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Comparisons of three variational principles commonly used in scattering problems, namely
those due to Kohn (KVP), Schwinger (SVP), and Newton (NVP), are presented. These
comparisons are conducted by computing K-matrix elements for elastic scattering from nine
different interaction potentials. We represent the KVP trial functions as expansions containing
two non-L ? terms that represent the asymptotic free wave, and a set of L * functions, while the
SVP and the NVP trial functions are expansions containing only the L ? terms. Three different

sets of L ? functions are used to examine the effect of changing the basis on the convergence
characteristics of the three methods. We find that the rates of convergence for the Kohn,
Schwinger, and Newton methods are strongly dependent on the nature of the potential and the
basis set used. We also find that purely repulsive potentials are, in general, easier to converge

than purely attractive potentials.

I. INTRODUCTION

There has recently been a resurgence of interest in vari-
ational methods for the calculation of S- or K-matrix ele-
ments in scattering problems, ' including reactive collisions.”
The variational principles that have been used in such calcu-
lations range from methods derived in the late 1940’s, such
as the Kohn variational principle (KVP)*—whose applica-
tions have been limited in the past due to the so-called Kohn
anomalies*—and the Schwinger variational principle
(SVP),’ to more recent methods such as the Newton vari-
ational principle (NVP).® A number of additional variation-
al functionals (stationary expressions) that are known today
have been derived from, or are related to, these three vari-
ational principles.'” The formal relationships between
these variational principles have been discussed by Takat-
suka, Lucchese, and McKoy.'(®

In the variational approach to the calculation of S-, T-,
or K-matrix elements, one expands the scattering wave func-
tion or its amplitude density’ in a set of basis functions. Ex-
tremization of the variational functional then leads to linear
algebraic equations for the expansion coefficients. Vari-
ational methods are useful in this approach in that they im-
prove the accuracy of the results obtained with a given num-
ber of basis functions, compared to the results of a direct
solution of the integral or differential equations. This be-
comes an important consideration in multichannel reactive
scattering problems, where the size of the basis required for
an accurate solution is often the factor that limits the size of
the problems that can be successfully handled, even by mod-
ern supercomputers.

In this paper, we present a comparative study of the
three variational methods mentioned above. The motivation
for the present study was provided by the following facts.
Most previous comparisons of the various variational meth-
ods'©-'(#12 haye been conducted for potentials
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V(r) =ce "(¢c= + 1) using the basis functions |n)

=a,r"e " . However, in the applications of variational
methods to reactive scattering problems,’ other, very differ-
ent types of basis functions are usually employed. It is not
clear whether the advantages or disadvantages of one vari-
ational principle, as revealed in the comparisons mentioned
above, can be expected to carry over to different types of
potentials and basis sets. Another, perhaps more subtle as-
pect of the earlier comparisons, is that trial functions for
different quantities have often been used in the different
methods. For example, in comparisons of the SVP and relat-
ed methods to the NVP and related methods, often the wave
function is expanded in terms of an L ? basis in the former,
and the amplitude density is expanded in the latter.”'” Even
if the same set of L ? functions are used in these expansions,
the quantities being expanded in the different methods are
different.

In the present work, we compare the SVP and the NVP
wih an S-matrix version of the KVP recently developed by
Zhang, Chu, and Miller® (hereafter refered to simply as the
KVP). We study the convergence characteristics of the
three methods by computing K-matrix elements for elastic
scattering from nine one-dimensional potentials. In order to
be consistent in these comparisons, we expand the same trial
quantity, viz., the trial wave function, in each case. In the
case of the KVP, we express the trial wave function as an
expansion containing two non-L ” terms that represent the
asymptotic free wave, and a set of L * functions (see below).
The derivation of the KVP is based on the Schrodinger (dif-
ferential ) equation, and hence the two non-L 2 terms are re-
quired in this case, to satisfy the boundary conditions. Deri-
vations of both the SVP and the NVP, in contrast, make use
of the Lippmann-Schwinger (integral) equation, and it is
the Green function present in this equation that enforces the
boundary conditions. In this sense, the presence of the Green
function in the integral equation approach fulfills the role of
the two non-L * terms in the K VP trial function. Therefore,
we have chosen to express the trial functions used in the SVP
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and the NVP as expansions containing Z * functions only. In
order to study the effects of changing the basis set used to
expand the trial wave function, we use three sets of L * func-
tions in this study.

We present our results in terms of the percent error in K-
matrix elements as a function of the number of basis func-
tions, where the percent errors have been estimated with
respect to exact results obtained by converged finite-differ-
ence calculations. We have used the KVP in exactly the same
form as Zhang, Chu, and Miller® to compute the S-matrix
elements which were then used to compute the K-matrix
elements. In the case of the SVP and the NVP, we computed
the 7-matrix element, a quantity linearly related to the S-
matrix element, and computed the K-matrix elements using
the well-known relationship between them.

The remainder of this paper is organized as follows: in
Sec. II, we present the variational functionals used in our
calculations, provide details regarding the nine potentials
and the three basis sets, and discuss the computational
aspects of numerical integrations, and the evaluation of ma-
trix elements. In Sec. I1, we present and discuss the results
of our comparisons. In Sec. IV, we summarize our work and
make concluding remarks.

tl. VARIATIONAL FUNCTIONALS, POTENTIALS, AND
BASIS SETS

We compare the convergence characteristics of the
three variational methods, the KVP, the SVP, and the NVP,
by studying elastic scattering from nine one-dimensional po-
tentials, using three different L * basis sets to expand the trial
wave function in each method.

A. The Kohn variational principle

In this work, we use the S-matrix version of the KVP.?
The stationary expression for the S-matrix element in this
formulation is given by

S=8+ (/R (V) (H—-E)¥Y(), (1)
where
N
W(ry= —uy(r) +cu,(r) + z c,u,(r), (2)
uy(r) = f(r) exp( — ikryo= "7, (2a)
u,(r) =f(r) exp( + ikryv= "7, (2b)

and where f{r) is a damping factor, introduced to enforce
the boundary condition W(0) = 0:

f(r)y =110 —exp( —ar")]. (2¢)
In these equations, v is the asymptotic velocity, given by
v = fik /i We adopt unitsin which # = 1, and #°/2u = 1, s0
that v = 2k, and k& = JE, where E is, of course, the energy.
The functions {u, ()} for n = 2,...N, constitute a set of L *
functions. If m =1 in Eq. (2c¢), this expansion becomes
identical to that of Zhang, Chu, and Miller.®

Substituting the expression for W (r) from Eq. (2) into
Eq. (1), and extremizing the resulting expression with re-
spect to the expansion coefficients {c, } leads to (in matrix
notation )®

S=(i/A)(M,, —~ MM M), (3)
where

M, = (uy|(H — E)|uy) ,
(M())u - <U,,’(H—— E)'”()) s
M), = (u, |[(H—E)|u,),

for n,n’ = 1,...V. Since the basis functions u,(#) and 4, () in
Eq. (2) are complex, the vectors and matrices above turn out
to be complex. Adopting the convention that Miller and co-
workers have found convenient, the functions in the bras are
not complex conjugated unless explicitly shown. Solving Eq.
(3) for Sis, at this point, a straightforward operation. How-
ever, the matrix M whose inverse has to be found is complex,
and having to invert a complex matrix becomes unattractive
very rapidly, as the size of the matrix increases. This diffi-
culty can be overcome by the application of the Lowdin—
Feschbach partitioning identity to Eq. (3), which yields the
following stationary expression for the S-matrix element®:

S=(B—C*/B*), 4)

where
B= Mo.() - Mé) M~ IM() ’

C= Ml,() - M/IM#IM()’
and
(My),, = (u,[(H—E)|u,),

where the indices of the matrix M and the vectors M, and
M, run from n = 2,...N. This expression has the advantage
that the matrix whose inverse has to be found is completely
real, and involves only matrix elements of (H — E) between
square integrable functions. In the present work, the above
expression is used to compute the S-matrix element, which is
then used to compute the K-matrix element using the rela-
tionship

K=i(l-$(148)"". (5)

nan

B. The Schwinger and Newton variational principles

In the case of elastic scattering, the Schwinger variation-
al functional for the 7-matrix element may be expressed as
follows:

— kT=2(¢|V|¥) —(¥|V - VGV |V), (6)
where |¢) =k ~ Y2 gin(kr) is the free particle wave function
in one dimension, and G “(r,#') is the kernel of the outgoing
wave free particle Green function,

Grr) = — (1/k)sin(kr_ dexp(ikr_ ), (7
where (#_,r_ ) are the lesser, and greater, respectively, of

(r,#'). The scattering wave function W(r) is, of course, ex-
pressed as

N
W(r)= > cu,(r, (8)
w1

where {u, (r)}, n = 1,...,N, constitute a set of L > functions.

We use the following expression of the Newton vari-
ational functional for the 7T-matrix element, given in terms of
the wave function ¥ (r):

—kT=K} +2(a¢|VG"V|¥)
— (Y| V(G°— GVGHV W), (9)

where K }; is given by (#|V |¢), the first term in the Born
expansion of the Lippmann-Schwinger equation. The scat-
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tering wave function W (r) is of course, expressed as in Eq.
(8). The above expressions are used to compute the 7-ma-
trix element using the SVP and the NVP, respectively, and
the results used to compute the K-matrix elements, using the
relationship

K=T(1+iD™". (10)

In many applications of the NVP, the amplitude density
V(r)¥(r) has been expanded directly in a discrete set of L >
functions.”'*'* However, since we wish to make our com-
parisons of the three variational principles based on the trial
wave function, we use the above formulation of the Newton
variational functional, given explicitly in terms of the scat-
tering wave function W(r).

C. Potentials and basis sets

We conduct our investigations using nine different in-
teraction potentials V(r). These are listed in Table I, and
labeled by numbers and letters such as 1A, 2B, and so on, for
convenience. All of the potentials used are representative of
the types of potentials commonly encountered in systems of
interest to chemical physicists, with the possible exception of
the potential used in cases SA and 5B. It should be noted that
these two cases involve the same potential, which is con-
structed by adding to the Morse potential 2B, a barrier that
reaches its maximum at values of » where one normally ex-
pects to find the maxima of centrifugal barriers. However,
compared to centrifugal barriers, the present barrier is vastly
exaggerated in terms of its height [ the maximum of the bar-
rier corresponds to ¥(r) = 3.21, at r = 4.28], and vastly di-
minished in terms of the range of its influence. For this po-
tential, the case 5A corresponds to elastic scattering at
energy £ = 2.0, which is below the maximum of the barrier,

TABLE I. The potentials and basis sets used in this work.

and 5B, to elastic scattering at £ = 10.0, which is well above
the barrier.

We use three L * basis sets in our investigations. These
are also listed in Table I. Basis 1 is the distributed Gaussian
basis (DGB)'* which has been used in many applications of
variational methods to scattering problems.” Since the Gaus-
sians do not satisfy the boundary condition of vanishing at
r = 0, we have multiplied them with the damping function of
Eq. (2c). Basis 2, as mentioned in Sec. 1, has been used in
previous comparisons of variational methods,'(>-""?-8712 yg.
ing potentials 1A and 1B. We include these in our calcula-
tions so that connection with work that has been already
published can be made. Basis 3 consists of eigenfunctions of
the one-dimensional box problem, where the “inside” of the
box is the interval [O,R,,, ]."

D. Calculations

We adopt the following convention in referring to our
calculations and results: we refer to the potentials and basis
sets using the labels given to them in Table I. So, for example,
2A1 refers to calculations on potential 2A, i.e., the Morse
potential with D, = 1.0 and r, = 1.0, using basis 1, i.e., the
distributed Gaussian basis, while 4B3, by the same conven-
tion, refers to calculations on the repulsive Yukawa potential
with the one-dimensional box basis. For the damping func-
tion in Eq. (2¢), we have set @ = 1, and used two values for
m, ie., m = 1 and 4. The results reported in this section are
for those values of m for which we obtained faster conver-
gence of the K-matrix elements. To check the correctness of
our calculations, we have reproduced the exact K-matrix
elements reported by Staszewska and Truhlar for potential
1A,'" using the three basis sets, for each of the three vari-
ational principles used here.

(A) Potentials

Label Vir Parameter values
1A —exp( — ar) a=1.0
1B + exp( — ar) a=10
2A D[t —exp{ —B(r—r)}]’ =D, D,=10,r,=10,8=15
2B D.[1—exp{—B(r—r)}}*—D, D, =100, r, =20, B=15
3A Aexp( — ar) A= —100,a =10
3B Aexp( —ar) A=100,aa=1.0
4A Aexp( —ar)/r A= —50,a=10
4B Aexp(—ar)/r A=50,a=10
54 2B+ Aexpl — (r—r.)%/2] A=40,r. =40
(B) Basis sets
Label Function Remarks
1 lu,) =exp[ — o, (r—r,)7] o, = [c/(r, —r)71 =060
|u,) =r"exp( — ar) a=10
3 lu,) =sin[nwr/R,,, | n=12,.,(N-1).
R,... = 20for the results in Tables I, III, and one column of IV(A). Except for these cases and the other two

columns of Table IV(A), R = 10.

max

The cases SA and 5B use the same potential, but different energies. Case SA corresponds to elastic scattering at

E = 2.0, and case 5B, to that at E = 10.0.
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All integrations are done numerically, using various
high-order Newton—Cotes algorithms. However, the evalua-
tion of matrix elements involving quantities such as G VG °
[see Eq. (9)] by integrating once over each Green function
is known to be very inaccurate, unless very small step sizes
are used. To avoid this difficulty, we evalute these matrix
elements by a method that is very similar in spirit to that of
the half-integrated Green function approach of Schwenke
et al."® In the present approach, we explicitly evaluate the
half-integrated quantity g, () for the basis function |u,, ), as
follows:

g, (r) = fm arGg (rryu, (7), (1D
0

so that matrix elements such as {(u,, |G °VG °|u, ) can now be
expressed as

(u,, |GVG lu,y ={g.1Vig.) .

Apart from increasing the accuracy of these matrix elements
for a given integration step size, the above approach also has
the following important advantage: it reduces the effort in-
volved in applying the NVP to a given problem to very near-
ly the same as that of applying the SVP, by eliminating the
need to integrate a second time over the Green function
GO(rr).

In the following section, we present our results in the
form of tables of percent error in K-matrix elements for a
given number of variational parameters N, or figures in
which the percent error is plotted against . For many po-
tentials, the percent error in K-matrix elements are extreme-
ly large for small basis sizes, and often the errors oscillate
wildly until the basis size reaches a certain minimum. This is
to be expected, since in general, none of the variational meth-
ods used for scattering calculations are true maximum or
minimum principles.'” The approach to the converged re-
sult, therefore, need not be monotonic. In order to show this
nonmonotonic convergence, rather than take the absolute
values of percent errors, we have chosen to retain their signs
in the tables and the figures. In the figures, except for Figs.
4(a) and 4(b), we set the top and bottom limits of the ordi-
nate to + 1% and — 1%, respectively, so that the scale of
this axis would not obscure the behavior as convergence to
the exact results are reached. In Figs. 4(a) and 4(b), the top
and bottom limits of the ordinate are + 10% and — 10%,
respectively.

Itl. RESULTS AND DISCUSSION

Before we discuss the results of our calculations, it is
useful to establish some terminology. When we say that a
certain method shows ““faster convergence,” we mean that it
is the first to achieve a stable error lower than 0.1%, for a
given number of basis functions. We also say that the method
that shows faster convergence has a higher “rate of conver-
gence.”” The choice of the cutoff point for determining the
convergence as 0.1% is of course, arbitrary, but is based on
the following consideration. In most applications, an accura-
cy of 0.1% is quite sufficient, and in many cases, it may prove
to be extraordinarily expensive to reduce the error beyond
this value. It should be noted that the column N in the tables
refer to the number of variational parameters (expansion

coefficients) in the trial wave function [Eq. (1)], and, for
the K VP, is always one less than the actual number of terms
in the expansion of W (r).

Since potentials 1A and 1B have been used in many pre-
vious investigations, we examine the results for these poten-
tials first. The percent errors in K-matrix elements for 1A,
using the three basis sets are listed in Table II. For basis
1(1A1), the NVP yields the fastest convergence, reaching a
stable error of 0.1% with a single variational parameter (ba-
sis function), while the SVP reaches the same limit with
N=17. The results for the KVP converge at a much slower
rate, and convergence to within 0.1% of the exact result is
achieved at N=35. Basis 2, as we mentioned in the Introduc-
tion, has been used in most of the previous comparisons of
variational methods. From Table II, we see that the results
using the three variational methods with basis 1 (1A2) show
that the KVP and NVP converge at similar rates, the latter
being slightly faster. The SVP is the slowest to converge,
reaching the 0.1% threshold for N=7. Compared to the rel-
atively poor performance of the KVP using basis 1, basis 2
indeed seems ideally suited for this method. Turning to the
results for basis 3(1A3), we see that the pattern that we
already encountered in the case of basis 1 is repeated. The
convergence of the KVP results, while slower than those of
the SVP and the NVP, are nevertheless, faster than that of
the KVP results using basis 1(1A1). The results for poten-
tial 1B, presented in Table II1I, follow the general trends that
we see in the case of 1A. For basis 1 and 3, the convergence of
the KVP is much poorer for this potential than for 1 A, while
the other two methods show no significant difference in the
rate of convergence. But here again, basis 2 seems to be the
most efficient in obtaining fast convergence to the exact re-
sult, for the KVP.

In arecent paper, Zhang, Chu, and Miller® have claimed
that the S-matrix version of the KVP converges much faster
than the SVP or the NVP. This claim was supported by the
results of using the KVP and basis 2, to compute S-matrix
elements for potentials 1A and 1B. The percent errors in the
K-matrix elements [evaluated from the S-matrix elements—
see Eq. (5)] were then compared with the previously pub-
lished results of Staszewska and Truhlar.”'® From that com-
parison, the S-matrix version of the KVP appeared to con-
verge faster than the other two methods, for cases 1A2 and
1B2. However, it is important to note that the quantity ex-
panded in the L * basis as the NVP trial function in Ref. 9, is
the amplitude density V(r)¥(r). The comparison of the
KVP to the SVP and the NVP that is presented in Ref. 8, is
therefore, based on using different trial quantities in the dif-
ferent methods. Using the same trial quantity, namely
W (rt), in all three variational methods, we see here that the
conclusions are somewhat different. We find that the perfor-
mance of the KVP is, at best, superior to that of the SVP but
not the NVP, and even then, only for basis 2. For the other
two basis sets, the convergence of the KVP results are much
slower than those from the SVP and the NVP.

From the results presented in Tables IT and III, basis 2 is
the most reliable basis for expanding scattering wave func-
tions, in the sense that all three methods, and especially the
KVP, converge rapidly if this basis is used. However, the use
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TABLE II. Percent error in K-matrix elements for case 1A. m =1, E= 0.5, R, ,, =20, K_,,.. =0.541 951.
1A1 1A2 1A3
N Kve SvP NVP KVP SVP NVP Kvp SVP NvVP
1 — 5.7053 —22.4057 —0.0808 — 5.7053 — 529557 — 1.2501 — 5.7053 —49.3482 — 2.7857
3 —2.6526 —3.0102 —0.0325 —0.1707 — 14586 —0.0419 —9.2176 —6.2314 —0.0528
5 —2.0210 —0.2024 —0.0004 —0.0007 —0.4823 0.0000 —7.8939 —0.4467 — 0.0042
7 —0.7621 —0.0240 0.0000 0.0000 —0.0037 0.0000 —3.9046 —0.1041 — 0.0007
9 - 04155 —0.0077 0.0000 00000 -00013 0.0000 —1.949 —0.0292 —0.0002
11 —0.3039 —0.0026 0.0000 0.0000 0.0000  0.0000 —1.0781 —0.0092 0.0000
13 —0.2487 —0.0007 0.0000  0.0000 0.0000 0.0000 —0.6521 —0.0033  0.0000
15 —0.2142 0.0000  0.0000  0.0000 0.0000  0.0000 —0.4225 -—-0.0013  0.0000
17 —0.1899 0.0000  0.0000  0.0000 0.0000 0.0000 —0.2888 —0.0006 0.0000
19 —0.1714 —0.0002 0.0000  0.0000 0.0000  0.0000 —0.2056 —0.0002  0.0000
21 —0.1565 —0.0004 0.0000  0.0000 0.0000 0.0000 —0.1511 0.0000  0.0000
23 —0.1441 —0.0006 0.0000  0.0000 0.0000 0.0000 —0.1142 0.0000  0.0000
25 —0.1336 —0.0007 0.0000 0.0000 0.0000  0.0000 —0.0882 0.0000  0.0000
27 —0.1246 —~0.0009 0.0000  0.0000 0.0000  0.0000 — 0.0694 0.0000  0.0000
29 —0.1168 —0.0011  0.0000  0.0000 0.0000 0.0000 — 0.0554 0.0000  0.0000
31 —0.1098 —0.0011 0.0000  0.0000 0.0000  0.0000 — 0.0448 0.0000  0.0000
33 —0.1037 - 0.0011 0.0000 0.0000 0.0000 0.0000 — 0.0367 0.0000 0.0000
35 —-0.0982 —0.0011 0.0000 0.0000 0.0000  0.0000 — 0.0304 0.0000  0.0000
37 —0.0932 -0.0011 0.0000  0.0000 0.0000  0.0000 —0.0253 0.0000  0.0000
39 —0.0886 —~0.0011 0.0000  0.0000 0.0000  0.0000 —0.0212 0.0000  0.0000

of this basis could Jead to certain problems in most poten-
tials, especially for the KVP. The reason for this becomes
clear if one examines the nature of these basis functions. The
functions |n) = a,r" exp( — ar) grow rapidly with r as n
increases, and are only slowly damped by the exponential
term for the value of @ = 1.0 used here. For small values of
n(n<5), the functions are damped quickly (i.e., within
r<20), and the matrix elements involving them can be evalu-
ated numerically using a reasonably small number ( = 1000)
of integration steps. For potentials such as 1A and 1B, where
only a few functions are needed for convergence, this basis
therefore yields good results. However, if a fairly large num-

ber of functions are necessary for convergence, the upper
limit of integration has to be moved ““out” considerably be-
fore the matrix elements can be accurately evaluated. In
such cases, the number of integration steps required to accu-
rately evaluate the integrals over such large ranges of 7,
renders the use of this basis highly impractical.

In order to illustrate these ideas, we present in Table IV,
the results for potential 2A, and basis 2 in Table [V (2A2).
In this case, the SVP and the NVP results do converge quick-
ly. The K-matrix elements obtained by the application of the
KVP not only converge slower than those from the other
two methods, but as Table IV indicates, they converge to the

TABLE IIL. Percent error in K-matrix elements for case 1B. m=1, E=0.5, R, =20,
Koo = — 0.452 247.
1B1 1B2 1B3

N KVP SVP NVP KVP SVP NVP KVP SVP NVP

1 — 2.2861 — 8.8602 0.3383 —~2.2861 — 31.6951 2.5895 —2.2861 — 26.7993 — 0.2306
3 8.7600 — 2.8860 - 0.0004 0.4429 26114 —0.0033 459846 — 0.4458 0.0117
5 10.6185 -- 0.0402 0.0004 0.0018 —0.1444 00011 42.8929 —~0.1802  0.0011
7 4.5360 — 0.0064 0.0000 0.0000 - 0.0336 0.0000 21.2010 —0.0292  0.0002
9 2.4783 —0.0013 0.0000 0.0000 -—0.0004 0.0000 10.6314 — 0.0069  0.0000
11 1.7393 — 0.0007 0.0000 0.0000 0.0000  0.0000 59142 — 0.0020 0.0000
13 1.3678 — 0.0004 0.0000 0.0000 0.0000  0.0000 3.5912 — 0.0007  0.0000
15 1.1425 — 0.0004 0.0000 0.0000 0.0000  0.0000 2.3319 —0.0002  0.0000
17 0.9891 — 0.0004 0.0000 0.0000 0.0000  0.0000 1.5947 — 0.0002  0.0000
19 0.8758 — 0.0004 0.0000 0.0000 0.0000  0.0000 1.1359 0.0000  0.0000
21 0.7878 - 0.0004 0.0000 0.0000 0.0000  0.0000 0.8360 0.0000  0.0000
23 0.7171 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.6320 0.0000  0.0000
25 0.6583 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.4882 0.0000  0.0000
27 0.6087 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.3843 0.0000  0.0000
29 0.5661 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.3074 0.0000  0.0000
3 0.5291 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.2490 0.0000  0.0000
33 0.4969 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.2041 0.0000  0.0000
35 0.4681 - 0.0004 0.0000 0.0000 0.0000  0.0000 0.1689 0.0000  0.0000
37 0.4427 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.1411 0.0000  0.0000
39 0.4197 — 0.0004 0.0000 0.0000 0.0000  0.0000 0.1185 0.0000  0.0000
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wrong result! The convergence to the wrong result is the
result of not moving the upper limit of integration out far
enough. The results obtained from the KVP using basis 2
and setting R,.. = 20, 40, and 80, are shown in Table
IV(A). It is clear that increasing R, certainly decreases
the KVP percent error, for this basis. However, the KVP
rate of convergence is nevertheless, only comparable to that
of the SVP, and slower than that of the NVP. For example,
for R,,., = 20, the KVP requires N>9 to yield a stable error
<0.1% [Table IV(A)], while for the same value of R,,,,,,
the SVP and NVP (not shown) require 9 and 3 variational
parameters, respectively, to reach the same error limit. Since
this is clearly a problem of the basis more than that of the
variational principles, we have chosen fo leave out the results
of using this basis for the other potentials.

Returning to Table IV, we note that for the other two
basis sets, the NVP shows the fastest convergence, followed

TABLE IV. Percent error in K-matrix elements for case 2A. m = 1, E = 2.0, R
(A) Percent error in K-matrix elements for case 2A2, computed using the KVP, for different values of R
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by the SVP. The convergence of the KVP is slow compared
to the other two variational methods for this potential, espe-
cially when basis 1 is used. Also, in Table IV, we notice that
the SVP and the NVP results for case 2A2 converge even
when R, is only 10. The explanation for this can be found
in the form of the variational functionals for the two meth-
ods. From Egs. (6) and (9), respectively, we see that in the
SVP and the NVP functionals, the interaction potential V()
explicitly appears in the matrix elements that have to be eval-
uated. Since the potential vanishes as r increases, in these
cases we get additional help from V(r) in converging the
integrals.

The remaining potentials can be broadly classified into
two categories: (1) those that have both a repulsive and an
attractive part [the Morse potential 2B, and its modified
version, 5], and (2) potentials that are either purely attrac-
tive [3A,4A] or purely repulsive [3B,4B]. We present the

=10, K,

exact

= 0.507 756.

max

max

2A1 2A2 2A3
N KVP SVp NVP KvP SVP NVP KVP SVP NVP
1 —3.9740 — 719188 — 74455 —3.9740 —86.2184 —2.4529 —3.9740 — 82.9826 — 11.1345
3 3.4318 18.9215 — 1.9716 —5.6433 — 20.5752  0.0839 —2.6574 —21.3169 —0.2107
5 2.6814 —9.7283 —0.0583 —0.5428 — 32.5207 0.0004 — 5.0022 1.0200 —0.1475
7 — 1.6937 —0.5455 —0.0047 — 13006 —0.0390 — 0.0004 — 3.5673 2.6552 — 0.0461
9 —0.9757 —0.0731 —0.0006 — 1.2967 0.0073  0.0000 —0.3992 —1.3201 - 0.0089
11 — 03911 —0.0102 —0.0002 — 1.2967 0.0102  0.0000 —0.2572 —0.1893 —0.0018
13 —0.2194 —0.0006 0.0000 — 1.2961 00148 0.0000 — 02220 —0.0418 — 0.0004
15 — 0.2470 0.0012  0.0000 —1.2951 -0.0012 0.0000 —0.1794 -0.0091 —0.0002
17 — 0.2858 0.0020 0.0000 —1.2947 —0.0035 0.0000 —0.1676 —0.0012 - 0.0002
19 —0.2966 0.0030 0.0000 —1.2945 —0.0008 0.0000 —0.1672 0.0008 0.0000
21 —0.2868 0.0047  0.0000 — 1.2945 0.0006  0.0000 —0.1637 0.0010 0.0000
23 — 0.2675 0.0102 0.0000 - 1.2945 0.0032  0.0000 —0.1542 0.0010 0.0000
25 —0.2454 —0.0213 0.0000 — 12945 —0.0008 0.0000 —0.1410 0.0014 0.0000
27 —0.2241 —0.0033 0.0000 - 1.2945 0.0201  0.0000 —0.1262 - 0.0091 0.0000
29 —0.2044 —0.0010 0.0000 —1.2945 —0.0213 0.0000 —0.1117 —0.0004 0.0000
31 —0.1871 0.0000 0.0000 — 1.2945 0.0165 —0.0000 —0.0981 —0.0002 0.0000
33 —0.1717 0.0006  0.0000 — 1.2945 0.0144  0.0000 — 0.0859 0.0000 0.0000
35 —0.1583 0.0012  0.0000 - 1.2945 0.0043  0.0000 —0.0750 0.0000 0.0000
37 — 0.1465 0.0014  0.0000 — 1.2945 0.0014  0.0000 — 0.0656 0.0000 0.0000
39 —0.1361 0.0018  0.0000 — 1.2945 0.0205  0.0000 - 0.0573 0.0000 0.0000
(A) Ruan
N 20.0 40.0 80.0
1 — 3.9942 —3.9942 —3.9942
3 — 5.6523 -~ 5.6523 — 5.6523
5 —0.5359 —0.5359 —0.5359
7 — 1.2228 — 1.2228 — 1.2228
9 — 0.0654 — 0.0668 — 0.0668
I 0.0160 — 0.0063 — 0.0063
13 0.0315 — 0.0047 — 0.0047
15 0.0226 —0.0018 —0.0018
17 0.0226 — 0.0020 — 0.0020
19 0.0242 —0.0016 - 0.0016
21 0.0242 — 0.0014 — 0.0014
23 0.0240 —0.0014 — 0.0010
25 0.0238 - 0.0014 —0.0010
27 0.0236 —0.0012 —0.0010
29 0.0236 —0.0012 0.0000
31 0.0236 — 0.0014 — 0.0008
33 0.0236 —0.0014 — 0.0006
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TABLE V. Exact K-matrix elements for the cases presented in the figures.

Label Energy m* R, K et

2B 10.0 4 10.0 2.311902
3A 5.0 1 10.0 — 3.450 152
3B 5.0 1 10.0 1.321 414
4A 5.0 1 10.0 — 2.980 829
4B 5.0 1 10.0 — 3.012 463
5A 2.0 4 10.0 —0.925001
5B 10.0 4 100 —0.443 471

*See Eq. (2¢).

results for these cases in the form of figures, where we plot
the percent error in K-matrix elements against the number of
variational parameters V. These plots make it easy to see the
relationships between the rates of convergences of the three
variational principles in each case. The details of the calcula-
tions, such as the energy, the value of the parameter m in Eq.
(2¢), and the exact value of the K-matrix element, are sum-
marized in Table V.

A. Category 1

We plot in Fig. 1(a), the percent error in K-matrix ele-
ments for case 2B1. For this case, the NVP shows the fastest
rate of convergence, reaching a stable percent error <0.1%
for N>25. The SVP results converge at a slower rate, and the
KVP is the slowest of the three. The latter two methods
converge to within 0.1% of the exact result with ¥>31 and
33, respectively. The effect of changing the basis for the same
potential is clearly seen by comparing this figure with Fig.
1(b), where we plot the results for case 2B3. It is seen that
using basis 3 (one-dimensional box eigenfunctions), the
SVP achieves slightly faster convergence for this potential
than when basis 1 was used, requiring only 27 variational
parameters to yield a K-matrix element that has converged
to within 0.1% of the exact result. The rates of convergence
for the KVP and the NVP is in contrast, slower than that in
Fig. 1(a). The KVP now requires N»39 to reach the 0.1%
threshold, while the NVP requires N3>27, the same as the
SVP!

For case 5A 1, represented in Fig. 2, we see that the NVP
converges to the 0.1% threshold at N=:23, while the SVP
and the KVP require about N=«25 and 27, respectively, to
reach the same threshold. For case SA3 (not shown) the
NVP (N=21) is once again superior to the SVP (N=23)
and the KVP (N=31). Therates of convergence of the NVP
and the SVP seem to be relatively insensitive to the change of
basis for this potential, at E == 2.0. For cases 5B1 and 5B3,
we summarize the relative rates of convergence as follows:
for case 5B1, NVP (N=25)>SVP(N=31)=KVP
(N=33); and for case 5B3, NVP (N=27)>SVP
{N=29) > KVP (N=37). Once again, these numbers indi-
cate that basis 3 causes the NVP and the KVP rates of con-
vergence to decrease, with the KVP being the most sensitive
to the change from basis 1 to basis 3.

B. Category 2

Category 2, as defined above, consists of cases where the
interaction potentials used are either purely attractive
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FIG. 1. Comparison of the results of using two different basis sets on the
same potential: (a) the percent error in K-matrix elements vs the total num-
ber of basis functions, for case 2B1, i.e., potential 2B, basis 1; (b) same as
(a), but for case 2B3.
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CASE S5SA1

—— KVP
---- SVWP

0.75 —— NVP

0.50 4 |

0.254

0.00

—0.25

PERCENT ERROR

-0.50 4

-0.75

—1.00

40 50

FIG. 2. The percent error in K-matrix elements vs total number of basis
functions, for case SA1.

[ ¥(r) <0, for all r]—potentials 3A, 4A—or purely repulsive
[ ¥ (r) >0 for all r]—potentials 3B and 4B. We represent the
results for these potentials in Figs. 3 and 4.

An examination of Figs. 3(a) and 3(b) for cases 3Al
and 3BI reveals the interesting fact that the KVP curves
seem to diverge to the wrong result, reminiscent of case 2A2
(Table 1V). However, for each of these cases, the percent
error decreases for sufficiently large V. For case 3A1, the
percent error continues to increase beyond the limit shown
in Fig. 3(a), to reach 0.27% between N = 58 and N = 70,
but then decreases to 0.25% at N = 80 and continues to de-
crease beyond this point. The KVP result for case 3B1 fol-
lows a similar pattern, but the percent error never exceed
0.10%. We provide an explanation for this behavior, below.
The K VP results using basis 3 show none of the peculiarities
mentioned above. As a consequence, for the potential 3A,
basis 3 accelerates the convergence of the KVP compared to
basis 1, in direct contrast to the behavior found in the cases of
category 1 potentials. The SVP and the NVP seem to be
relatively insensitive to changes in the basis, especially in the
case of potential 3B. However, a careful comparison shows
that both the SVP and the NVP converge slower if basis 3,
rather than basis 1, is used.

Turning to Fig. 4, we see that the patterns seen in Fig. 3
are present here also. It is obvious that the KVP is extremely
slow to converge for cases 4A1 [Fig. 4(a)] and 4A3 [Fig.
4(b) ], the two cases dealing with the attractive Yukawa po-
tential. Going beyond the range of N shown in the figures, we
have found that, for these cases, the percent errors in the
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FIG. 3. Same as Fig. 2, but for the following cases: (a) 3A1; (b) 3A3.
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FIG. 4. Same as Fig. 3, but for the following cases: (a) 4A1; (b) 4A3; (c) 4B1; (d) 4B3.
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K VP results decrease extremely slowly, with basis 3 con-
verging slightly faster than basis 1. At NV = 160, the case 4A1
K VP result is in error by 0.76%, whereas the case 4A3 KVP
result is in error by 0.16%. This indicates once again, that
basis 3 causes the KVP to converge faster, compared to basis
1. Examining the SVP and the NVP curves in Figs. 4(a) and
4(b), we also see that the opposite is true for these two meth-
ods—basis 3 converges slower than basis 1, similar to the
behavior found in potential 3A. The SVP, while converging
faster than the KVP for the two cases, is slower than the
NVP to reach the 0.1% threshold, for both case 4A1 and
case 4A3. The KVP results for case 4B1 [Fig. 4(c) | appear
to converge to the wrong result, reminiscent of case 2A2
(Table 1V) and of 3A1 [Fig. 3(a)] and 3B1 [Fig. 3(b)].
However, for this case also, the percent error decreases for
sufficiently large », and reaches the 0.1% threshold at
N =112

The following general conclusions emerge from these
comparisons: for potentials of category 1, the KVP results
converge at rates that, while lower than those of the SVP and
the NVP, compare favorably with them. However, for po-
tentials of category 2, the KVP is a reliable method only for
purely repulsive potentials. The KVP is the most sensitive of
the three methods to the nature of the basis used to expand
the trial function. Going from basis 1 to basis 3 causes the
KVP rate of convergence to decrease for potentials of cate-
gory 1, while it increases for potentials of category 2. Unless
the upper integration limit R, is carefully chosen, the use
of basis 2 in the KVP can lead to completely wrong results.
The SVP and the NVP are less sensitive to changes in the
nature of the basis functions, but the change in the rates of
convergence of these two methods generally decrease when
basis 3 is used, as opposed to basis 1, for potentials of both
category 1 and 2. Due to the explicit presence of the asymp-
totically vanishing potential F(r) in the Schwinger and
Newton variational functionals, the convergence of the SVP
and the NVP when basis 2 is used, appears to be less crucially
dependent on the choice of R,,,, from the results listed in
Table IV. Among the three methods, the NVP achieves the
fastest convergence in all the potentials, regardless of the
nature of the basis used.

Below, we attempt to explain the tendency of the KVP
curves to diverge, after reaching a fairly small percent error
in the K-matrix element, that we have noticed in Figs. 3(a),
3(b), and 4(c). In each of these cases, L ? terms in the trial
wave function of Eq. (1) is represented by a set of Gaussians.
The fact that the apparent tendency to converge to the
wrong result is completely absent in the cases where basis 3 is
used [cases 3A3, 3B3, and 4B3], indicates that this behavior
could have its source in some of the characteristics of basis 1.
The Gaussian basis used in this work is defined in Table 1.
The spacings between the centers of the Gaussians are deter-
mined by the condition that they be equally spaced in the
interval [O,R . |. The fractional overlap between the Gaus-
sians are kept constant as NV is increased, which means that
each Gaussian becomes *‘thinner” with increasing V.

In Fig. 5(a), we present, as a solid line, the real part of
the wave function W (r) for case 3A, computed by the SVP,
using 80 basis 3 functions. Except for the slight “kink™ near

(@)

POTENTIAL 3A

0.8

0.6 !
0.4
0.2

0.0

(b)

POTENTIAL 3B

0.8

-0.8 B S Es S

FIG. 5. The scattering wave function W (7) (solid line) and the asymptotic
free wave |¢) (dashed line) at energy £ = k* = 5.0, for (a) potential 3A,
(b) potential 3B.
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r = 9.8, this wave function is well converged. To establish its
relationship to the asymptotic free wave, we have also plot-
ted, as a dashed line, the function |#) = k ~"/?sin(kr). We
note that the terms () and 4, (7) in the expansion of ¥ (#)
have imaginary parts [sin(kr) ] with the same phase as |¢),
and real parts [cos(4r) ] that are out of phase with them by
exactly 7/2. The KVP is now entrusted with the task of
building, from the functions u,(r) and u,(r), and a set of
Gaussians, the function ¥ (r). From Fig. 5(a), we see that
the first maximum of W (#) occurs at r=0.40, whereas the
first maximum in |@) occurs at r = 0.702. It is reasonable to
expect, under these circumstances, that a Gaussian centered
at r=0.4 would be very helpful in constructing the curve
W (r) in this region. The requirement that the Gaussians be
equally spaced, implies that if a Gaussian is placed at r = 0.4,
there would be Gaussian centers at r = 0.8, 1.2, 1.6, and so
on. Examining the W (r) curve in Fig. 5(a), we see that such
an arrangement of Gaussians would, in fact, be quite satis-
factory. The Gaussians centered at »r = 1.2, 2.8, etc., would
contribute to W(r) in significant ways, while those at
r=2.0, 3.2, etc., would serve to either modify the oscilla-
tions due to u,(r) and u,(r), or, if that proves to be unneces-
sary, be “turned off ” (¢, =0) by the variational method.

The important point to note above, is that the above
distribution of Gaussians corresponds to approximately 25
equally spaced Gaussians betweenr = Qandr = R, ,, = 10,
or in terms of the KVP variational parameters, to N=26.
Examining Fig. 3(a) reveals that the KVP curve does reach
a minimum error in the range N =24 to N = 26. As N in-
creases beyond this value, the centers of the Gaussians are
shifted away from the presumably satisfactory arrangement
that was available at N =26. More critical perhaps, is the fact
that the Gaussians now become progressively “thinner”.
This appears to be responsible for the increase in the KVP
percent error as &V increases. As N reaches very large values
(beyond N = 80), we obtain a dense array of very narrow
Gaussians in the interval [O,R,,, ]. The situation is now
analogous to solving for W(r) on a fine grid,' and once
again, the errors decrease.

In Fig. 5(b), we present the converged wave function
W (r) (solid line) for case 3B, and also the asymptotic free
wave |¢) (dashed line). An analysis similar to the one pre-
sented above for Fig. 5(a), would reveal that N=21 pro-
vides an arrangement of Gaussians that seems to be satisfac-
tory for this case. As Fig. 3(b) reveals, the percent error in
the KVP results do reach a minimum in the vinicity of
N=21. The situation in the case of Fig. 4(c) is analogous to
these cases.

Why are the convergence characteristics of the SVP and
the NVP relatively immune to the spacings of the Gaus-
sians? We believe that the presence of the Green function in
the integral equation approaches, is responsible for this. It
can be shown'® that the SVP and the NVP functionals of
Egs. (6) and (9) can be obtained by using the Lippmann-—
Schwinger equation for ¥ (r), in the KVP functional. In oth-
er words, we use

W(ry=¢(r) + F drG(r/YV(rYW¥(r)
0
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once, in the ket|¥) of Eq. (1), to get the SVP functional.
Applying the expression above in the bra and the ket, we get
the NVP functional. It is easy to see that using the Lipp-
mann-Schwinger equation in this manner would amount to
using the following expansion for W (r):

N
W(r)=¢(r) + Y c.8.(r),

n=1

where g, (r) are the functions defined in Eq. (11). If the
functions u, () of Eq. (11) are the Gaussians of basis 1,
which are predominately localized about their centers, the
corresponding functions g, (#) would be more delocalized
than the Gaussians themselves, due to the integration in Eq.
(11). Such delocalization of previously localized functions
can be expected to decrease, to some extent, the importance
of their positions in the interval [O,R .. ]. It is also interest-
ing, in this context, that the KVP rates of convergence in-
crease upon going from the predominately local functions of
basis 1 to the nonlocal functions of basis 3, in the cases of
potentials of category 2. However, the above explanation
may not tell the whole story, as indicated by the facts that the
KVP rates of convergence decrease in going from basis 1 to
basis 3, for potentials of category 1.

Comparing Fig. 3(a) to 3(b), Fig. 4(a) to 4(c), and
Fig. 4(b) to 4(d) reveals the interesting fact that, for a given
basis, the calculations on a purely repulsive potential appear
to converge faster than those on an “analogous?” purely
attractive potential. The great contrast in the behavior of the
KYVP results for potentials 4A and 4B is especially striking.
The results for the SVP and NVP calculations for these cases
also show similar differences in behavior. Thus, for a given
basis, the variational methods converge faster on a purely
repulsive potential, than on the analogous®® purely atttrac-
tive potential.

We now attempt to provide an explanation for the above
observation. The curve representing W(r) in Fig. 5(a) sug-
gests that in an attractive potential, the scattering wave func-
tion is “compressed” in the “interaction region” relative to
the asymptotic free wave. This is to be expected, since the
kinetic energy of the incoming particle increases as the po-
tential becomes more negative. As a consequence, W (r) inan
attractive potential would have higher frequency oscillations
in this region than the asymptotic free particle wave. The
higher frequency oscillations in W(#) imply that a larger
number of Guassians (if basis 1 is used) or the high energy
eigenfunctions of the one-dimensional box problem (if basis
3 is used) are required for an accurate expansion. In con-
trast, W (r) for scattering from a purely repulsive potential is
“dilated” in the interaction region, as clearly seen in Fig.
5(b). This can, of course, be related to the loss of kinetic
energy experienced by the incoming particle, due to the in-
crease in the potential energy. Accordingly, the W () for this
case has lower frequency oscillations in this region than the
asymptotic wave. A relatively fewer number of Gaussians,
or the lower energy eigenfunctions of the one-dimensional
box problem, are therefore able to accurately represent this
solution. (Note however, that basis 2 is an exception to this.
In the case of this basis, the higher terms are functions that
reach their maxima at progressively larger values of r, and
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hence the higher terms are more suited to represent low fre-
quency oscillations. )

IV. SUMMARY AND CONCLUSION

In this study, we have compared the relative perfor-
mance of the S-matrix version of the Kohn variational prin-
ciple, with T-matrix versions of the Schwinger and the New-
ton variational principles, using a variety of interaction
potentials and a few commonly used basis sets. We have
found that the rates of convergence of the variational meth-
ods are dependent on the nature of the potentials and the
basis sets used to expand the scattering wave functions.

For potentials that have both a repulsive and an attrac-
tive part, the KVP results indicate that the method is capable
of converging to the correct result with 5-10 more basis
functions than the number required for the SVP and the
NVP to converge. The ease of application of the KVP, cou-
pled with the fact that the method developed in Ref. 8 makes
it possible to avoid inverting a complex matrix to compute S-
matrix elements, therefore makes the KVP a very practical
method for calculations on such potentials. In contrast, for
potentials that are purely attractive the Kohn method ap-
pears not to be very successful. For potentials of category 2,
the K VP also suffers from the drawback that the conver-
gence characteristics depend sensitively on the nature of the
basis functions. The results presented in this paper and the
discussion above indicate that the SVP and the NVP are, in
general, more robust variational principles than the KVP, in
the sense that they appear to converge quickly to the correct
result even in situations where the KVP rate of convergence
appears to be very slow. The SVP and the NVP also appear
to be rather insensitive to the nature of the basis functions
used to expand W (r).

In these studies, we have used the same trial quantity,
viz., the trial wave function, for studying the relative perfor-
mance of three variational principles. By taking this ap-
proach, we see that there are a few cases where the KVP
results converge faster than those from the SVP (1A2,1B2),
but no cases where they converge faster than those from the
NVP. 1t is also interesting that for potentials of category 1,
that have a repulsive and an attractive part, the rate of con-
vergence of the KVP is higher if basis 1, rather than basis 3 is
used. However, potential 2A, which belongs to category 1, is
clearly an exception to this. For category 2 potentials, the
KVP rate of convergence is increased in all cases if basis 3 is
used. For the SVP and the NVP, the use of basis 3 seems to
decrease the rate of convergence, in general, compared to
their respective rates of convergence if basis 1 is used.

We chose to exclude the non-L * terms in the SVP and
the NVP trial functions, because the Green function, as men-
tioned in Sec. I, fulfills the task of enforcing the boundary
conditions for these methods. Although it is known that the
presence of non-Z * terms such as u, (#) and u,(r) of Eq. (2)
accelerate the convergence of the SVP,'*® at least for cases
1A2 and 1B2, the present approach seems to be a fair way to
evaluate the relative merits of the three methods.?' More-
over, the present implementation of the SVP and the NVP
are closer in spirit to the existing calculations where these
methods have been used.>(®)-2(¢-9-11.16

We pointed out in the Introduction, that in the integral
equation approaches, the boundary conditions are imposed
by the Green function. This naturally permits a certain de-
gree of flexibility in the choice of the trial functions for the
SVP and the NVP. Including non-L * terms in the expansion
is, as mentioned in the preceding paragraph, one option. In
the case of the NVP, one also has the option of expanding the
wave function or the amplitude density, in a set of basis func-
tions. The question of great relevance as far as applications
to complex and large calculations such as those of multidi-
mensional reactive scattering are concerned, of course, is
how fast a certain method can be made to converge, by a
careful choice of the trial function. A future publication ad-
dresses these and related questions in detail.*?
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