
 

 

 

  

 

2013 
 

Louisianan Tech College of 
Engineering and Science 
 
Champy Gahagan 
 

 STEP BY STEP GUIDE TO IMPLEMENTING THE 

CORTEX-M0 USING A NEXYS2 FPGA BOARD 
 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Introduction 2 

 

 

 

STEP BY STEP GUIDE TO IMPLEMENTING THE CORTEX-M0 

USING A NEXYS2 FPGA BOARD 
 

 

CONTENTS 
Introduction .................................................................................................................................................. 3 

Required Hardware/Software ....................................................................................................................... 3 

Project Overview ........................................................................................................................................... 4 

Implementation ............................................................................................................................................ 4 

Part 1: Software Development ................................................................................................................. 4 

Part 2: System Development .................................................................................................................... 7 

Part 3: Hardware Simulation ................................................................................................................... 12 

Part 4: Hardware Verification ................................................................................................................. 15 

Conclusions ................................................................................................................................................. 15 

Appendix ..................................................................................................................................................... 16 

Main.c ..................................................................................................................................................... 16 

Vectors.c ................................................................................................................................................. 17 

UCF File ................................................................................................................................................... 17 

 

 

  



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Introduction 3 

 

INTRODUCTION 
This guide describes the process of implementing an ARM Cortex-M0 DesignStart processor in an FPGA 

board. The DesignStart model of the Cortex-M0 has slightly limited features and functionality when 

compared to the standard M0 core. However, the DesignStart version is available free of charge to the 

general public. We will be using the Digilent Nexys2 development board, which is built around a Spartan 

3E FPGA.  

A small program will be built in order to verify that our system is working properly. This will require a bit 

more front end work as we will have to add peripherals to our M0 core to be able to execute the code. 

These peripherals include the following: a reset synchronizer, memory preloaded with the program, a 

system clock, and a pattern detector on the data bus. Once this is done, our system will be simulated in 

software to confirm functionality. Finally, our system will be synthesized onto the FPGA. The program 

will provide LED feedback that will verify whether or not the system is operational. 

 

REQUIRED HARDWARE/SOFTWARE 
The following hardware and software will be needed for this project. All of the software packages can be 

obtained for no cost. The same does not hold true for the Nexys2 board, however.  

1. Nexys2 development board 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2 

2. Xilinx ISE WebPACK design software 

http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm 

3. Digilent Adept software 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2 

4. Digilent plug-in for Xilinx tools 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT-PLUGIN 

5. Cortex-M0 DesignStart 

http://www.arm.com/products/designstart/index.php?tab=processor 

6. ARM/Keil MDK evaluation version 

https://www.keil.com/arm/demo/eval/arm.htm 

7. BIN to COE conversion utility 

http://sourceforge.net/projects/bin2coe/ 

8. VHDL module files 

http://web.fi.uba.ar/~pmartos/publicaciones/Deliverables.zip 

 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Project Overview 4 

 

PROJECT OVERVIEW 
The project will divided into the following four parts:  

1. Software Development 

We will build a small program using the ARM/Keil MDK that will verify the complete 

system is handling memory fetches properly. The memory values fetched will hold 

predefined constants. During hardware simulation (Part 3), we will see these values on 

the processor's data bus. During hardware verification (Part 4), we will see an LED turn 

on and off when these values are present on the data bus. 

 

2. System Development 

Using the Xilinx ISE software, we will build a system that is capable of executing the code 

developed in Part 3. This will involve implementing the Cortex-M0 core as well as 

several peripheral devices. 

 

3. Hardware Simulation 

Using the ISIM tool, we will simulate the system developed in Part 2. We will also run 

the code developed in Part 1 on this simulated system to verify that we see the 

expected constant on the processor's data bus. 

 

4. Hardware Verification 

Finally, the complete system will be synthesized and downloaded to the board. The 

program we developed in Part 1 will cause an onboard LED to turn on and off when 

certain constants are seen on the data bus, thereby allowing us to verify the memory 

fetches. 

 

IMPLEMENTATION 
This section will give step by step instructions for implementing the Cortex-M0 processor. 

PART 1: SOFTWARE DEVELOPMENT 

1.1. Open the ARM/Keil MDK application and create a new project with the ARM Cortex-M0 as the 

chosen CPU. Name the project "FPGA." 

1.2. Add the sources "main.c" and "vectors.c" (source code available in the "Appendix" section). The 

"Project" window should look like Figure 1 below. 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 5 

 

 

FIGURE 1 - PROJECT WINDOW HIERARCHY 

 

1.3. Open the target options, located under the "Project" menu. Configure the "Target," "Output," 

"ASM," and "Linker" tabs as shown in Figures 2-5 below. The string for "Misc controls" in the 

"Linker" tab is the following: " --entry 0x15 --first=vectors.o(__Vectors)" 

 

 

FIGURE 2 - TARGET TAB CONFIGURATION SETTINGS 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 6 

 

 

FIGURE 3 - OUTPUT TAB CONFIGURATION SETTINGS 

 

 

FIGURE 4 - ARM TAB CONFIGURATION SETTINGS 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 7 

 

 

FIGURE 5 - LINKER CONFIGURATION SETTINGS 

 

1.4. Build the executable image by clicking "Build Target" under the "Project" menu. If everything is 

set up correctly, it should report no errors or warnings and that a ".axf" file was created.  

PART 2: SYSTEM DEVELOPMENT 

2.1. Open ISE Design Suite and create a new project called "CM0_DSSystem." Click "Next" once. Then 

select the Spartan-3E Starter Board for "Evaluation Development Board" and VHDL for 

"Preferred Language." 

2.2. First, add the top module. Do this by clicking "Add Source" under the "Project" menu. Select the 

"CM0_DSSystem.vhd" file from the "Deliverables" download. Now that the top module is 

complete, the individual modules marked with question marks can be added. 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 8 

 

 

FIGURE 6 - SYSTEM DESIGN HIERARCHY 

 

2.3. Add the two processor files included in the download from the ARM site, "cortexm0ds_logic.v" 

and "CORTEXMODS.v," in the same manner as above. 

2.4. Next, create the 10 MHz clock from the board's 50 MHz external oscillator. Under the "Project" 

menu, select "New Source." Select "IP" for source type and name the file "SystemClock." In the 

next screen, click the "View by Name" tab and select "Single DCM_SP." 

2.5. Click "OK" on the window that pops up. For the next screen, configure as shown below in Figure 

7. 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 9 

 

 

FIGURE 7 - 10 MHZ CLOCK SETUP 

 

2.6. Click "Next." In the next screen, enter 10 MHz as the output frequency and click "Calculate." 

Figure 8 below shows the configuration for the clock. 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 10 

 

 

FIGURE 8 - CLOCK FINAL CONFIGURATION 

 

2.7. Next build the data bus detector, which is also includes in the "Deliverables" download. As in 

step 2.2, select "Add Source," and add the "Detector.vhd." file. 

2.8. The reset synchronizer module is implemented as a module and 3 sub-modules. As before, use 

the "Add Source" button to add these four files: "SyncReset.vhd," "DelayCounter.xco," 

"Counter2Constant.vhd," and "Constant2Pulse.vhd." 

2.9. Next generate the reset synchronizer. Start by using the "New Source" button. The source type 

is, once again, "IP." Name the file "DelayCounter," and select "Binary Counter" for type. Click 

"Finish." 

2.10. Configure the Binary Counter as shown below in Figure 9. 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 11 

 

 

FIGURE 9 - BINARY COUNTER CONFIGURATION 

 

2.11. Generate a ".bin" file from the ".axf" created in Part 1 by using the Fromelf command line utility 

bundled with ARM/Keil MDK. Use the following syntax to invoke it: 

fromelf - -bin - -o FPGA.bin FPGA.axf 

2.12. Generate a ".coe" file from the bin you just made by using the Bin2Coe utility. This is also a 

command line utility, and can be invoke using the following syntax: 

bin2coe FPGA.bin FPGA.coe 512 

2.13. Add a new source of type "IP" named "Memory." Select "Block Memory Generator" for the IP 

type. Click "Next" until you arrive on page 3 of the configuration. Configure this page as shown 

below in Figure 10. 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 12 

 

 

FIGURE 10 - BLOCK MEMORY CONFIGURATION PAGE 3 

 

2.14. On page 4, check the "Load Init File" box and point to the ".coe" file generated in step 2.12. On 

the next page, check the "Use RSTA Pin (set/reset pin)" box. The final page can be left default 

settings. 

PART 3: HARDWARE SIMULATION 

3.1. In the top of the Design View window, select the "Simulation" radio button. This can be difficult 

to find, so see Figure 11 below for reference. 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 13 

 

 

FIGURE 11 - SWITCHING TO SIMULATION VIEW 

 

3.2. Highlight the top module (CM0_DSSystem) and run the "Simulate Behavioral Model" process, 

which can be found below in Figure 12. 

 

 

FIGURE 12 - LOCATING THE "SIMULATE BEHAVIORAL MODEL" FEATURE 

 

3.3. Ignore the initial simulation ISIM displays as the clock signal is not yet defined. To do this, right 

click the "clock_in" signal and select the "force clock" option. Use the parameters shown below 

in Figure 13. 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Implementation 14 

 

 

 

FIGURE 13 - CLOCK_IN PARAMETERS 

 

3.4. Manually key in 300 us in the simulation time box on the far right side of the toolbar. Then click 

the "Run for the time specified on the toolbar button to the immediate left. See Figure 14 for 

assistance in locating these items. 

 

 

FIGURE 14 - MANUAL SIMULATION TIME TOOLBAR LOCATION 

 

3.5. After this simulation runs, verify that the system is performing as expected by locating the led3 

signal. Confirm that this signal switches between a high and low state as shown in Figure 15. 

 

 

FIGURE 15 - LED3 SIGNAL SWITCHING FROM HIGH TO LOW 

 

 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Conclusions 15 

 

PART 4: HARDWARE VERIFICATION 

4.1. Add another new source to the project. Select "Implementation Constraints File" for the source 

type and name it "CM0_DSSystem." This adds an empty ".ucf" file. Copy and paste the Nexys2 

UCF code from the "Appendix" section into this file. 

4.2. Change the "main.c" program so that it uses the period of 20000000 instead of 200 (200 was 

used for simulation purposes). Recompile the program, and repeat steps 2.11 through 2.14 in 

order to use this new period value. 

4.3. Under the "Tools" menu, select "iMPACT." This tools will flash the system with built in program 

onto the FPGA. Once this is done, you should see the LED3 blinking. 

 

CONCLUSIONS 
Congratulations! You have successfully implemented an ARM Cortex-M0 DesignStart processor running 

a pre-loaded program on a Xilinx FPGA. You have also performed functionality tests along the way 

including software simulation and hardware simulation. 

 

  



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Appendix 16 

 

APPENDIX 
The source code needed to carry out this project is listen below 

MAIN.C 

// Define where the top of memory is. 
#define TOP_OF_RAM 0x800U 
 
// Define heap starts... 
#define HEAP_BASE 0x47fU 
 
//------------------------------------------------------------------------------ 
// Simple "Blinking Led via Memory Access detection" program. 
// This program makes a memory access at regular intervals 
// In the Nexys2 system there is a pattern detector attached to the 
// HWRead bus, so when two specific patterns are detected, a Led toggles its state 
// pattern 0xaaaa5555 turns on the led, pattern 0xf0f0f0f0 turns it off. 
//------------------------------------------------------------------------------ 
 
#define LedOn 0xaaaa5555 
#define LedOff 0xf0f0f0f0 
 
int main(void) 
{ 
 unsigned int counter;   // dummy 
 unsigned int ii;    // loop iterator 
 unsigned int trap;   // memory access pattern receiver 
 unsigned int period;   // time interval for memory access 
 
 //period=20000000;   // period for FPGA implementation; roughly 3 seconds  
     for a 10MHz osc in CM0_DS 
 period=200;   // period for simulations in ARM/Keil MDK and Xilinx ISIM tool 
 
 while (1) 
 { 
  counter=0; 
  for (ii=0;ii<period;ii++) 
  { 
   counter++; 
  } 
  trap=LedOn;   // memory access pattern (turn on) 
  for (ii=0;ii<period;ii++) 
  { 
   counter++; 
  } 
  trap=LedOff;   // memory access pattern (turn off) 
  trap++;   // dummy 
 } 
} 



Step by Step: Implementing a Cortex-M0 with a Xilinx FPGA v1.00 - 1/14/2013 

 

Louisianan Tech College of Engineering and Science | Appendix 17 

 

VECTORS.C 

// Define where the top of memory is. 
#define TOP_OF_RAM 0x400U 
 
extern int main(void);     // Use C-library initialization function. 
 
__attribute__ ((section("__Vectors"))) 
static void (* const vector_table[])(void) = 
{ 
 (void (*)(void)) TOP_OF_RAM,  // Initial value for stack pointer. 
 (void (*)(void)) main,    // Reset handler is C initialization. 
 0,      // No HardFault handler, just cause lockup. 
 0,      // No NMI handler, just cause lockup. 
 0//...      // Additional handlers would be listed here. 
}; 

 

 

UCF FILE 

# clock pin for Nexys 2 Board 
NET "Clock_In" LOC = "B8"; # Bank=0, Pin name=IP_L13P_0/GCLK8, Type=GCLK, Sch 
name=GCLK0 
 
# Leds 
NET "Led0" LOC = "J14"; # Bank=1, Pin name=IO_L14N_1/A3/RHCLK7, Type=RHCLK/DUAL, 
Sch name=JD10/LD0 
 
NET "Led1" LOC = "J15"; # Bank=1, Pin name=IO_L14P_1/A4/RHCLK6, Type=RHCLK/DUAL, 
Sch name=JD9/LD1 
 
NET "Led2" LOC = "K15"; # Bank=1, Pin name=IO_L12P_1/A8/RHCLK2, Type=RHCLK/DUAL, 
Sch name=JD8/LD2 
 
NET "Led3" LOC = "K14"; # Bank=1, Pin name=IO_L12N_1/A7/RHCLK3/TRDY1, 
Type=RHCLK/DUAL, Sch name=JD7/LD3 
 
NET "Led4" LOC = "E17"; # Bank=1, Pin name=IO, Type=I/O, Sch name=LD4 s3e500 only 
NET "Led5" LOC = "P15"; # Bank=1, Pin name=IO, Type=I/O, Sch name=LD5 s3e500 only 
NET "Led6" LOC = "F4"; # Bank=3, Pin name=IO, Type=I/O, Sch name=LD6 s3e500 only 
NET "Led7" LOC = "R4"; # Bank=3, Pin name=IO/VREF_3, Type=VREF, Sch name=LD7 

s3e500 only 


