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We present the Schwinger and Newton variational principles for the log-derivative matrix.
These methods have one significant advantage over their K, or 7" matrix analogs: the Green’s
functions that satisfy the log-derivative boundary conditions can be made independent of the
scattering energy, which means that al/l matrix elements between basis functions become energy
independent, and hence need be evaluated only once. The convergence characteristics of these
functionals are compared with those of the K matrix Schwinger and Newton functionals, for
potential scattering problems. The amplitude density version of the Newton variational
principle is then generalized to the multichannel case, and used to compute transition
probabilities for a popular inelastic scattering problem at several energies. These results are
compared to those obtained from the application of a discrete representation of the Kohn
variational principle for the log-derivative matrix to the same problem.

I. INTRODUCTION

In recent years, variational methods have proved to be
extremely powerful in the exact quantum mechanical de-
scriptions of collision events between atoms and diatomic
molecules. Three of the most commonly used variational
methods are due to Kohn (the Kohn variational principle,
or the KVP),"? Schwinger (the SVP),”* and Newton (the
NVP).* Miller and co-workers recently used the .S matrix
version of the KVP,’ to compute the § matrix elements for
the H + H,,>™®© and F + H,° reactions, and more re-
cently, to compute the integral cross sections for the H + H,
reaction at several energies.” The Schwinger method for the
K matrix has been used to study collinear atom—diatom reac-
tions,? and both the SVP and the NVP have been used in the
study of inelastic and reactive collisions in three dimen-
sions.® Recently, the amplitude density Newton method® for
the K matrix was also used in a calculation of state-to-state
cross sections for the H 4+ H, reaction at one energy. 10

Converged transition probabilities have also been com-
puted for the H + H,, D + H,, O + H,, and H + HBr reac-
tions using a method of moments'' derived®® by inserting a
resolution of the identity in the matrix elements of the NVP.

A variational method for the logarithmic derivative of
the wavefunction was first presented by Kohn in 1948." This
stationary functional was recently applied by Manolopoulos
and Wyatt to the 3D H + H, reactive scattering problem.'?
That work demonstrated that the log-derivative Kohn meth-
od becomes particularly simple and elegant, if the following
boundary conditions were imposed on the scattering wave
function W(R): ¥(0) =0, and ¥(a) = 1, where a is some
“sufficiently large” value of the radial coordinate R at which
the log-derivative Y(a) is evaluated. Once the log-derivative
matrix Y(a) is known, other quantities of interest, such as
the K, S, or the T matrices can be computed from it in a
straightforward manner.

This paper presents the Schwinger™* and the Newton*
variational functionals for the log-derivative matrix, using
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the same asymptotic boundary conditions as those of Ref.
12. To the best of our knowledge, these functionals have not
been derived and tested previously. For simplicity, we derive
the stationary expressions using potential scattering as an
example. The convergence characteristics of these function-
als are then tested using three one-dimensional potentials
and three L ? basis sets. We compare the convergence of the
log-derivative methods to the results of the more familiar X
matrix versions of the SVP and the NVP. Generalization to
multichannel (including reactive) scattering is straightfor-
ward, and is illustrated by using the amplitude density ver-
sion of the Newton variational principle in the Secrest-John-
son He+ H, inelastic scattering problem.)> We
acknowledge the recent work of Manolopoulos and Wyatt'?
as the inspiration for the present attempt.

Variational methods reduce a scattering problem to a set
of linear algebraic equations, which may be written in matrix
form as AC = B. The solution to the problem is then arrived
at by obtaining the unknown quantities C by solving the
system of equations or by inverting A, so that C= A~ 'B.
The effort involved in implementing a variational method
can therefore be divided into two parts: in the first, one must
evaluate the matrix elements that constitute the matrices A
and B; in the second, the unknown quantities C are obtained
by one of the two ways mentioned above.

It seems to us that at least two considerations become
important in choosing one variational method over another,
to tackle a given problem. The first is the computational
effort (time) involved in evaluating the matrix elements of A
and B. In this regard, the Kohn methods®"'? have a definite
advantage. The Kohn functional is remarkably simple, and a
large number of the matrix elements turn out to be energy
independent®'*'* and need not be reevaluated each time
the scattering energy is changed. On the other hand, the
Schwinger and Newton functionals for the K matrix contain
Green’s functions which enforce the asymptotic, energy-de-
pendent, boundary conditions. This makes all matrix ele-
ments in these functionals energy dependent, and so the
Green’s functions and their matrix elements must be reeval-
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uated each time the energy is changed. Since in general, scat-
tering calculations need to be conducted at more than one
energy, this proves to be a serious handicap for these meth-
ods. The second consideration is the minimum size of the
matrices A and B for which an acceptable level of accuracy
can be achieved by the method. The computational effort for
the latter part of the variational problem, i.e., finding the
unknowns C, formally scales as the third power of the order
of matrix A. Although this step turns out to be highly vector-
izable and is, therefore, rapidly executed in modern super-
computers, it is clear that for large enough problems, this
step will dominate the calculation. For the large number of
workers who do not have ready access to a CRAY-2 with its
enormous high speed memory, the amount of memory re-
quired to store and manipulate A and B also becomes an
important issue. For multichannel scattering problems, the
order of A is determined by the quantity mV, where m is the
number of channels and &, the number of basis functions
used per channel. Thus, for multichannel problems, even a
modest reduction in N results in a large reduction in the
order of A. In this regard, the Schwinger and Newton meth-
ods seem to have a definite advantage. It is now well estab-
lished that these methods achieve acceptable levels of accu-
racy with fewer basis functions than the Kohn method, for a
variety of potentials.'>'® With the inclusion of suitable dis-
tortion potentials, the SVP and the NVP have been shown to
converge with extremely small values of &, for reactive scat-
tering problems.!® Therefore, even though the evaluation
of individual matrix elements is a more time consuming step
in the SVP and the NVP, the number of matrix elements that
have to be evaluated can be small.

The present approach is the result of an attempt to com-
bine, to the extent possible, the best features of the Kohn
method and those of the Schwinger and Newton methods.
This means that the matrix elements of A and B be made as
independent of the scattering energy as possible, while re-
taining the more rapidly convergent properties of the inte-
gral equation methods. Below, we show that the Schwinger
and Newton variational principles for the log-derivative ma-
trix meet these goals. The present formulation is shown to
have significant computational advantages over the SVP and
the NVP for the K matrix.

The remainder of this paper is organized as follows: in
Sec. I1, we derive the stationary expressions for the log-de-
rivative matrix Y(a). In the process, we discuss the bound-
ary conditions chosen and present Green’s functions that
satisfy these boundary conditions. The ensuing discussion
shows that the log-derivative Schwinger and Newton meth-
ods promise great savings in computational effort, compared
to the K matrix versions of the methods. In Sec. III we test
the variational functionals using potential scattering from
one-dimensional potentials. The results are compared with
those of the Schwinger and Newton methods that compute
the K matrix directly. In Sec. IV, we extend the amplitude
density Newton method to the multichannel case, and use
the method to compute transition probabilities for the Se-
crest-Johnson He + H, problem at several energies. In this
section, we also apply the log-derivative Kohn method of
Manolopoulos and Wyatt!? to the same problem, and com-

pare the results from the two methods. Finally in Sec. V we
summarize the important aspects that have emerged from
our studies and discuss a modification that promises to make
the present method even more efficient in terms of computa-
tional effort.

II. THE LOG-DERIVATIVE SVP AND NVP
A. The variational functionals

Limiting our discussion to the case of potential scatter-
ing, we write

ZL(R) =T(R) + V(R) ~ E, ()

where T(R) and V(R) are the kinetic and potential energy
terms, respectively, of the Hamiltonian, R is the distance
between the colliding particles, and E is the scattering ener-
gy. For later use, we also note that . (R) can be partitioned
rather arbitrarily into two pieces,

ZL(R) = Hy(R) + W(R), (2)

where we demand that H;(R) contain the kinetic energy
operator.

The exact scattering wave function W(R) satisfies
ZL(R)YY(R) = 0. We require the wave function ¥(R) to
satisfy the following boundary conditions: ¥(0) = 0, and
¥ (a) = 1, where a is chosen to be some large value of R, so
that for R > a, ¥(R) can be satisfactorily represented as a
superposition of plane waves. The first of these conditions is
physically motivated, while the second is motivated by the
great simplification that results in the log-derivative formu-
lation: if W(a) =1, then Y(a) = ¥ (a)¥(a) ! = V¥ (a),
where the prime indicates differentiation with respect to R.
We refer to these boundary conditions as the (0,1) boundary
conditions. It is then straightforward, using standard
Green’s function arguments,'” to rewrite this two-point
boundary value problem for ¥ (R) as an integral equation in
the interval (0,a),

W(R) = ¢,(R) +f dR' GO(R.R'YW(R"Y¥(R"),
0

(3)
where, ¢, (R) is the regular solution to the reference prob-
lem Hy(R)$(R) = 0, subject to the boundary conditions
$,(0) =0, ¢,(a) =1 [¢,(R) being the corresponding ir-
regular solution, subject to the boundary conditions
¢,(0) 760; ¢,’ (a) = O]y and

Hy(R)G°(RR')= —8(R—R"), 4)
where we have adopted units in which #2/2u = 1. It is well
known'” that

G°(RR')=¢,(R_IQ'$,(R.),
where (R _,R_ ) are the lesser and greater, respectively, of
(R,R '), and the constant (2 is the Wronskian given by

Q=¢,(R)$;(R) —¢,(R)S/(R).

The expression for the log-derivative Y(a) can now be
found by simply differentiating both sides of Eq. (3), and

“evaluating the resulting function at R = a. This leads to the

result'®
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Y(a) = Y,(a) +f dR’ $,(RYWR VR, (5)
0

where Y, (a) = ¢.(a), and we have used the fact that
0~ '¢!(a) = 1."® Stationary expressions for the integral on
the right-hand side of Eq. (5) can now be obtained in the
manner suggested by the derivations of the Schwinger and
the Newton K or T matrix functionals,’® by the application
of Eq. (3). We thus get the Schwinger and the Newton func-
tionals for the log-derivative matrix elements:

Y(a) = Yo(a) + [2(4,|W|¥)

—(V|W — WG°W|¥)] (6)
for the SVP and
Y(a) = Yo(a) + [ Y7 + 2(s, | WG°W |¥)
—(¥|W(G° - GWG YW |¥)] (7

for the NVP, where Y = (¢,| W |4,), the first term in the
Born expansion of Eq. (3). Here we introduce the notation
NVP-V to refer to the functional in Eq. (7), since the wave
function W(R) is to be expanded in a set of basis functions.
The Newton functional may also be written in terms of the
amplitude density F(R) = W(R)¥(R)—denoted as NVP-
F-as follows:

Y(a) = Yo(a) + [YT +2<¢,|WG°|F)
—(F|G°— G°WG°|F)]. (8)

Once the log-derivative is obtained at R =a, the K, T, or §
matrix elements are evaluated in a straightforward manner.
To get the K matrix elements, we write

Y(a) =¥ (a)¥(a)™!
= k [cos(ka) — K sin(ka) ] [sin(ka)
+ K cos(ka)]~? 9

from which X is easily obtained. It is important to realize
that the quantities ¥(2) and X in Eq. (9) are matrices, and
hence, in the case of multichannel scattering, the whole Y
matrix is required before K can be computed.

B. The Green'’s functions

In integral equation methods for the K matrix, the
Green’s function is determined by the requirement that the
asymptotic wavefunction be of the form

lim W(R) ~sin(kR) + K cos(kR).

R—
The result of this requirement, as mentioned in Sec. I, is that
the Green’s function for these methods explicitly depends on
the scattering energy, through k. Similar restrictions are
present in methods for T and .S matrix elements. In the case
of the log-derivative formulation, however, the asymptotic
boundary condition is the simple requirement that
W¥(a) = 1. This gives us much more freedom in the choice of
the reference problem. We illustrate this below, by present-
ing Green’s functions for a class of reference problems that
have analytic solutions.

Let us consider reference problems that can be ex-
pressed as
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(d +K2)G°(R,R’)=5(R—R’). (10)

dR*
Then, W(R)=V(R) — A, where A= (k?—«?), and
k 2 = E,because of our particular choice of units. The quanti-
ty «2 can be viewed as a reference energy, so that Green’s
functions that satisfy Eq. (10) can be called “‘reference ener-
gy Green’s functions.” Subject to the boundary conditions
$,(0)=0, ¢,(a) =1, and ¢,(0) =1, &,(a) =0, we get
case (1) k2> 0,

G°(R,R")

= — {sin(«kR _ )sin[x(a — R, )]} H«ksin(xa)]™", (11)

case (2) k% <0,

G°(R,R")

= — {sinh(«R _ )sinh[«(a — R )]}« sinh(xa)] ",
(12)

and case (3) «* =0,

G°(RR")=(—1/a)R_(a—R._). (13)

It is easy to see that while any one of the Green’s functions
(11)-(13) are acceptable for use in the SVP functional of
Eq. (6) and the NVP functionals of Eq. (7) or (8), they do
not depend on the scattering energy k 2. We discuss the ad-
vantages offered by this below.

Let us now examine the behavior of W(R) in (3), at
R = 0and R = a. Inserting the Green’s function G°(R,R ')
into Eq. (3), we get

Y(R) =¢,(R)

R
—¢.-<R)U dR'¢,(R')W(R'>W(R')]Q—'
0

- ¢,(R>Ua dR" $,(R"YW(R")W(R ')]Q—'.
R

The expression above reveals two aspects that deserve com-
ment. First of all, it satisfies, as it should, the (0,1) boundary
conditions - at R =0, the first integral vanishes and
#,(0) =0, and at R =aq, the second integral vanishes,
¢;(a) =0, and ¢, (a) = 1, Secondly, the expression above
implies that since the Green’s function enforces the (0,1)
boundary conditions, the basis sets used to expand the wave-
function W(R) within the integrals, need not, in principle,
satisfy either boundary condition. We illustrate this in Sec.
111

C. The half-integrated Green’s functions

The difficult part of computations using integral equa-
tion methods for scattering calculations is evaluating the
matrix elements of operators containing the Green’s func-
tion. These matrix elements can be evaluated faster and with
higher accuracy of we first evaluate the half-integrated
Green’s function,’®'!* defined as

8. (R) = [ dR'GRRWRu,(R) (1)

(¢]
when the wave function is expanded in terms of basis func-
tions {u, }, and
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G,,(R)=J dR’' G°(R,R")u,(R") (15)
0

when the amplitude density is expanded. Then, for example,
matrix elements of the type (u,,| WG °W |u,, ), which result
from a basis set expansion of ¥ (R) in Eq. (6), are computed
as (u,|Wlg,), and matrix elements of the type
(4,,|G°WG°|u,) inEq. (8),as (G,,|W|G,).

A closer examination of the integrals above reveals the
important advantage of the log-derivative approach. As
shown above, the quantity W(R) is explicitly written as
V(R) — A, where A is a constant whose value depends only
on the scattering energy and the value chosen for « in the
Green’s function. Using this relation in Eq. (14), we get

g, (R) =f dR'G°(R,R")V(R")u,(R")
(4]

_ﬂf dR’' GO(R,R")u, (R"),
0

which we write as
8.(R) =g/ (R) — AG,(R).

With this result, the system of linear algebraic equations for
the expansion coefficients {c, } in the Schwinger method can
be written as

S (tt |V [10,) — 2 (i |ty — 1t | V]2

—A%Xu,|G,) + A [{gnlu,) + (u,lg)) ] }e,
=u,|V|é,) —A{u,|6,), m=1,.,N.

Recall now that the Green’s function G°(R,R ') used in the
log-derivative formulations are independent of the scatter-
ing energy. It is then immediately obvious that the half-inte-
grated Green’s functions and all the integrals above are also
energy independent. Similar expressions consisting only of
energy independent integrals can also be written for the
NVP-V functional of Eq. (7), and the NVP-F functional of
Eq. (8). The latter yields a particularly simple set of equa-
tions for the expansion coefficients:

3 (u,1G,) = (GulV|G,) + (GG, e,

= (G, |V |$,) — A (G.l.),

The full significance of this becomes apparent only
when one considers the effort involved in computing the X,
or T matrix directly using the Schwinger or Newton meth-
ods. As we pointed out earlier, the asymptotic boundary
conditions in these methods make the Green’s function ex-
plicitly energy dependent. This means that the Green’s func-
tion must be defined at each energy. If the reference problem
for G°(R,R ') does not have an analytic solution, then it has
to be reevaluated numerically. Moreover, the half-integrated
Green’s functions and their matrix elements must also be
found each time the scattering energy is changed. For reac-
tive scattering problems, this step also involves the evalua-
tion of the exchange integrals.'® It is thus clear that these
methods require considerable amounts of computation to be
repeated at each energy. If the Green’s function is energy
independent, then these steps have to be performed only

m=1,.,N. (16)

once, for a given basis size. This helps to reduce the “setup”
time in the log-derivative Schwinger and Newton methods
dramatically. Section V further substantiates these argu-
ments.

ill. POTENTIAL SCATTERING

In this section, we present the results of the calculations
conducted in order to test the convergence characteristics of
the two variational functionals presented above. We com-
pute the log-derivative Y(a) for the following three one-di-
mensional potentials:

Potential A: 10[1 — e~ ®/2(R-D72 _ 1,
Potential B: — 10e %,
Potential C:  10e ~ %,

using three types of L ? basis functions to expand the wave
function in the case of the SVP, and the wave function and
the amplitude density in the case of the NVP. The L ? basis
sets are

Basis 1: u,(R) = sin(ﬂR) n=1,.,N.
a

Basis 2: u,(R) =exp[ —a(R —R,)?],

na ( 0.60a )2
a=|—};

n b

TN+ N+1
Y (R—R,)
Basis 3: u,(R) = — . n=1.,N.
m1_=IO (R,, —Rm)
n#Em

Basis 1 and 2 are, respectively, the 1D box eigenfunctions
and the very popular distributed Gaussian basis.”* We noted
in Sec. II B, that since the Green’s function enforces the
(0,1) boundary conditions, the basis functions for the log-
derivative Schwinger and Newton methods can be chosen
without regard to these boundary conditions. We have in-
cluded the distributed Gaussian basis in our calculations to
illustrate this aspect. It is easily verified that the Gaussians
used here have significant amplitudes at both limits of the
interval (0,a). Basis 3 consists of the Lobatto shape func-
tions,'> which are Lagrange interpolation polynomials de-
fined over a set of nodes {R,, } chosen to be the abscissae of
the N-point Lobatto quadrature rule.!>?!

Table I presents the absolute values of the fractional
error |e| in the X matrix elements as the number of basis
functions is increased, for the three potentials when basis 1 is
employed. The scattering energy E = 4.0. The Green’s func-
tion of Eq. (11) is used in these calculations with > = 4.0, so
that close analogy with the SVP and the NVP for the K
matrix is achieved. For comparison, we also present the re-
sults of the Schwinger and the Newton variational methods
that compute K directly. The notation is as follows: ||,
where the subscript indicates the variational principle and,
where necessary (as in the case of the NVP), the quantity
expanded in the L ? basis—e.g., NVP-¥ indicates that the
wave function V(R ) was expanded in terms of the basis, and
used in Eq. (7)—and the superscript indicates the quantity
computed directly, i.e., Y or K, using the functional.
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TABLE I. Fractional errors in K matrix elements using basis 1. The Green’s function of Eq. (11) is used with

K =4.0.
N |€lgve |€ldve elive.¢ €lNve-r €l Nvp-v [e[Rve.w
Potential A
20 0.0370 0.0370 0.0734 0.0734 0.0024 0.0024
21 0.0134 0.0134 0.0715 0.0714 0.0015 0.0015
22 0.0044 0.0044 0.0557 0.0556 0.0015 0.0015
23 0.0001 0.0001 0.0332 0.0331 0.0012 0.0012
24 0.0056 0.0056 0.0152 0.0151 0.0008 0.0008
25 0.0074 0.0074 0.0056 0.0056 0.0004 0.0004
Potential B
15 0.0017 0.0017 0.0266 0.0265 0.0001 0.0001
16 0.0009 0.0009 0.0156 0.0156 a a
17 0.0005 0.0005 0.0094 0.0094 a a
18 0.0003 0.0003 0.0058 0.0058 a a
19 0.0002 0.0002 0.0037 0.0037 a a
20 0.0001 0.0001 0.0024 0.0024 a a
Potential C
5 0.8368 0.8368 4.7912 1.0507 0.1014 0.0360
6 0.0915 0.0915 0.1346 0.1693 0.0012 0.0024
7 0.0015 0.0015 0.0019 0.0021 a a
8 0.0007 0.0007 0.0002 0.0002 a a
9 0.0003 0.0003 0.0002 0.0002 a a
10 0.0003 0.0003 0.0002 0.0002 a a

Error is less than 5.0 1075.

It is obvious from Table I that a particular log-derivative
method and the corresponding K matrix method converge at
the same rate. This indicates that one does not have to pay
any price for using the log-derivative Schwinger and Newton
methods as opposed to their K matrix analogs. Since, as dis-
cussed above and illustrated below, these methods are able to
use energy independent Green’s functions with all the ac-
companying computational advantages, using the log-deriv-
ative methods does indeed seem to be a step in the right
direction. Itis also seen from Table I that the NVP converges
faster if the wave function, rather than the amplitude density
is expanded in the L ? basis. A tentative explanation for this
behavior is given in Ref. 15(a).

A comparison of the results obtained by using basis 2 in
the same set of calculations are presented in Table II. Recall
that this basis does not satisfy the (0,1) boundary condi-
tions. The results in Table II indicate that using a basis that
does not satisfy the (0,1) boundary conditions does not, in
itself, cause the log-derivative and K matrix methods to con-
verge at different rates. From a comparison of Table II to
Table I, one would conclude that the convergence is slower if
basis 2 rather than basis 1 is used. It is well-known, however,
that careful choice of the positions and widths of the Gaus-
sians significantly alter their convergence characteristics.
The present calculations are intended for illustrative pur-
poses only, and we have made no attempts to fine-tune basis
2 for these problems.

We now come to an illustration of the most interesting
and potentially the most useful feature of the log-derivative
Schwinger and Newton methods, viz., the use of the refer-
ence energy Green’s function to compute Y(a) at many dif-

ferent energies. Table III presents the results of using the
Green’s function of Eq. (11) in the amplitude density New-
ton functional of Eqs. (8) and (16), where the amplitude
density is expanded in basis 3. The results are presented for
eight energies. We set x* = 4.0, so that at E = 4.0, the results
listed in Table I1I provide a fair comparison of the conver-
gence characteristics of this basis against those of basis 1 and
2 in Tables I and II.

The results of Table III indicate that the reference ener-
gy Green’s function used in the log-derivative NVP-F is ca-
pable of achieving rapid convergence of K matrix elements
over a wide energy range. We also note that the convergence
is fastest when the scattering energy k *is close to the value of
«2, and slower when & ? is much lower or much higher than
this value. This behavior is not surprising, because at values
of k? that are different from the scattering energy, the distor-
tion due to W(R) becomes more significant, and the basis
functions have to work harder in order to build the wave
function in the internal region.

In principle, we should be able to converge the results at
any energy using a given value of k. However, practical con-
siderations dictate that the value of x be chosen with a view
to the range of energies at which the scattering is to be stud-
ied. It is clear that the range of energies over which fast
convergence can be achieved with a given value of x will
ultimately determine the usefulness of these methods over
those that compute the K matrix element directly. It is grati-
fying therefore, that the results of Table III indicate that this
range can be quite large. We shall see in the following sec-
tion, that this is true even for a multichannel scattering prob-
lem.
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TABLE IL Fractional errors in K matrix elements using basis 2. The Green’s function of Eq. (11) is used with
K =4.0.
N |€ldve €l$ve €l fve.r l€lNve.r €l Xvew l€lRvew
Potential A
20 0.1686 0.1686 0.1681 0.1681 0.0311 0.0310
21 0.0741 0.0741 0.1543 0.1543 0.0123 0.0123
22 0.0290 0.0290 0.1106 0.1106 0.0051 0.0051
23 0.0093 0.0093 0.0610 0.0610 0.0047 0.0047
24 0.0003 0.0003 0.0254 0.0254 0.0052 0.0052
25 0.0081 0.0081 0.0084 0.0084 0.0045 0.0045
Potential B
15 0.1974 0.1974 0.0172 0.0172 0.0098 0.0098
16 0.1530 0.1530 0.0148 0.0148 0.0072 0.0072
17 0.1204 0.1204 0.0125 0.0125 0.0055 0.0055
18 0.0970 0.0970 0.0104 0.0104 0.0042 0.0042
19 0.0792 0.0792 0.0085 0.0085 0.0032 0.0032
20 0.0657 0.0657 0.0069 0.0069 0.0025 0.0025
Potential C
5 1.9563 1.9563 1.2414 2.3709 0.0010 0.0018
6 0.1320 0.1320 0.8100 1.1773 0.0168 0.0211
7 0.0616 0.0616 0.2046 0.2140 0.0016 0.0020
8 0.0076 0.0076 0.0636 0.0656 0.0008 0.0012
9 0.0011 0.0011 0.0195 0.0199 a a
10 0.0003 0.0003 0.0069 0.0070 a a
2Error is less than 5.0 1075,
We do not present the results of calculations analogous —10W 194 2y 1 PU 4+ V(R = 1 2
to those of Table I11, for the SVP and the NVP-W function- 2w 9RE 2 a7 T 1T T nE=E R
als, since no new information is conveyed. The NVP-V¥ re- (17

sults, as one might anticipate from Tables I and I1, converge
faster than the NVP-F results in Table III.

We also do not present the results for the Green’s func-
tion of Eq. (13). The use of this Green’s function results in
extremely slow convergence, which is perhaps to be expected
from the extremely simple form of the Green’s function, and
the fact that it corresponds to zero energy. The Green’s func-
tion of Eq. (12) is used in the following section.

IV. MULTICHANNEL SCATTERING

Extending the methods developed in the earlier sections
to the case of multichannel scattering is straightforward. We
iltustrate this below, using the inelastic scattering problem of
Secrest and Johnson," as an example.

The problem is stated as

G™”(RR') = [

where k2 = u(x* — 2n — 1), and R = a is the boundary at
which the log-derivative matrix is evaluated.

We focus attention on the projected amplitude densities
F,,, (R) (where n denotes the channel of interest and m is

where
V(R,r) =Vyexpl —a(R—r)].

We choose the reference problem solved for the Green’s
function to be

(Fl2 L2, L
2u dR* 297 2

= —8(R—-R"NS(r-r)
which is solved to give

P % Kz)GO(R,R ')

(18)

G(RR'rF) =3 G (RR )@, (Ng,(7),

where the @, are the orthonormal energy eigenfunctions of
the harmonic oscillator problem corresponding to the
energy eigenvalues €, =(n+ 1/2); n=0,1,2,..., and
G “”(R,R ") for the channels open and closed with respect to
K% are

—sin(«,R _ )sin[x,(a — R, )] [, sin(«,a)] 7" «.>0,
— sinh(x,R_ )sinh[«,(a — R, )] [k, sinh(x,a)] ™"

K, <0, a”

I
the initial channel), which are defined as

F. (R) =f dr @, (N W(rLR)Y,, (.R).
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TABLE IIL The quantities |€})yy. 5 at eight energies, using basis 3. The Green’s function of Eq. (11) is used,

with &% = 4.0.
Energy 10 2.0 3.0 4.0 5.0 6.0 7.0 8.0
N
Potential A
20 0.0975 0.1811 0.0663 0.1327 0.2680 0.1335 0.1884 0.7676
21 0.0587 0.0997 0.0383 0.0720 0.1385 0.0644 0.0851 0.2772
22 0.0577 0.0993 0.0383 0.0720 0.1377 0.0636 0.0824 0.2584
23 0.0335 0.0592 0.0247 0.0481 0.0951 0.0459 0.0596 0.1815
24 0.0127 0.0218 0.0097 0.0187 0.0374 0.0178 0.0243 0.0736
25 0.0090 0.0140 0.0059 0.0111 0.0211 0.0098 0.0122 0.0334
26 0.0086 0.0134 0.0058 0.0109 0.0210 0.0098 0.0122 0.0334
27 0.0043 0.0074 0.0033 0.0064 0.0126 0.0059 0.0079 0.0230
28 0.0016 0.0025 0.0011 0.0022 0.0044 0.0022 0.0028 0.0077
29 0.0011 0.0017 0.0007 0.0014 0.0026 0.0012 0.0015 0.0043
30 0.0010 0.0016 0.0007 0.0013 0.0025 0.0012 0.0015 0.0043
Potential B
10 0.0216 0.0056 0.0114 0.0133 0.0647 6.8677 1.1104 0.9798
11 0.0166 0.0055 0.0034 0.0091 0.0045 0.0760 1.4957 0.9713
12 0.0116 0.0014 0.0015 0.0024 0.0045 0.0457 0.8894 0.7988
13 0.0033 0.0013 0.0002 0.0003 0.0014 0.0076 0.1577 0.7849
14 0.0031 0.0005 0.0001 a 0.0003 0.0021 0.0410 0.1401
15 0.0017 0.0004 a a 0.0002 0.0009 0.0070 0.0301
16 0.0013 0.0003 a a 0.0001 0.0009 0.0026 0.0301
17 0.0009 0.0002 a a 0.0001 0.0004 0.0002 0.0286
18 0.0007 0.0002 a a a 0.0003 0.0001 0.0078
19 0.0005 0.0001 a a a 0.0002 0.0001 0.0057
20 0.0004 0.0001 a a a 0.0002 a 0.0050
Potential C
5 0.2976 8.5961 0.7497 1.0882 1.1478 1.1217 0.5464 1.1464
6 0.2532 0.9249 0.4040 1.0969 1.1487 1.5272 0.3995 1.2771
7 0.2308 0.0608 0.3972 0.1016 0.5605 1.5126 8.8815 0.1072
8 0.0719 0.0606 0.0105 0.0058 0.3599 0.6741 1.2904 0.0102
9 0.0303 0.0068 0.0100 0.0043 0.1227 0.6209 0.7289 1.0486
10 0.0178 0.0018 0.0012 0.0013 0.0385 0.1932 0.7073 0.9080
11 0.0105 0.0016 0.0002 0.0001 0.0163 0.1182 0.2285 0.6917
12 0.0065 0.0010 0.0002 a 0.0015 0.0225 0.2245 0.3484
13 0.0042 0.0006 0.0001 a 0.0003 0.0069 0.0149 0.2677
14 0.0028 0.0004 a a 0.0001 0.0006 0.0141 0.0378
15 0.0020 0.0003 a a a 0.0001 0.0015 0.0180

2 Error is less than 5.0 1073,

Expanding the F,,, (R) in terms of an L ? basis set {u, (R)},
and substituting into the multichannel version of the NVP-F
functional of Eq. (8), we get the matrix equation

Y(a) =Yy(a) + Y2+ B"C+ C"™B -~ CTAC, (20)

where the superscript 7' denotes the matrix transpose, and
(Yo)nm = [9(8,),/OR |k = aBpm>

R =de f” dr[8,(rR) ], W(r.R) [$,(rR) ] m»
[¢.(nR)]. =¢7,.(r):,. (R),

where
o,(R) =sin(x,R)[sin(x,a)] ™"
= sinh(«,R) [sinh(x,a)] ™'

Also, using lower case subscripts (n,m) to label the channels
and upper case subscripts (Z,J) to label the L ? translational
basis functions, we get

(open channel)
(¢losed channel).

AnI,mJ = {<uI|G(n)|uJ>6nm - (ullG(n) anG (M)|u1>}'
and
Bnl,m = (ullG(") anlam)9

where

W..(R) =J dro,(NnWrR)e,,(r).

Extremizing the functional (20) with respect to the expan-
sion coefficients C, we get a system of linear equations
AC = B, to be solved for the elements of the matrix C. Now,
recognizing that for our particular choice of the reference
problem, W(r,R) can be expressed in terms of V(r,R) — 4,
where A is a constant that depends only on the scattering
energy E and the constant « (see below), we get

Anl,m.l = {<u1|G(”)lu1>6nm - (ullG(") Van (M)Iul)}
+ A {u |GG ™ |u,)8,,,,
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and
Bnl,m = <u1|G(n) Vnm |Um> -"l <uI|G(")|0m )anm)

where

Vm(R>=f dr ¢, (NV(rR) @, (F),

and
A=(ki—k) =pl(E-2n—1) — (¥ —2n—1)]
=pu(E —£).

It is interesting that A turns out to be channel independent,
due to mutual cancellation of the channel-dependent inter-
nal energy €,. As in the case of potential scattering, all the
matrix elements are independent of the scattering energy,
and hence, need be evaluated only once.

To test the NVP-F method for the log-derivative matrix,
we choose p# = 2/3, and a = 0.30. This choice of paramters,
in the reduced units of Secrest and Johnson, " correspond to
the collision of a He atom with an H, molecule. It was point-
ed out in the previous section that the usefulness of the pres-
ent method would be determined by the range of scattering
energies E for which the transition probabilities converge
reasonably quickly (as the basis size is increased), for a given
value of K. To estimate this range, we set x? = 6.0, a = 40.0,
and compute the log-derivative matrix Y(a) at seven ener-
gies E =5.2,5.5,5.8. 6.0, 6.2, 6.5, and 6.9, in the units of the
Hamiltonian of Eq. (18). Over this range, 3 vibrational
channels, corresponding to n =0, 1, and 2, are open. The
channel threshold for the n = 3 channel is at the energy
E = (2n + 1) = 7.0. The log-derivative matrix Y is used to
compute the S matrix at each energy, following the proce-
dure of Johnson.?? The results are presented as absolute val-
ves of fractional errors in the transition probabilities
P, = |S,n|* The converged transition probabilities at the
energies listed above are given in Table IV.

TABLE IV. Converged transition probabilities for the Secrest-Johnson
problem, of Eq. (17). The parameters are, u = 2/3, a = 0.30, ¥, = 12.0
and a = 40.0. The numbers in parentheses indicate powers of 10.

Energy Py, Py, Py,
49 4.578 356( — 3)
5.2 7.671344( —3) 9.570319( —9) 4.970370( — 6)

55 1.194 234( —2) 2.404123(—7) 7.968952( —5)
5.8 1.755365( —2) 1.794321( — 6) 4.040532( —4)
6.0 2.211020( —2) 5.052240( —6) 9.003 375( — 4)
6.2 2.735080( —2) 1.208 199( —5) 1.734594( — 3)
6.5 3.656 356( —2) 3.620227( —5) 3.864658( —3)
6.9 5.145192( —2) 1.190143( —4) 8.934345(—3)
E=172
P Poy Py,
6.460 132( — 2) 2.511798( —4) 2.028 280( — 10)
P, P, P

12 13 23
1.486 627( — 2) 2.839850( — 8) 7.495 054( — 6)

*The results listed are slightly different from those of Refs. 11 and 15. The
results listed in Ref. 15 are Py, = 2.210 93( — 2), Py, = 5.039 48( — 6),
and Py, = 8.980 32( — 4). We can reproduce these numbers exactly if
a = 100.0.

1103

We use the basis 1 of Sec. III—the 1D box energy eigen-
functions—to expand the amplitude density. The matrix ele-
ments are evaluated as follows: the quantities ¥, (R) are
evaluated analytically, using the relationship derived by
Sharp and Rapp.?® The integrals over the coordinate R are
carried out using a 200 point Gauss-Legendre quadrature
rule. The half-integrated Green’s functions were evaluated
at each Gauss—Legendre point by integrating over R ' using a
high order Newton—Cotes rule with a stepsize of 0.02 in the
intervals (O,R) and (R,a). At the energies of interest, three
channels are open. We have used a total of five channels in
our calculations. Including more channels has no effect on
the converged transition probabilities.

The results are presented in Table V, as fractional errors
in the transition probabilities. For comparison, we also pres-
ent the fractional errors computed from the log-derivative
Kohn method of Manolopoulos and Wyatt.'? Our imple-
mentation of this method parallels that of Ref. 12 in every
way, and hence we refer the reader to that work for further
details of this method. We also note that a recent paper by
Peet and Miller®* describes the application of a discrete rep-
resentation of the S matrix Kohn method to the same inelas-
tic problem studied here. However, their choice for the pa-
rameters u and « differ slightly from ours.

Many items in Table V deserve comment. First of all, we
note that the log-derivative NVP-F converges the transition
probabilities to within 19 (0.01 fractional error) of the ex-
act value with only 30-35 L ? basis functions per channel, at
all energies investigated. This shows that the log-derivative
NVP-F is capable of achieving rapid convergence over an
energy range large enough to make the method practically
useful. Compared to the convergence rates exhibited by the
NVP, the log-derivative KVP requires significantly more ba-
sis functions to achieve similar accuracies, especially as the
energy increases. This is not surprising, since earlier com-
parisons of the KVP with the SVP and the NVP have
shown'*'¢ that the latter methods are capable of faster con-
vergence.

Another item of interest in Table V is that at scattering
energies that are very different from the value of 2, the
NVP-F achieves a certain accuracy very quickly, but is
somewhat slow to converge further. Examples of this behav-
ior are the probabilities Py, and P, at E = 5.2, 5.5, and 6.9.
The KVP on the other hand, does require more basis func-
tions than the NVP at these energies to reach 1% accuracy.
However, as the number of basis functions is increased, the
KVP continues to converge rapidly, eventually achieving
higher accuracy than the NVP, for the same number of basis
functions. This contrast in behavior between the two meth-
ods is a reflection of the fact that the matrix elements of the
log-derivative NVP functional in Eq. (20) arenot truly ener-
gy independent in the same sense as those of the Kohn meth-
od. We observed and discussed in Sec III, a similar behavior
in the case of the potential scattering results presented in
Table IT1. As mentioned there, the reference energy Green’s
functions are most efficient when the scattering energy E is
in the vicinity of the reference energy «°, and when E shifts
further and further away from this value, the functional pro-
gressively loses its ability to achieve high accuracy rapidly.
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TABLE V. Fractional errors in transition probabilities for the Secrest-Johnson problem, of Eq. (17), as func-
tions of the number of L ? basis functions. The parameters used are identical to those in Table IV. For the NVP,

2 =6.0.
Py, Py, Py,
N NVP-F KVP NVP-F KVP NVP-F KVP
E=52
25 0.0221 0.9996 0.1018 0.9997 0.0002 0.6254
30 0.0036 0.9933 0.0141 0.9921 0.0098 0.0061
35 0.0024 1.0593 0.0106 1.0604 0.0079 0.0041
40 0.0015 0.0052 0.0075 0.0052 0.0059 a
45 0.0010 a 0.0054 a 0.0043 a
E=55
25 0.0190 0.9999 0.0061 0.9999 0.0177 0.8876
30 0.0014 0.9971 0.0055 0.9970 0.0072 0.0152
35 0.0001 0.8199 0.0037 0.8198 0.0039 0.0048
40 a 0.0192 0.0024 0.0192 0.0024 0.0001
45 a a 0.0016 a 0.0016 a
E=58
25 0.0026 1.0 0.0035 1.0 0.0002 0.8453
30 0.0007 0.9964 0.0004 0.9970 0.0002 0.1745
35 0.0002 0.8543 0.0001 0.8543 0.0001 0.0084
40 0.0001 0.0077 a 0.0078 a a
45 0.0001 a a a a a
E=6.0
25 0.0089 1.0 0.0089 1.0 a 0.9894
30 a 0.7615 a 0.5364 a 0.8180
35 a 10.1205 a 10.0951 a 0.1174
40 a 0.1613 a 0.1613 a 0.0018
45 a 0.0005 a 0.0005 a a
E=6.2
25 0.0094 1.0 0.0094 1.0 0.0006 0.9967
30 0.0010 0.9960 0.0012 0.9914 0.0001 0.3156
35 0.0004 0.9428 0.0005 0.9430 a 0.0071
40 0.0002 0.0861 0.0003 0.0861 a 0.0015
45 0.0001 0.0002 0.0002 0.0002 a a
E=65
25 0.0563 1.0 0.0610 0.9973 0.0003 0.9982
30 0.0010 0.9999 0.0002 1.0 0.0012 0.9180
35 0.0005 0.9921 0.0001 0.9918 0.0009 0.0684
40 0.0003 0.6626 0.0002 0.6626 0.0006 0.0135
45 0.0001 0.0055 0.0002 0.0055 a 0.0001
E=69
25 0.4255 1.0 0.4116 0.9858 0.0353 0.9949
30 0.0047 1.0 0.0074 0.9892 0.0116 1.7268
35 0.0008 0.9964 0.0057 0.9972 0.0061 0.2218
40 0.0002 0.8235 0.0038 0.8283 0.0037 0.0232
45 a 0.0312 0.0026 0.0312 0.0025 0.0008

#Error is less than 5.0 X 1073,

The important point however, is that in spite of this, the
NVP is able to achieve accuracies better than 1% very rapid-
ly over a significant range of scattering energies, for a given
Green’s function reference energy. Within the energy range
5.8<E<6.5, the NVP results do converge (to within
5.0 10~3%) faster than those from the KVP.

There is, however, another important question that we
have to address: how does the method behave when the ener-
gy range of interest includes channel thresholds? In the case
of a three-dimensional collision problem, many channels
open up as the energy is increased. This would lead to the
situation where the present method would attempt to treat a
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closed channel with an open channel Green’s function (if
E <?), and an open channel with a closed channel Green’s
function (if E > x?). To test whether the method can achieve
satisfactory convergence under these circumstances, we
present two more calculations: with «? fixed at 6.0, we com-
pute the Y matrix at £ = 4.9 where only two channels are
open, using a total of five channels, and also at £ = 7.2 where
four channels are open, using a total of seven channels. In the
former case, the closed channel corresponding to n =2 is
represented by the open channel G (R,R ') in Eq. (19),
and in the latter case, the open channel » = 3 is represented
by the G'™ that corresponds to a closed channel. The results
are presented in Table VI, along with the KVP results at the
same energies. These results indicate that the present meth-
od does achieve rapid convergence to within 1% of the exact
results even when the energy range of interest includes chan-
nel thresholds.

Once again we notice in Table VI, that the NVP results
achieve a certain level of convergence rapidly—generally
faster than the KVP (P,, at E = 7.2 being the sole excep-
tion)—but is slow to converge further. However, from a
practical point of view, accuracies greater than 1% are rare-
ly necessary. Therefore, we believe that these results show
that the log-derivative NVP-F is a viable method for scatter-
ing calculations, having significant advantages over the ver-
sion of NVP-F that computes the K or T matrix directly.

1105

V. DISCUSSION

In this paper, we have presented the Schwinger and
Newton variational functionals for the log-derivative matrix
Y. Our discussion of the boundary conditions satisfied by the
Green’ functions used in the present methods led to the ob-
servation that the Green’s functions need not explicitly de-
pend on the scattering energy. This is in sharp contrast to the
Green’s functions used in the K (or T) matrix versions of the
methods. We showed that this “energy independence” of the
Green’s functions lead to one great advantage: the matrix
elements required to set up the linear system of equations
AC = B need be evaluated only once for a given basis size.

We tested the convergence characteristics of these func-
tionals using three one-dimensional potential scattering
problems to compute Y(a), where a is a sufficiently large
value of the translational coordinate R, that for R > a, the
scattering wave function has essentially reached its asympto-
tic form. We then used the value of Y and the well-known
asymptotic form of W(R), to compute the K matrix ele-
ments. Comparing the results of these calculations to those
from the Schwinger and Newton methods that compute the
K matrix directly, we established that the two classes of
methods converge at similar rates. We illustrated the advan-
tages of the “energy independence” of the Green’s function
by computing the K matrix elements for potential scattering

TABLE V1. Fractional errors in transition probabilities for the Secrest-Johnson problem, of Eq. (17), at
energies involving channel thresholds. The parameters used are the same as those in Table IV. For the NVP,

K =60.
E=49
POI

N NVP-F KVP

25 0.2090 0.9680

30 0.0357 0.8764

35 0.0153 0.1723

40 0.0085 0.0004

45 0.0054 a

E=72
Py, Po Pos
N NVP-F KVP NVP-F KVP NVP-F KVP
30 0.0230 1.0 0.0224 1.0 0.6357 0.9991
35 0.0089 0.8429 0.0078 0.6351 0.0461 0.4221
40 0.0048 0.5207 0.0038 0.5232 0.0017 0.5352
45 0.0030 0.0059 0.0022 0.0559 0.0064 0.0544
50 0.0020 0.0002 0.0015 0.0002 0.0040 0.0002
P, Py Py

N NVP-F KVvP NVP-F KvVP NVP-F KVP
30 0.0003 0.9903 0.0287 0.9891 0.0185 0.0071
35 0.0008 1.3700 0.0167 1.3499 0.0153 0.0100
40 0.0008 0.0162 0.0126 0.0102 0.0117 a
45 0.0006 0.0017 0.0095 0.0010 0.0089 a
50 0.0004 a 0.0072 a 0.0068 a

2Error is less than 5.0x 1075,
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from these one-dimensional potentials at eight different en-
ergies, using a Green’s function defined at a fixed energy. In
Sec. IV, we extended this approach to the multichannel case,
and computed the transition probabilities for the Secrest—
Johnson inelastic scattering problem,? using Green’s func-
tions defined with respect to a fixed energy in each vibration-
al channel. Further calculations showed that the method
succeeds in achieving rapid convergence even when the ener-
gy range of interest includes channel threshoids.

The present approach is therefore, a practical method
for scattering calculations at several different energies, hav-
ing important advantages over the X matrix Schwinger and
Newton methods. A consideration of the computational ef-
fort (CPU times) required for each stage of the calculations
helps to bring this point into sharp focus. The times quoted
below were obtained during a typical run for the Secrest—
Johnson problem, using a total of five channels, on the
CRAY X-MP/24 at the University of Texas Center for High
Performance Computing. For N = 35, it takes 53.4 seconds
to evaluate the half-integrated Green’s functions for all 35 L 2
basis functions in the five channels. Evaluation of all the
matrix elements required to set up matrices A and B requires
another 2.1 s. (Although we are certain that considerable
improvements can be achieved in these times with more effi-
cient quadrature schemes,”'® we feel that this part of the
calculation would still require relatively large amounts of
CPU time.) However, once these matrix elements are evalu-
ated, we are able to set up and solve the linear system
AC = B in only 0.7 s at each of the seven energies,” without
having to repeat the first two steps. In effect, by going to the
log-derivative formulation, we have avoided having to re-
peat the most time-consuming steps of the calculation at
each energy.

The present method, however, does not compare well
with the discrete representation of the log-derivative Kohn
method,'? as far as computational times are concerned. For
the same basis size as above, i.e., N = 35, the setup time in
the discrete representation of the log-derivative Kohn meth-
od is only 0.20 s. Even if one abandons the discrete represen-
tation and employs higher order quadratures to evaluate the
matrix elements of A and B exactly, the setup time will still
be much less than the times quoted above for the NVP, for
the single reason that the lengthy step of evaluating the half-
integrated Green’s functions is completely absent in the
Kohn method.

In spite of these comments, we believe that the present
approach is a useful one. The faster convergence of the NVP
compared to the Kohn method is likely to become a signifi-
cant factor as the energy increases and more vibrational
channels become open. Note that as the energy increases, the
K VP requires larger and larger numbers of basis functions to
converge the P;’s to 1% accuracy, while the convergence of
the SVP and the NVP can certainly be enhanced by redefin-
ing the value of k. This becomes an important consideration
when larger problems such as the reactive collision of an
atom A with a heteronuclear diatomic BC, are to be tackied.
In such cases, the savings in memory offered by the rapid
convergence of the present methods, coupled with the possi-
bility of a further reduction in the basis size by the use of a
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distortion potential,®'® cannot be overlooked.

We conclude with a discussion of a further modification
to the method presented in this paper. This has to do with the
way the Green’s functions are represented in the present
work. Recall that the most time-consuming step of our cal-
culations is the evaluation of the half-integrated Green’s
functions. The modification we discuss below effectively
eliminates this step, and promises to make the method more
competitive with the Kohn method. The essential idea be-
hind this approach comes from the work of Miller and Jan-
sen op de Haar,’® where they present an approximation to
the Green’s function. Qur approach consists of writing the
kernel of the Green’s function as

G°(RR') = Y (R k) (k| — Holl})"'(I|R"),
kI
(21)

where the {|k )} form a complete set of basis functions that
satisfy the same boundary conditions imposed in the log-
derivative Kohn method': all |k ) except one vanish at
R = 0 and R = g; the one exception [labeled u,(R) in Ref.
12] vanishes at R = 0, but is equal to 1 at R = a. The Lo-
batto basis of Ref. 12 is an example of a class of functions that
meet these requirements. Matrix elements of H, do not con-
tain any discontinuities, nor do they have discontinuous de-
rivatives, and hence can be rapidly evaluated either approxi-
mately by a discrete representation or exactly by higher
order Gaussian quadratures. The advantage of this ap-
proach is that the matrix elements involving the Green’s
function can now be evaluated by simple matrix multiplica-
tions. For example, the matrix element (u,|G°|u,) is now
evaluated as

(u,|Guy) = z<u1|k>(<k K> — Holl)) =1 |u,),

where the |u;) and |u,) need not belong to the same class of
JSunctionsasthe {|k }}. This has at least two important impli-
cations. One, in vector processing computers, matrix multi-
plications are executed much faster than the repeated qua-
dratures necessary to evaluate the half-integrated Green’s
functions for each basis function no longer need be stored at
each quadrature point. A distorted wave Green’s function
can be represented by simply including the distortion poten-
tial in H,,. These modifications are likely to cut down quite
dramatically, the time required to evaluate the matrix ele-
ments that constitute matrices A and B, and thus make the
log-derivative Schwinger and Newton methods more com-
petitive with the Kohn method. We are at present, incorpor-
ating this treatment of the Green’s function into the log-
derviative Newton method, in an application to a reactive
scattering problem.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the several invaluable
discussions and suggestions that Dr. D. E. Manolopoulos
provided, at all stages of this work. Grants of computer time
on the CRAY X-MP/24 at the University of Texas Center
for High Performance Computing are gratefully acknowl-
edged.

J. Chem. Phys., Vol. 81, No. 2, 15 July 1989



B. Ramachandran and R. E. Wyatt: Variational principles for log derivative 1107

'W. Kohn, Phys. Rev. 74, 1763 (1948).

2R. K. Nesbet, Variational Methods in Electron-Atom Scattering (Plenum,
New York, 1980).

3J. Schwinger, Phys. Rev. 72, 742 (1947).

“R. G. Newton, Scattering Theory of Waves and Particles, 2nd. ed. (Spring-
er, Berlin, 1982).

S(a) W. H. Miller and B. M. D. D. Jansen op de Haar, J. Chem. Phys. 86,
6213 (1987); (b) J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 140,
329 (1987); (c) J. Z. H. Zhang, S.-1. Chu, and W. H. Miller, J. Chem.
Phys. 88, 6233 (1988).

). Z. H. Zhang and W. H. Miller, J. Chem. Phys. 88, 4549 (1988).

3. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 153, 465 (1988).

8], E. Adams and W. H. Miller, J. Phys. Chem. 83, 1505 (1979); M. R.
Hermann and W. H. Miller, Chem. Phys. 109, 163 (1986).

?(a)D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and
D. J. Kouri, J. Phys. Chem. 91, 6080 (1987); (b) D. W. Schwenke, K.
Haug, M. Zhao, D. R. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J.
Phys. Chem. 92, 3202 (1988); (¢) M. Mladenovic, M. Zhao, D. G. Truh-
lar, D. W. Schwenke, Y. Sun, and D. J. Kouri, Chem. Phys. Lett. 146, 358
(1988); (d) M. Zhao, M. Mladenovic, D. G. Truhlar, D. W. Schwenke,
Y. Sun, D. J. Kouri, and N. C. Blais, J. Am. Chem. Soc. 111, 852 (1989);
(e) D. W. Schwenke, M. Mladenovic, M. Zhao, D. G. Truhlar, Y. Sun,
and D. J. Kouri, in Proceedings of the NATO Advanced Research Work-
shop on Supercomputer Algorithms for Reactivity, Dynamics, and Kinetics
of Small Molecules; NATO ASI Series, edited by A. Lagana (Riedel, Dor-
drecht, to be published).

1M Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and
D. J. Kouri, J. Phys. Chem. 92, 7035 (1988).

K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Zhang, and D. J.
Kouri, J. Phys. Chem. 90, 6757 (1986); J. Z. H. Zhang, D. J. Kouri, K.
Haug, D. W. Schwenke, Y. Shima, and D. G. Truhlar, J. Chem. Phys. 88,
2492 (1988); K. Haug, D. W. Schwenke, D. G. Truhlar, Y. Zhang, J. Z.

H. Zhang, and D. J. Kouri, ibid. 87, 1892 (1987); J. Z. H. Zhang, Y.
Zhang, D. J. Kouri, B. C. Garrett, K. Haug, D. W. Schwenke, and D. G.
Truhlar, Faraday Discuss. Chem. Soc. 84, 371 (1987); Y. C. Zhang, J. Z.
H. Zhang, D. J. Kouri, K. Haug, D. W. Schwenke, and D. G. Truhlar,
Phys. Rev. Lett. 60, 2367 (1988).

12D, E. Manalopoulos and R. E. Wyatt, Chem. Phys. Lett. 152, 23 (1988).

3D. Secrest and B. R. Johnson, J. Chem. Phys. 45, 4556 (1966).

'“T. N. Rescigno and B. L. Schneider, Phys. Rev. A 37, 1044 (1988);J.Z. H.
Zhang and W. H. Miller, J. Chem. Phys. 89, 4454 (1988).

3(a) B. Ramachandran, T.-G. Wei, and R. E. Wyatt, Chem. Phys. Lett.
151, 540 (1988); (b) J. Chem. Phys. 89, 6785 (1988). Reference 15(a)
contains an error: the Green'’s function for the X matrix is given in Eq. (2)
of this work, while the computations were done with the Green’s function
for the T'matrix. Reference 13(b) contains the correct expression for the
T matrix Green’s function.

'*Many comparisons of the various variational methods have been made,
for one potential using one type of basis functions. See, for example, D.
Thirumalai and D. G. Truhlar, Chem. Phys. Lett. 70, 330 (1980); G.
Staszewska and D. G. Truhlar ibid. 130, 341 (1986); J. Chem. Phys. 86,
2739 (1987). Also see Refs. 5(a) and 5(c).

7R. Courant and D. Hilbert, Methods of Mathematical Physics (Intersci-
ence, New York, 1953), Vol. 1, p. 351.

13D. E. Manolopoulos, Ph.D. thesis, Cambridge University, 1988.

'W. H. Miller, J. Chem. Phys. 50, 407 (1969).

201, P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).

2!'For example, see M. Abramowitz and 1. A. Stegun, Handbook of Math-
ematical Functions (Dover, New York, 1972) (25.4.32).

22B. R. Johnson, J. Comp. Phys. 13, 445 (1973).

T. E. Sharp and D. Rapp, J. Chem. Phys. 43, 1233 (1965).

24A. C. Pect and W. H. Miller, Chem. Phys. Lett. 149, 257 (1988).

25We have used the NaG routine FO4AEF to solve the system AC=B for
multiple right-hand sides.

J. Chem. Phys., Vol. 91, No. 2, 15 July 1989



The Journal of Chemical Physics is copyrighted by the American Institute of Physics
(AlP). Redistribution of journal material is subject to the AIP online journal license
andfor AlP copyright. For more information, see http:fojps.aip.orgficpoficperisp
Copyright of Journal of Chemical Physics is the property of American Institute of
Physics and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.



The Journal of Chemical Physicsis copyrighted by the American Institute of Physics (AIP). Redistribution of
journal material is subject to the AIP online journal license and/or AlP copyright. For more information, see
http://ojps.aip.org/jcpoljcpcr/jsp



