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In this paper, we examine the behavior of the quantum energy levels of a coupled oscillator 
system as the zero-order frequencies are varied to carry the corresponding classical system 
through a resonance. We find that the levels exhibit a pattern that is characteristic of the 
resonance. This pattern consists of clusters of levels, each containing a number of curves that 
run roughly parallel to one another and a number of curves that undergo pairwise narrowly 
avoided crossings. Adiabatic switching calculations show that the “parallel” curves are 
associated with states within the classical resonance region, while the narrowly avoiding curves 
are associated with states that are outside this region. It is further shown that the curves 
describing resonance states are formed from zero-order nonresonant curves by the overlap of 
many avoided crossings. This reorganization of multiply intersecting lines into parallel curves 
reflects the classical reorganization of phase space at a resonance. 

I. INTRODUCTION 

Nonlinear resonances are of central importance in clas- 
sical mechanics. The presence of even a single resonance 
can profoundly affect the dynamics of energy transfer be- 
tween coupled subsystems. Id The existence of more than 
one resonance may lead to the destruction of 
Kolomogorov-Arnold-Moser (KAM) surfaces and non- 
integrability. 7,8 The crucial role of nonlinear resonances in 
the formation of dynamic instabilities is clearly expressed 
in Chirikov’s7 criterion for the onset of chaos, which re- 
quires the overlap of neighboring resonances. 

As one might expect from correspondence principle 
arguments, nonlinear resonances are also of great impor- 
tance in determining the behavior of quantum systems. 
The influence of resonances on the dynamics and spectros- 
copy of such systems has been investigated by many work- 
ers.‘-% In this paper, we examine how nonlinear reso- 
nances affect the pattern of energy levels of a quantum 
system when a parameter in the Hamiltonian is varied. 

A number of workers have investigated the influence of 
resonances on the energy levels of systems with fixed 
Hamiltonians.g-14~‘7~‘9’25 There has also been much discus- 
sion of the effect of these resonances on the pattern of 
energy levels that result when a parameter in the Hamil- 
tonian is varied.20-23S26-2g It has been proposed that the 
isolated avoided crossing of a pair of levels constitutes the 
quantum analog of a resonance.20-22 It has been further 
conjectured that multiple overlapping avoided crossings 
constitute the analog of overlapping resonances and thus 
represent a signature of classical chaos in a quantum sys- 
tem.2Sz2’30 Avoided crossings associated with overlapping 
resonances have been cited as the source of Gaussian or- 
thogonal ensemble (GOE) level statistics in chaotic quan- 
tum systems. 26S31P32 In addition, a number of other statisti- 
cal properties of avoided crossings have been linked to the 
chaotic properties of the corresponding classical sys- 
tem 33-36 

The reasons for associating avoided crossings with 

classical resonances can be formulated in a number of 
ways20Y22(b)T26 but these are equivalent to the following 
argument. *22(b)P26 focusing on a system of two degrees of 
freedom for simplicity, we note that intersection of a pair 
of levels implies semiclassically that H(Ji ,J2) 
= H(J; ,Ji), where Ji and Jj are action variables for the 
two states. If [ Ji - Jj 1 is small, we may expand H(J; ,Ji) 
about J,! = Ji to obtain 

where Wi=aH/dJ are the frequencies associated with the 
actions Jj . Now, substituting the semiclassical quantization 
condition Ji= (n+ai/4)?i, where (Yi is the Maslov index, 
we obtain 

(nl--n;)q= (ni-n2>w2 (2) 

at the crossing, which is equivalent to the classical reso- 
nance condition nwl=mw2. Thus, the intersection of two 
levels in a quantum system appears to imply the existence 
of a resonance in the corresponding classical system. The 
intersection described above becomes an avoided crossing 
when coupling between the states lifts the degeneracy, as in 
the textbook two-level problem.37 

Although this argument seems compelling, it has been 
apparent for some time that the relationship between res- 
onances and avoided crossings cannot be quite so simple. If 
this relationship were correct, one would expect that the 
mixing of wave functions near an isolated avoided crossing 
would correspond to the classical rearrangement of phase 
space near a resonance which leads to formation of reso- 
nant tori; the splitting between levels at an avoided cross- 
ing should then be related to a classical frequency for res- 
onant motion. However, it has been shown repeatedly that 
the mixing of the wave functions in an isolated avoided 
crossing does not correspond to any classical process, but is 
a consequence of tunneling12~‘7~23~27~28~3843 between tori as- 
sociated with the nearly intersecting levels (see, however, 

J. Chem. Phys. 99 (5), 1 September 1993 0021-9606/93/99(5)/3659/10/$6.00 @  1993 American Institute of Physics 3659 



Ref. 44). Thus, the energy difference between the repelling 
levels is not related to a classical frequency, but vanishes 
faster than any power of fi in the classical limit. Ozorio de 
Almeida23 has, in fact, shown that the states that are in- 
volved in this tunneling do not even lie within the reso- 
nance, but correspond to nonresonant tori. 

These considerations raise a number of questions con- 
cerning the relationship between isolated resonances and 
avoided crossings. ( 1) How do the energy levels of a quan- 
tum system behave when a parameter change carries the 
corresponding classical system through a resonance? If it is 
true that avoided crossings do not directly signify a reso- 
nance, what does? Is there, in fact, any characteristic pat- 
tern in a plot of levels vs a parameter that is indicative of 
a resonance? (2) How is the specifically classical nature of 
resonance formation reflected in such a plot? Can this clas- 
sical effect be distinguished from nonclassical effects? (3) 
If the above argument concerning the relationship between 
resonances and avoided crossings is not entirely correct, 
why? How can it be corrected? The goal of this paper is to 
investigate these issues using a simple two-dimensional sys- 
tem as an example. 

FIG. 1. A Poincare surface of section for a few typical trajectories of the 
Hamiltonian of Eq. (3) at q=O.80. A typical resonant trajectory is 
labeled “R”, while two types of nonresonant trajectories are labeled 
“NR.” The mildly chaotic trajectory lies on the separatrix between the 
resonant and nonresonant regions of phase space. The nonresonant tra- 
jectory that has dense intersections along the lower portion of the figure 
also has several intersections on the upper portion, but these he very close 
to those of the separatrix trajectory. 

The remainder of this paper is based on the following 
plan: In Sec. II, we describe the low-energy classical dy- 
namics of the system we choose to study and examine its 
behavior near a strong resonance. In Sec. III, we describe 
the behavior of the quantum energy levels plotted as a 
function of a Hamiltonian parameter in the vicinity of this 
resonance. We also relate this behavior to the classical res- 
onance by studying closely related model resonance Hamil- 
tonians, obtained by simplifying the nature of the coupling 
in the original Hamiltonian. In Sec. IV, we verify the con- 
clusions of Sec. III by analyzing the quantizing trajectories 
of the fully coupled system. Finally, in Sec. V we present a 
discussion and summary of the main results. 

tories belonging to the 1:l resonance resemble those for a 
system with uncoupled normal modes, while nonresonant 
trajectories resemble those for a system with uncoupled 
local modes.‘3,45 

The behavior of the system in the vicinity of a reso- 
nance can be analyzed by the well-known procedure of 
Chirikov.7 We express the Hamiltonian of Eq. (3) in terms 
of actions and angles appropriate for the uncoupled 
(p=O) system 

H(p,q)=Ho(Jl,J2)+pPl(Jl,el)P2(J2,e2), 

where 

II. PRELIMINARIES 

We examine a simple, two-dimensional system consist- 
ing of a Morse oscillator coupled to a harmonic oscillator. 
The system is described by the Hamiltonian 

H=4(p~+p~+o~)3-pp~~+D(1-e-PX)2, (3) 

where the harmonic frequency w2 is varied to take the 
system into and out of resonances. The remaining 
parameters are chosen to be D= 10.0, p=O.lO, and 
/3=(2D)-“2. With this choice for 6, the low-energy har- 
monic frequency of the Morse oscillator Q = (2 Df12) 1’2 has 
the value 1.0. 

is a function only of the Morse and harmonic actions 
( J1 ,J2). The Morse oscillator momentum is explicitly 
given by the expression46,47 

PI(JI,%>=(~D) l”~asinel(i--LcOsel)-l, (6) 

where the action (energy) dependent Morse frequency o1 
is given by 

In Fig. 1, we show the Poincare surface of section for 
a few typical low energy trajectories of this system with and 
w2=0.80. Two major types of trajectories can be clearly 
identified-trajectories that belong to the 1:l resonance, 
and nonresonant trajectories. There are two types of non- 
resonant trajectories-those con&red to the “lagoon” 
formed by the separatrix, and those that envelope the sep- 
aratrix. The relative volumes of phase space occupied by 
these two types of nonresonant trajectories depend on the 
value of w2. As has been shown for a similar case, trajec- 

The harmonic oscillator momentum is expressed as 

p2(JdM = (2~2J2) l/2 sin e2. (9) 
Expanding Eq. (6) in a Fourier series, substituting the 
result in Eq. (4)) and simplifying, we obtain 
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H=Ho(JI,J,) -2p(Dw,J,) 

x ( -l)n cos(ner-e2). (10) 
Most of the interaction terms in Eq. ( 10) vary rapidly with 
time and give negligible contributions. Near an n:l reso- 
nance, however, where the condition nwl --w2=0 is ap- 
proximately obeyed, the term involving cos( n6$ - e2) var- 
ies slowly and may dominate the sum. Thus, retaining only 
the term proportional to cos( 8, - e2>, one obtains an ap- 
proximate Hamiltonian which describes the system’s be- 
havior in the vicinity of the 1:l resonance 

H=Ho(J,,J,)+~V(JI,J~)~~~(~,--~~), 

where 
(11) 

For further analysis, it is advantageous to subject the 
expression of Eq. ( 11) to a canonical transformation using 
a generating function of the type F2(f31,f92,1,,12), where 
(1tJ2) are the new actions conjugate to the new angles 
(h,$2). Choosing 

yields J1=U1+12)/2, J2=(11-Q/2, +,=(e,+e,)/2, 
and #2= (8i - 0,)/2. Expressing the Hamiltonian in terms 
of the new variables and approximating the coupling factor 
Y( JI ,J2) by a constant V, , we obtain the resonant Hamil- 
tonian of Chirikov7 

W11;12,952> =%Q;+ (n+w,)I,l +HR, 

where 
(13) 

and q=(l--llW4D)sZ, w; = -Q2/8D, and E’ 
= (~1 - w~)~/SW;. 

Note that since +t does not appear in this Hamiltonian, 
It is a constant of motion. The term HR is the Hamiltonian 
for a one-dimensional hindered rotor with angular momen- 
tum I2 + (01 - w2) /24 and angle coordinate &. Since the 
“mass” l/w; of the rotor is negative, we may think of the 
motion as taking place in the inverted potential 
-2 V, cos (24,). This system has two characteristic types 
of trajectories-librating orbits with energies within the 
cosine barrier 2 V, > HR+ E’ > - 2 VR and rotating orbits 
with energies beyond the barrier HR + E’ < -2 V, . The 
librating orbits correspond to resonant trajectories of the 
original system, while the rotating orbits correspond to 
nonresonant trajectories of the original system. The trajec- 
tory with HR + E’ = - 2 V, serves as a separatrix dividing 
phase space into the resonant and nonresonant regions. In 
Sec. III, we shall return to this Hamiltonian and analyze its 
quantum behavior. 
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FIG. 2. Several quantum energy levels of the Hamiltonian of Eq. (3) as 
a function of the harmonic frequency w2. 

III. QUANTUM ENERGY LEVEL CURVES 

The quantum energy levels of our system are obtained 
by diagonalizing the Hamiltonian of Eq. (3) in a direct 
product basis of the energy eigenfunctions of the Morse 
and harmonic oscillators K-n,, ,,(v)l 
= [q,,(x) Q q,,(y)]. The Morse eigenfunctions $n;21 (x) are 
obtained by diagonalizing the Morse Hamiltonian in a ba- 
sis of infmite square well eigenfunctions. 

In Fig. 2, we present several energy levels of our sys- 
tem as a function of the harmonic frequency w2. The figure 
consists of a repeated pattern of level clusters. The clusters 
are especially easy to identify at lower energies. Each clus- 
ter consists of a few almost R~rallel curves at high energy 
and a few curves that undergo isolated crossings with each 
other at lower energies. The number of levels in the clus- 
ters increases with increasing energy. The avoided cross- 
ings near the lower and upper ranges of w2 plotted in Fig. 
2 result from the overlapping of different clusters. 

Each cluster is associated with the resonance. In par- 
ticular, the clusters are equivalent to the energy level 
“polyads”14 identified in previous studies of resonant sys- 
tems with fixed Hamiltonians.1’~‘3~‘4~‘7-‘g~25 This can be 
shown as follows: A close approximation to the energy 
level curves of a given cluster can be obtained by diagonal- 
izing the Hamiltonian in a small, restricted basis, consist- 
ing only of the (n + 1) zero-order states for which nl +n2 
=n, where n is a fixed value that identifies the cluster. The 
matrix elements of H are thus given by 

H 
mlmz.“lfiz 

where 
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FIG. 3. (a) Zero-order energy levels of the system corresponding to 
n,+ n,=n=5, 6, and 7 plotted as a function of the harmonic frequency 
0,; (b) the energy levels of the system resulting from diagonalizing the 
Hamiltonian of Eq. (3) in a basis restricted to those functions satisfying 
n,+n,=n for n=5, 6, or 7. In both figures, the levels corresponding to 
n=5 and 7 are plotted using solid lines, while the n=6 levels are shown 
as dashed lines. 

-qm2= (m,+;)m- ( ml+;)2s+ ( m2+;)h2 
(16) 

is the energy of the uncoupled Morse-harmonic system and 
V m*m2,n,n2= PCn,m, IA.4 L,?z,~ (17) 

is the coupling. 
For convenience, we restrict our attention to clusters 

with n=5, 6, and 7. The zero-order energies timlmZ for 
these clusters are shown in Fig. 3(a) and the energy levels 

resulting from diagonalizing H in the restricted basis are 
shown&-Fig. 3 (b) . As implied by Eq. ( 16)) the zero-order 
energies of Fig. -3(a) form a web of intersecting straight 
lines when plotted as a function of w2. On the other hand, 
the energy levels in Fig. 3(b) are in qualitative and quan- 
titative agreement with the accurate energy levels of Fig. 2. 
Since the restricted basis does not take into account the 
coupling between levels belonging to different clusters, the 
levels belonging to different clusters in Fig. 3(b) undergo 
true crossings. We note that while the parallel curves in the 
clusters do not appear to undergo avoided crossings with 
one another in Fig. 3 (b), their formation can be viewed as 
the result of strongly overlapping multiple avoided cross- 
ings of the unperturbed levels of Fig. 3 (a). 

Let us now reexpress the matrix elements appearing in 
Eq. ( 15) in terms of the quantum numbers it =IZ~ + n, and 
m-yll-n2. Then, recognizing that the interaction 
V m1~2,n,~2 couples only harmonic states with n2=nlil, 
Eq. (15) is found to have the form 

K,zn,mw = I 
ft(n+l)2~2~;+(n+l)~(~+w2)l 

-_~~ -t 
7%; fi - 

x2 -m2+5 (q-w2)m S,,L?,,~ 
I 

+ Vmn,dn~ (6 m,m~+2+hn,m~-2Shm~ 7 (18) 

where the frequency w1 depends on the quantum number n 
as 

@1=(-l l?g. 
[ 

This expression makes it clear why the number of levels in 
the clusters increases with energy. The first two terms in 
Eq. ( 18) describe an increasing function of n (for physi- 
cally meaningful values of this quantum number) and es- 
tablish the energy “origin”,of the cluster. The number of 
levels in such a cluster is n+ 1 since diagonalization of the 
Hamiltonian is carried out in the basis of the n+ 1 func- 
tions with m=-n, -n+2,...,n. A comparison of this 
analysis to that of Ref. 14 also establishes the equivalence 
of the clusters to energy level polyads. 

The relationship of the clusters to the classical reso- 
nance can be established by quantizing the classical reso- 
nance Hamiltonian of Eq. ( 13). For this, we replace the 
momenta Ij by operators - iSi3/ac#j. It then becomes clear 
that matrix elements of this operator in the basis of free 
rotor eigenstates R,,= B exp[i(n+l)41+im42] are iden- 
tical to the matrix elements given by Eq. ( 18), provided 
that V mnm~n~ are approximated as the constant V, for all , 
coupled states. Thus our diagonalization of the quantum 
Hamiltonian of Eq. ( 18) is seen to be “almost” equivalent 
to solution of the Schrijdinger equation associated with the 
resonance Hamiltonian of Eq. ( 13). We now show that the 
resonance Hamiltonian yields energy level curves that are 
qualitatively similar to those of the exact Hamiltonian. The 
nature of these curves can be directly correlated with the 
resonant/nonresonant property of the levels, as shown be- 
low. 
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FIG. 4. Several energy levels of the hindered rotor Hamiltonian of Eqs. 
( 14) as a function of the frequency w2. The parameters used are 
V,=O.OS, 0, =0.85, and D= 10. The dashed curves indicate the values 
2VR--F and -2V,-E’, which are the boundaries of the resonance. 
Note that the energy levels in the region enclosed by the dashed curves 
run nearly parallel to each other, while those outside this region show 
isolated avoided crossings. 

In Fig. 4, we show the energy levels obtained by nu- 
merically diagonalizing the resonance Hamiltonian opera- 
tor corresponding to HR of Eq. (14) in a large basis of free 
rotor functions. The qualitative similarity between this pat- 
tern and a cluster in Fig. 3(b)-a finite number of “par- 
allel” curves, and curves that display pairwise avoided 
crossings- is immediately apparent. The most obvious dif- 
ference between the two sets of curves, viz., the finite extent 
of the clusters of Fig. 3(b) vs the infinite (in principle) 
extent of the pattern in Fig. 4, is due to the fact that our 
diagonalization in Fig. 3 (b) is performed in the finite basis 
of n + 1 functions, while the formally exact diagonalization 
of the resonance Hamiltonian would require an infinite 
basis. 

We note that the parallel energy level curves shown in 
Fig. 4 are confined to energies 2VR > E+E’ > -2Vk that 
lie within the cosine potential of the resonance Hamil- 
tonian; these levels are associated with states that lie within 
the resonance. The other energy levels, which undergo 
sharp avoided crossings, have energies E+E’ < -2V,; 
such levels are associated with states that lie outside the 
resonance. This behavior of the energy levels for states 
lying within and outside a resonance zone can be shown to 
apply for general values of the parameters in HR and can be 
given an analytical explanation, as demonstrated in the 
Appendix. 

IV. SEMICLASSICAL ASSIGNMENT OF STATES 

In the preceding section, we examined the structure of 
a cluster and showed that the levels running parallel to 
each other are associated with states inside a resonance, 
while those undergoing avoided crossings are associated 

’ ivith states outside a resonance. These conclusions were, 
however, obtained for a model Hamiltonian derived from 
the Hamiltonian of Eq. (3) by applying a sequence of sim- 
plifying assumptions concerning the interactions between 
the states. In view of these approximations and the result- 
ing differences between Figs. 2 and 4, it is highly desirable 
to verify our conclusiqns for the original system by a direct 
and independent procedure. 

We thus seek a way of classifying the states associated 
with the levels of Fig. 2 as resonant or nonresonant without 
resorting to the assumptions of the previous section. To 
accomplish this, we generate the quantizing classical tori 
associated with these states and determine whether they 
are located within the classical 1: 1 resonance region. For 
alternative methods of assigning the states in a resonance 
zone, see Refs. i4(b), 48, and 49. 

We generate the quantizing tori of the present system 
by applying the method of adiabatic switching.2g*3g950-56 
The method is based on writing the Hamiltonian of the 
fully coupled system H(p,q) as 

H(Pd =Ho(p,s) +s(t)H’(p,q), 

where Ho is rigorously integrable and can be quantized by 
the application of the Einstein-Brillouin-Keller (EBK) 
rules, H’ is a nonseparable perturbation that renders H 
nonintegrable, and s(t) is a switching function that “turns 
on” the perturbation over a time interval O<t<T. Provided 
that Ho is chosen appropriately, and T is a sufficiently long 
interval, the quantized actions are expected to be adiabat- 
ically conserved during the switching process, thus yielding 
the quantized energy levels of the coupled system at the 
end of the switching. The spread in the final energies of an 
ensemble of trajectories, as reflected in the magnitude of 
the root-mean-square deviation AE,, , provides a measure 
of the accuracy of the fundamental assumption in the adi- 
abatic switching (AS) method, viz., the adiabatic conser- 
vation of actions. We refer the reader to Ref. 55 for details 
concerning the implementation of this method. 

In the case of the present system, it is clear from Fig. 
1 that there are two main types of trajectories in the vicin- 
ity of the 1:l resonance, viz., the nonresonant, local mode 
trajectories and the resonant, normal mode trajectories. 
Thus, to generate quantizing trajectories that lie outside 
the resonance, we apply the AS procedure with a zero- 
order Hamiltonian that describes independent local modes 
given by5’ 

H0=~(p2+p2+w~2)+D(1-e--BX)2 x Y 
and turn on the perturbation as 

(194 

H’(t) =mpP$y. (19b) 
To generate resonant quantizing trajectories, we apply the 
AS method with a zero-order Hamiltonian that is qua- 
dratic in momenta and coordinates 

H0=$~P~+P~+2pPxpy+~*x2+~22v2~, (204 

which admits a description of the oscillators as two inde- 
pendent normal modes, and turn the perturbation on as 
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The semiclassical energy levels EAs for the cluster with 
it =7 resulting from local mode (nonresonant) initial con- 
ditions are plotted as a function of o2 in Fig. 5(a). The 
crossing of the energy levels seen in this figure are indeed 
genuine crossings, as verified by the observed switch in the 
relative energies of states as they pass through a crossing. 
The AE,, values of the energy levels (not shown in the 
figure) are largest for the higher energy states, especially 
between w2=0.70 and 0.90, and smallest for the lower en- 
ergy states, indicating that the lower energy states are the 
nonresonant states in the cluster. 

The semiclassical energy levels EAs for the cluster with 
n=7 resulting from normal mode (resonant) initial con- 
ditions are plotted as a function of o2 in Fig. 5 (b) . The 
AE,, values (not shopn in the figure) are largest for the 
lower energy states, especially between w,=O.75 and 0.90, 

i. 8.5 r- 

W  6.3 

.*+ 4.c l- 
c 1.6 r 0.70 L 0.80 *- 0.90 1 .oo 1.10 

a2 . 

FIG. 5. Semiclassical energies from adiabatic switching (EAs) and exact 
quantum energies (EQM) as functions of wz . The EAs were generated by 
using ensembles of 320 trajectories per state, with a switching time 
T=400. The equations of motion were integrated by the sixth-order Gear 
hybrid method with a step size of 0.01. (a) EM from local mode (non- 
resonant) initial conditions for n=7 shown as empty squares connected 
by solid curves; (b) EAs from normal mode (resonant) initial conditions 
for n=7, shown as tilled circles connected by solid curves; (c) a compar- 
ison of E Q M  (solid curves) to EAs (symbols) for n=5,6, and 7. Resonant 
and nonresonant states are denoted by solid circles and empty squares, 
respectively. 

. .cz ,  , .  

and smallest for the higher energy states, indicating that 
the higher energy states are the resonant states in the clus- 
ter. In contrast to Fig. 5 (a), the resonant energy levels 
show no crossings in the entire frequency range examined, 
in keeping with the conclusions of the preceding sections. 

It should be noted that, whereas the local mode Ho 
does not lead to an accurate AS treatment for normal 
mode states, the normal mode Ho does sometimes lead to a 
successful AS treatment for local mode states. This occurs 
when the difference between a and o2 is large enough that 
the zero-order normal modes of Eq. (20a) resemble local 
harmonic modes with frequencies 0 and 02. Such a nor- 
mal mode Ho successfully produces local mode tori for 
states in which the harmonic oscillator quantum number is 
high and the Morse oscillator quantum number is low. 
Thus, accuracy of both the normal and local mode AS 
treatments in cases of this kind indicates nonresonant be- 
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havior. This also explains why the lowest lying curves of 
Fig. 5 (b) show nonresonant behavior (crossings) and tend 
to follow the local mode energy curves of Fig. 5(a) at low 
and high values of w2. 

TABLE I. Centers of clusters and number of levels in resonance for each 
cluster, as determined by Eqs. (27) and (28). 

These considerations, together with comparison of the 
two sets of EAs with the exact quantum energies EQM, now 
allow us to classify the quantum states as resonant or non- 
resonant. Figure 5 (c) presents this assignment and com- 
pares the corresponding values of EAs and EQM for clusters 
n=5, 6, and 7. The agreement between the semiclassical 
and exact quantum energies is seen to be very good. 

It is clear from Figs. 5(a) and 5(c) that, despite the 
good agreement of the selected EAs with EQM, the AS 
method is unable to reproduce the avoided crossings ex- 
hibited by the actual nonresonant levels. This failure is 
consistent with the interpretation of such level repulsion as 
a symptom of tunneling. It is well known that primitive 
semiclassical techniques, such as the AS method, are un- 
able to treat tunneling phenomena.27*28P57 These results, 
therefore, confirm our expectations from the previous sec- 
tion and serve to establish that the assumptions made in 
reducing the Hamiltonian of Eq. (3) to the hindered rotor 
Hamiltonian of Eq. (Al) of the Appendix do not alter the 
conclusions drawn therein. 

Number of levels 
n w2 at center Range of oza in resonance 

5 0.85 (0.825-0.875) 4 
(0.775-0.825), (0.8754925) 3 
(0.725-0.775), (0.9254975) 2 
(0.6754).725), (0.975-1.025) 

6 0.825 (0.8CO-O.850) 
(0.750-0.8OO), (0.850-0.900) 
(0.709-0.750), (0.9oo-o.950) 
(0.650-0.700), (0.950-1.000) 
(0.6oo-o.650), (l.OCO-1.100) 

7 0.8 (0.725-0.875) 
(0.675X).725), (0.8754925) 
(0.650-0.675), (0.9254975) 
(0.600-0.650), (0.975-1.00) 

(1.00-1.10) 

‘The ranges were obtained bv using values of V,= l/40 for n=5 and 
VR=5/f28 for n =6 and 7. These-yield values of AI=4, 5, and 5 for 
n=5, 6, and 7, respectively. 

comparison of these results to the numbers of filled circles 
at each w2 in Fig. 5(c) shows good agreement. 

The locations and widths of resonance zones in the 
energy-parameter plot of Fig. 5 (c) can be understood from 
an examination of the resonance Hamiltonian of Eq. 
( 14b). The zero-order state with quantum number 
m=I&i will lie within the resonance region if its energy, 
as given by the first term in Eq. (14b), falls within the 
limits of (0,4 V,) . This leads to the condition 

V. DISCUSSION AND SUMMARY 

-M<m+i+(“tmyl) <AI, 

where 

We have shown that a distinctive pattern emerges 
when the energy levels of our system are plotted as a func- 
tion of a parameter that carries the system through the 1:l 
resonance. This pattern, which is characteristic of the res- 
onance, consists of a set of clusters, each of which contains 
two kinds of levels-nearly parallel curves produced by 

(21) states within the classical resonance region, and curves ex- 
hibiting sharp, narrowly avoided crossings produced by 
states outside the classical resonance region. 

is the action space half-width of the resonance.7 Recalling 
that the values of m are restricted to -n, -nf2,...,n, one 
finds that the number of states in the resonance is 

(22) 

[MB], if n+ii<AI and Iw~-w~( < (2w;[ (n%-AI), 
(234 

n, if AI>nfi and I02--wi1 < 12w;l (AI-A), (23b) 

02-01(/[2c0;l) , otherwise, 1 (234 

where the square brackets indicate the integer part. These 
results show that the number of levels in the resonance is 
greatest at the frequency 

w2=q=fi Py], 1 
which locates the “centers” of the clusters in Fig. 5. Ap- 
plication of Eqs. (23) and (24) to the clusters labeled by 
n=5, 6, and 7 yields the results presented in Table I. A 
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These results and the accompanying analysis place us 
in a position to understand the relationship between 
avoided crossings and resonances. In agreement with the 
line of reasoning described in the Introduction, we find that 
isolated avoided crossings do accompany resonances. In 
fact, we fmd that, in general, several such avoided crossings 
can be associated with each resonance. However, in con- 
trast to the usual inferences, but in agreement with the 
analysis of Ozorio de Almeida,23 we conclude that the spe- 
cific levels exhibiting such crossings are not associated with 
states within the classical resonance zone but with states 
lying beyond the resonance separatrix. 

It is instructive to examine why the argument relating 
avoided crossings to resonances, described in the Introduc- 
tion, fails. This reasoning indeed establishes that the con- 
dition H(Jt ,J2) = H(J; ,J;) implies the resonance condi- 
tion nwl =mwz. However, even according to the simplest 
semiclassical theories, this result does not mean that the 
energy levels associated with a resonance undergo any ap- 
parent form of avoided crossings. To understand this con- 
clusion, we must recall that different sets of action-angle 
variables are needed to describe tori inside and outside a 
resonance region. The condition H(J, ,J2) = H(J; ,Ji) de- 
scribes intersection of energy levels belonging to a reso- 
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nance only if Jj and Ji are action variables specifically ap- 
propriate for that resonance. One such action, say Jl, will 
then be analogous to I, of Sec. II and will be a constant of 
motion, while the other action J2 will describe the hindered 
rotor. Since Wi=aH/dJi are now frequencies of angular 
motion conjugate to the Ji (and not frequencies for the 
original uncoupled oscillators), the condition no1 =mo2 
(n > 0) does not describe the formation of the original 
(primary) resonance, but that of a higher order (second- 
ary) resonance. Such a resonance exists only if additional 
Fourier components of the interaction are taken into ac- 
count. Its proper treatment, in any event, necessitates a 
further redefinition of the actions. The condition no1 
=mo2 can refer to the original resonance only for the 
choice n=O. In that case, the equation H(J, ,J,) 
= H(J; ,JG) describes the crossing of levels very near the 
separatrix, where the hindered rotor frequency w2 is close 
to zero.*’ The resonance condition does not, however, im- 
ply any crossing of the majority of levels within the reso- 
nance zone. 

are associated with different resonance regions or when one 
level is associated with a nonresonant zone while another is 
associated with a resonant region. In our system, cases of 
this sort occur when local mode and normal mode curves 
belonging to different clusters undergo avoided crossings, 
as in Fig. 2. 

It is not hard to show how the argument presented in 
the Introduction may be corrected so as to lead to the 
observed cluster structure. Let us take Jj and Ji appearing 
in the condition H( J, ,J2) = H( J; ,J;) to refer to action 
variables appropriate for the region outside the resonance 
(e.g., actions of the uncoupled oscillators). Then, as has 
been well understood, the condition (nl - n;)q = (n2 
- nG>02 is actually obeyed in the vicinity of an n:m reso- 
nance by many nearby pairs of zero-order levels (n, ,n2), 
(n;,ni) satisfying (n, - n;) = n, and (It2 - n;) = m. 
Since, however, the Oi are generally functions of the ni, the 
various levels do not all cross at the same point in the 
energy-parameter plane; instead, different pairs of levels 
intersect at slightly different points, forming a web of 
curves similar to that shown in Fig. 3 (a). These curves 
describe zero-order energy levels which do not incorporate 
the interaction that is responsible for the formation of the 
classical resonance. Since the upper portion of the web is 
dense, the effect of this interaction is to mix together si- 
multaneously many levels of this region. This leads to the 
formation of the parallel curves by a mechanism that can 
be described as the multiple overlap of avoided crossings. 
The strong effect of the perturbation in this case reflects the 
resonant nature of the corresponding classical motion. 
Since the lower portion of the web is relatively sparse, the 
effect of the interaction is essentially restricted to mixing 
the zero-order energy curves in a pair-wise fashion in the 
vicinity of a crossing, thus producing isolated avoided 
crossings. The weak perturbation of these levels reflects the 
nonresonant nature of the corresponding classical motion. 

One of the most intriguing aspects of our results con- 
cerns the mechanism for formation of the resonant and 
nonresonant energy curves. Although both kinds of curves 
are formed by the avoided crossings of zero-order levels 
(cf. Fig. 3), these curves are qualitatively different; the 
resonant curves run parallel to each other and do not re- 
semble the zero-order levels, while the nonresonant curves 
display distinct avoided crossings at zero-order intersec- 
tions and are otherwise weakly perturbed versions of the 
zero-order straight lines. From the strictly quantum me- 
chanical viewpoint, the mechanism producing the two 
types of curves is the same; the distinctions between these 
curves concern matters of degree, i.e., they result from 
different spacings between the zero-order levels. From the 
semiclassical viewpoint, however, the qualitative differ- 
ences in the curves reflect fundamentally different physical 
mechanisms for the state mixing that is responsible for the 
level repulsion. The state mixing which produces the par- 
allel curves from the intersecting lines has direct classical 
significance; it is the interaction which reorganizes phase 
space in the vicinity of a resonance creating, e.g., normal 
mode tori in place of local mode tori. The separation be- 
tween adjacent parallel curves is related to a classical fre- 
quency for motion in the resonance. In contrast, a large 
body of evidence’2~‘7~23127~2s13843 suggests that the state mix- 
ing which produces the isolated avoided crossings has no 
classical significance; it appears solely to be the conse- 
quence of tunneling between states associated with differ- 
ent tori that are external to the resonance. The splitting 
between the nearly intersecting curves is related to a tun- 
neling frequency. 

It is important to emphasize that, generally speaking, 
avoided crossings need not be in any way associated with 
classical resonances or even with classical regions that are 
near resonances. For example, if the action variables 
( Jl,J2) and (J; ,JG) appropriate for the two intersecting 
levels are of different kinds, one cannot expand H( J; ,JG) in 
terms of (J1 ,J2) as described in the Introduction and no 
relationship between a crossing and a classical resonance 
condition exists. This may happen when intersecting levels 

Consistent with the belief that multiple overlapping 
avoided crossings correspond to overlapping resonances, it 
has been conjectured *o-2’ that such crossings should pro- 
duce complicated, “stochastic” wave functions associated 
with chaotic systems. Figure 3 demonstrates, however, that 
certain multiple overlapping avoided crossings correspond 
to isolated resonances. Such resonances produce noncha- 
otic classical motion and yield wave functions that have 
simple nodal patterns and that are in no way stochastic. On 
the other hand, the work of Grafli et aL3’ indicates that 
certain sets of overlapping avoided crossings may, indeed, 
correspond to overlapping resonances which produce cha- 
otic classical motion and, presumably, yield stochastic 
wave functions. Taken together, this suggests that multiple 
overlapping avoided crossings are not specific symptoms of 
chaos, but may reflect a more general class of processes 
that persist in the classical limit and result in macroscopic 
structural changes in phase space. 

We conclude with some comments about the generality 
of the results presented in this paper. The cluster structure 
of energy levels associated with a resonance was obtained 
here for a particular system and resonance. However, the 
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accompanying analysis is easily generalized to show that a 
similar energy level pattern should apply for other systems 
(including those with more than two degrees of freedom) 
and other resonances, provided that the relevant portion of 
the Hamiltonian can be cast into Chirikov form, that the 
parameter being varied is the detuning of the zero-order 
frequencies and that the resonance interaction is suffi- 
ciently weak. We have, in fact verified that the pattern of 
levels produced by the 2:l resonance of our system is sim- 
ilar to that described in this paper. There are, of course, 
factors that may lead to slight variations in the observed 
patterns, in certain cases. For example, if the anharmonic- 
ity of the oscillators (which is proportional to w; ) is pos- 
itive, the clusters will be inverted, with the nonresonant 
levels of each cluster lying above the resonant energies. 

Looking beyond the case treated in this paper, it 
should be recognized that the specific pattern associated 
with a resonance will certainly depend on the parameter 
being varied in the Hamiltonian. If that parameter is not 
the detuning between the zero-order frequencies, the re- 
sulting pattern will differ from that described in this paper. 
In addition, the pattern will differ significantly from that 
described here if the resonance interaction is too strong. In 
our calculations, the different resonances and clusters were 
well separated because the interaction between the zero- 
order oscillators was chosen to be rather weak (the value 
of p was chosen to be small). In systems with stronger 
interaction, these may overlap more. The resulting avoided 
crossings may be expected to cause extensive distortion of 
the cluster structure discussed in this paper. In some cases, 
the interaction between curves may signify quantum ef- 
fects, such as tunneling; in others, they may signify classi- 
cal effects such as the onset of chaos or the formation of 
secondary and higher-order resonances. Investigations of 
the energy curves in such more general cases are in 
progress. 

APPENDIX: ENERGY LEVELS OF THE RESONANCE 
HAMILTONIAN 

We examine the solutions of the problem 

fi2 a2 ifi a 
-y a; G-y (al-‘321 3&+2VR cos 42 *(42) I 

=H(42>, (AlI 

subject to the boundary conditions \I/ (0) =Y (2~). In par- 
ticular, we are concerned with the behavior of the energy 
levels as the parameter w2 is varied. To facilitate the anal- 
ysis, we eliminate the linear term in a/a+, by, in effect, 
transforming to the new action I2 + (wi - 02)/20; of Eq. 
( 14b) by the substitution Y ($2) = F( 42)e’y$2, where y 
= -(or - 02)/(2%;). Then F(I$~) satisfies the Mathieu 
equation 

h2 
-z o;F”+ [2VR cos $2-EHR]F=0, 

where 

t-42) 

EHR=E+(a18;-)2=E+E’. 
1 

The condition Y (0) =Y (2~) implies that the desired so- 
lutions of Eq. (A 1) satisfy the nonstandard boundary con- 
ditions F(0)=F(2v)e(2’@“Y). 
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We now consider two extreme cases in which it is sim- 
ple to obtain approximate solutions of Eq. (A2); approx- 
imate solutions in more general situations can be found by 
semiclassical techniques.1’9’5-‘7,23728747 
1. States deep within the resonance 

For a state with energy sufficiently near the top of the 
inverted cosine barrier ( EHR - 2 V,) , the wave function Y 
is small at 42=0 and 27r, causing F to likewise become 
small at 0 and 277. EHR therefore become ordinary hindered 
rotor energy eigenvalues for standard boundary conditions 
at 42=0 and 2~. Since Eq. (A2) shows such eigenvalues to 
be independent of w2, the energies E depend on w2 only via 
the term E’ in Eq. (A3), which describes a common func- 
tional dependence for all levels deep in the well. This im- 
plies that such levels run parallel to each other and do not 
cross. 

2. States well outside the resonance 

For a state with energy far beyond the potential barrier 
( ExR 4 - 2 V,) , we may, as a zeroth-order approximation, 
neglect the cosine term in Eq. (Al). The solution of this 
equation is of the form A exp( ik42) with 

?P 
z a;#-E,,=O. 

The boundary conditions imposed on F lead to the require- 
ment that e2n’i(k+y) = 1, which means that (k+~) =m, 
where m is any positive or negative integer. Symmetry con- 
siderations, however, show that m should be restricted to 
have the same parity as it. Substituting k=m- y into Eq. 
(A4), we get 

?P 
Em=2 w;m”+: (q-w2)m 

which, of course, agrees with the expression for zero-order 
energies contained in Eq. ( 18). When regarded as a func- 
tion of w2, this expression describes the energy levels as an 
infinite web of straight lines with slopes -mW2 that may 
be positive or negative. Such levels intercept one another at 
the regularly spaced frequency intervals o2 - w1 
= f -2&i, f 4&i, + 6&i ,... . Restriction of m to the 
physically allowed values -rz, --n+2,...,n produces pat- 
terns with a finite number of crossings such as those shown 
in Fig. 3 (a). The crossings predicted by this zeroth order 
approximation become avoided crossings when the poten- 
tial 2VR cos 42 is taken into account by degenerate pertur- 
bation theory.22 

This analysis shows clearly that, for the hindered rotor 
model, the parallel energy curves correspond to resonant 
states, while the curves that undergo avoided crossings cor- 
respond to nonresonant states. It also suggests that the 
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same conclusions apply to the actual energy curves for our 
system (Fig. 2), which, as we have shown, are related to 
those of the hindered rotor. 
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