does not occur in our quantum system.

VII. SUMMARY AND CONCLUDING REMARKS

We have described the concept of psuedoergodicity in
classical systems and have introduced a computational tech-
nique to identify classical pe regions. In rough physical
terms, a pe region is a nearly invariant portion of phase space
consisting of points that are close to a single trajectory of
finite duration. We have investigated the chaotic pe regions
of the highly excited Henon—Heiles system and have found
that these zones sometimes resemble precessing and librat-
ing invariant regular portions of phase space. Such regions
can be identified with the vague tori of Reinhardt and co-
workers.?® It is reasonable to infer that such zones are sepa-
rated from each other by bottlenecks that impede phase
space flow. Other pe regions, located closer to the main se-
paratrix of the system, have less familiar forms and are re-
ferred to by names such as unconventional librating zones
and global-like zones. As the observation time for definition
of the pe zones is increased, a single global-like region be-
comes progressively larger and begins to dominate phase
space. This marks the transition from pseudoergodicity to
ergodic behavior in a region that encompasses much of the
energy surface of the system.

Our main motivation for introducing the pe concept has
been to describe a form of ergodic-like behavior that should
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be more clearly reflected in quantum mechanics than is ergo-
dicity itself. Accordingly, we have compared the classical pe
zones of the Henon-Heiles system to those obtained from a
corresponding quantum mechanical definition. In the
course of this comparison, we have verified most of the con-
clusions of our earlier quantum treatment of pe.'? In particu-
lar, we have confirmed that the presence of quantum pe re-
gions often does reflect the existence of analogous classical
pe zones and have verified that there are, indeed, certain
classical pe regions that do not show up quantum mechani-
cally. Our present calculations have, however, taken us be-
yond the inferences of our earlier study by identifying pre-
cisely which classical zones fail to appear in the quantum
mechanical system. These classical regions include the chao-
tic librators that are farthest from the main system separa-
trix and the unconventional regions that form near this se-
paratrix. The absence of these pe regions in the quantum
system appears to be due, in one way or another, to the short
time for quantum-classical correspondence for the current
value of #i. The lack of quantum pe regions that are analo-
gous to the classical global-like zones rules out behavior re-
sembling large-scale classical ergodicity for the quantum
system. A similar result for real molecules might prevent
application of the usual statistical theories of kinetics even
though they were valid classically.

The computational technique we have used to examine
the trajectories and identify the classical pe regions is of inde-
pendent interest and may have applications in other areas.
For example, to the extent that this method identifies regions
separated by dynamical bottlenecks, it may prove useful for
carrying out classical transition state calculations of intra-
molecular vibrational energy transfer.”> The method may be
particularly useful for systems having more than two degrees
of freedom since current techniques have difficulties in such
cases. An application that we have already begun to investi-
gate® uses the present technique to sort chaotic trajectories
that are obtained by adiabatic switching of zero-order invar-
iant tori. We have found that the largest resulting pe zones
often bear a closer relationship to the quantum states of the
system than do the unsorted trajectories.
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APPENDIX: THE TRAJECTORY SORTING PROCEDURE

Here we present details of the computational procedure
for identifying classical pe zones given the time averages

A(p(t),q(t)" for a set of trajectories.

(1) Choose a particular order in which to examine the
functions 4. For example, in the present work, this order was
chosentobe D, P, L, L,> H,. These functions are, henceforth,
referred to as functions 1,2,...,N.

(2) To each function, associate a list of trajectories that
qualify for the pe region presently being formed. The list for
function 1 initially contains all trajectories. The list for the
remaining functions is initially blank.

(3) Carry out the following steps for function 1:

(a) Create a histogram of A(p(#),q(¢))” values for
the trajectories in the list of the function. Form a pe
region consisting of a pair of trajectories selected
from the maximum of the histogram. Calculate F,.
Keep enlarging the group by adding trajectories ever
farther from the maximum of the histogram until the
condition F, < ¢ is no longer satisfied.

(b) If the group obtained above is large enough to
correspond at least two quantum states:

(i) Ifthe function being considered is not function

N, the members of this group form a list of trajec-

tories for the next function. Return to step (a) for

the next function.

(ii) If the function being considered is function N:
(1) Delete those trajectories from the list of the
function that have large values of
[{ A()") — {4 )| until the invariance condi-
tion, Eq. (15), is obeyed.

(2) If the resulting group is too small to corre-
spond to at least two quantum states, go to step
(¢) ().
(3) If the resulting group is large enough to
correspond to at least two quantum states, this
group forms a pe region. Delete the members of
this group from the list of function 1. Then,
return to step (a) for function 1 to identify ad-
ditional possible pe regions.
(c) If the group is too small to correspond to at least
two quantum states:

(i) If the function being considered is function 1,
quit.
(ii) If the function being considered is not func-
tion 1, remove from the list of the previous func-
tion a small proportion of trajectories that origin-
ally arose from the region near the histogram
maximum of that function (the proportion used in
our calculations was typically 1/8 but the results
were not very sensitive to this value). Then return
to step (a) for the previous function.
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