2013

Louisianan Tech College of
Engineering and Science

Champy Gahagan

STEP BY STEP GUIDE TO IMPLEMENTING THE
CORTEX-MO USING A NEXYS2 FPGA BOARD

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

STEP BY STEP GUIDE TO IMPLEMENTING THE CORTEX-MO
USING A NExYS2 FPGA BOARD

CONTENTS
INEFOTUCTION .ttt ettt et st e e et e s bt e s bt e e s ab e e s bt e e sabeesabeesabbeesabeessteesnseesseeesareens 3
ReQUIrEd HardWare/SOfEWEIE........ccvi ittt ettt ettt ettt e e te e et e e sabeeebeeebeeesbeeeetaeesseeeenteeesareens 3
e o (=Tt A @AY= oV = Y PPNt 4
T gT o1 1=Ta =T a N - 14 o] o PO 4
Part 1: SOftWare DEVEIOPMENTeiiiiiiee ettt e e e e e e e st e e e e b e e e e ssabeeeeesnreeeeennseeas 4
Part 2: System DeVEIOPMENT ... e e e e e e s e e e e e e e e bee e e s b eeeeenraeas 7
Part 3: Hardware SimuUlation........coo oottt s s 12
Part 4: Hardware VerifiCationcooio oottt ettt s s 15
CONCIUSTONS ..ttt ettt b e s bt e sht e eat e et e e be e b e e sheesae e sabeeab e e bt e bt e sbeesaeeeabeenbeenbeesbeesaeenas 15
AN o 01T o [USRS 16
IVIGIN.C ot s a e b e s a e sbe e s 16
RV =T €] 3 o PP PPPPP 17
UCE FIlE ettt ettt ettt st st e et e e bt e s be e s aeesan e s ar e e r e e bt e b e e beesmeesaneenneen 17

Louisianan Tech College of Engineering and Science | Introduction

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

INTRODUCTION

This guide describes the process of implementing an ARM Cortex-MO DesignStart processor in an FPGA
board. The DesignStart model of the Cortex-MO has slightly limited features and functionality when
compared to the standard MO core. However, the DesignStart version is available free of charge to the
general public. We will be using the Digilent Nexys2 development board, which is built around a Spartan
3E FPGA.

A small program will be built in order to verify that our system is working properly. This will require a bit
more front end work as we will have to add peripherals to our MO core to be able to execute the code.
These peripherals include the following: a reset synchronizer, memory preloaded with the program, a
system clock, and a pattern detector on the data bus. Once this is done, our system will be simulated in
software to confirm functionality. Finally, our system will be synthesized onto the FPGA. The program
will provide LED feedback that will verify whether or not the system is operational.

REQUIRED HARDWARE/SOFTWARE

The following hardware and software will be needed for this project. All of the software packages can be
obtained for no cost. The same does not hold true for the Nexys2 board, however.

1. Nexys2 development board
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2

2. Xilinx ISE WebPACK design software
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm

3. Digilent Adept software
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2

4. Digilent plug-in for Xilinx tools
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT-PLUGIN

5. Cortex-MO DesignStart
http://www.arm.com/products/designstart/index.php?tab=processor
6. ARM/Keil MDK evaluation version
https://www keil.com/arm/demo/eval/arm.htm

7. BIN to COE conversion utility
http://sourceforge.net/projects/bin2coe/

8. VHDL module files
http://web.fi.uba.ar/~pmartos/publicaciones/Deliverables.zip

Louisianan Tech College of Engineering and Science | Introduction

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

PROJECT OVERVIEW

The project will divided into the following four parts:

1. Software Development
We will build a small program using the ARM/Keil MDK that will verify the complete
system is handling memory fetches properly. The memory values fetched will hold
predefined constants. During hardware simulation (Part 3), we will see these values on
the processor's data bus. During hardware verification (Part 4), we will see an LED turn
on and off when these values are present on the data bus.

2. System Development
Using the Xilinx ISE software, we will build a system that is capable of executing the code
developed in Part 3. This will involve implementing the Cortex-MO core as well as
several peripheral devices.

3. Hardware Simulation
Using the ISIM tool, we will simulate the system developed in Part 2. We will also run
the code developed in Part 1 on this simulated system to verify that we see the
expected constant on the processor's data bus.

4. Hardware Verification
Finally, the complete system will be synthesized and downloaded to the board. The
program we developed in Part 1 will cause an onboard LED to turn on and off when
certain constants are seen on the data bus, thereby allowing us to verify the memory
fetches.

IMPLEMENTATION

This section will give step by step instructions for implementing the Cortex-MO processor.

PART 1: SOFTWARE DEVELOPMENT

1.1.Open the ARM/Keil MDK application and create a new project with the ARM Cortex-MO as the
chosen CPU. Name the project "FPGA."

1.2.Add the sources "main.c" and "vectors.c" (source code available in the "Appendix" section). The
"Project" window should look like Figure 1 below.

Louisianan Tech College of Engineering and Science | Project Overview

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

Project &l
=-5-4 Target1

FIGURE 1 - PROJECT WINDOW HIERARCHY

1.3.0pen the target options, located under the "Project" menu. Configure the "Target," "Output,"
"ASM," and "Linker" tabs as shown in Figures 2-5 below. The string for "Misc controls" in the
"Linker" tab is the following: " --entry 0x15 --first=vectors.o(__Vectors)"

Device larget]Output] Usting] User] C."CH] Asm] Linker] Debug] Utilities]
ARM Cortex-M0
Code Generation
Xal (MHz): |10

[Use Cross-Module Optimization

COperating system: |None
™ Use MicroLIB [~ Big Endian

System-Viewer File (.5fr):

=

Read/Only Memary Areas Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size

ROM1: | | o ~ Ram: | |
ROM2: | | e RAMZ: | |
ROM3: | | ™ RAMX: | |

on-chip on-chip
IROM1: |2<000 [bx400 IRAM1: [2<400 [0

IROM2: | | IRAMZ: | |

ok | Defaults |

FIGURE 2 - TARGET TAB CONFIGURATION SETTINGS

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

kA Options for Target -5 |

Device] Target Output] I.isting] User] CJC-H] Asm] Linker] Debug] Ltilities]

Select Folder for Objects... | Mame of Executable: |FPGA

* Create Executable: C:\Users\Champyg'Desktop'FPGA
W Debug Information [Create Batch File
v Create HEX File
v Browse Information

" Create Library: C:\Users\Champyg*Desktop FPGALIB

Defaults

FIGURE 3 - OUTPUT TAB CONFIGURATION SETTINGS

(kA Cptions for Target ' X |

Device] Tanget] Outputl Listirlgl User] C/C++ Psm]Linker] Debug] Litilities]

Conditional Assembly Control Symbols

Language / Code Generation
[Split Load and Store Muttiple

[~ Read-Only Position Independent

[~ Read-Write Posttion Independent

V¥ Thumb Mode

[~ No Wamings [~ No Auto Includes

Include |
Paths

Misc |
Contrals

Assembler |-cpu Cortex-M0O i -g —16 —apcs=interwork
cortrol |- CA\KeiMARMASRVITUNG
string

Defaults

FIGURE 4 - ARM TAB CONFIGURATION SETTINGS

Louisianan Tech College of Engineering and Science | Implementation _

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

Device] Tanget] Outputl I.isting] Iser] CJC-H] Asm Linker IDebug] Ltilities]

[Use Memory Layout from Target Dialog

[~ Make RW Sections Position Independent R/O Base: |(00000000
[~ Make RO Sections Posttion Independent W Base IW

[~ Dont Search Standard Librariss
[+ Report might fail' Conditions as Emors

disable Wamings: |

—entry (15 first=vectors of__Vectors)

—cpu Cortex-MD ™0
—o-base b00000000 —entry 00000000 —w-base GdDDD00400 —entry Reset_Handler -first _ Vectol

Defaults

FIGURE 5 - LINKER CONFIGURATION SETTINGS

1.4.Build the executable image by clicking "Build Target" under the "Project" menu. If everything is
set up correctly, it should report no errors or warnings and that a ".axf" file was created.

PART 2: SYSTEM DEVELOPMENT

2.1.0pen ISE Design Suite and create a new project called "CMO_DSSystem." Click "Next" once. Then
select the Spartan-3E Starter Board for "Evaluation Development Board" and VHDL for
"Preferred Language."

2.2.First, add the top module. Do this by clicking "Add Source" under the "Project" menu. Select the
"CMO_DSSystem.vhd" file from the "Deliverables" download. Now that the top module is
complete, the individual modules marked with question marks can be added.

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

fDesign 08 X
] | View: @7@} Implementation) @Simulation

EI Hierarchy '

& &] cmo_Ds_system |
= | = £ xc3s500e-4fg320

B, = [t CMO_DSSystem - Behavioral (CMO_DSSystem.vhd)
: 7] Inst_Detector - Detector ()

E_] Inst_SyncReset - SyncReset ()

= Inst_SystemClock - SystemClock ()

Inst_Memary - Memory ()

P 7] Processor - CORTEXMODS ()

FIGURE 6 - SYSTEM DESIGN HIERARCHY

2.3.Add the two processor files included in the download from the ARM site, "cortexmOds_logic.v"
and "CORTEXMODS.v," in the same manner as above.

2.4.Next, create the 10 MHz clock from the board's 50 MHz external oscillator. Under the "Project"
menu, select "New Source." Select "IP" for source type and name the file "SystemClock." In the
next screen, click the "View by Name" tab and select "Single DCM_SP."

2.5.Click "OK" on the window that pops up. For the next screen, configure as shown below in Figure
7.

Louisianan Tech College of Engineering and Science | Implementation _

Step by Step: Implementing a Cortex-MO0 with a Xilinx FPGA

B0 OROOOOO0OE

Input Clock Frequency Phaze Shift
50 |@ MHz @ ns Type: | NONE

CLKIN Source Feedback Source
@ Extemal) Intemal (") Extemal @ Intemal () None
@ Single @ Single

() Differential Differential

Divide By Value Feedback Value

2 T[] @ IX ©

[¥] Use Duty Cycle Comection

More Irfo][Advanced

FIGURE 7 - 10 MHZ CLOCK SETUP

2.6.Click "Next." In the next screen, enter 10 MHz as the output frequency and click "Calculate."
Figure 8 below shows the configuration for the clock.

Louisianan Tech College of Engineering and Science | Implementation _

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

Feature Summary:

A single DCM_SP corfigured

Files To Be Generated:

File Directory:
C:h\Users\ChampygDesktoptSE FPGANCMO_DS System‘ipcore_dir

ArchWiz file: SystemClock xaw
HDL file: SystemClock vhd
LICF template file: SystemClock_arwz ucf

Block Attributes:

Attributes for DCM_SP, blkname = DCM_SP_INST
CLKFX_DIVIDE =10
CLKFX_MULTIPLY =2
CLKIN_PERIOD = 20.000

(7 Show all modffiable attibutes

@ Show only the modffiable attributes whose values differ from the default

<Back || Fnsh | [Cancsl

FIGURE 8 - CLOCK FINAL CONFIGURATION

2.7.Next build the data bus detector, which is also includes in the "Deliverables" download. As in
step 2.2, select "Add Source," and add the "Detector.vhd." file.

2.8.The reset synchronizer module is implemented as a module and 3 sub-modules. As before, use
the "Add Source" button to add these four files: "SyncReset.vhd," "DelayCounter.xco,"
"Counter2Constant.vhd," and "Constant2Pulse.vhd."

2.9.Next generate the reset synchronizer. Start by using the "New Source" button. The source type
is, once again, "IP." Name the file "DelayCounter," and select "Binary Counter" for type. Click
"Finish."

2.10.Configure the Binary Counter as shown below in Figure 9.

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

Documents View

IP Symbol g X

[lec ‘:P[Blnary cou nter xilime.com:ip:c_counter_binary:11.0

Component Name | DelayCounter

Implement using |Fabric

Output Width 20 Range: 1..256

Increment Value 1 Range: 1..FFFFF (Hex)

[7] Loadable

Restrict Count Final Count Value FA Range: 1..FFFFE (Hex)

Count Mode Up -
—> thresh0

Sync Threshold Output Threshold Value Fg| Range: 0..FFFFF (Hex)
>t Control

[] Clock Enable (CE)
|| Synchronous Clear (SCLR}
Synchronous Set (SSET)

Synchronous Init (SINIT) Init Value 0 Range: 0..FFFFF (Hex)

Synchronous Set and Clear(Reset) Priority Reset Overrides Set

Synchronous Controls and Clock Enable(CE) Prierity | Sync Overrides CE

Power-on Reset Init Value 0 Range: 0..FFFFF (Hex)

Latency Settings

Latency Configuration Latency 1 Range: 1..32
Feedback Latency Configuration Feedback Latency 0 Range: 0.4

Load Sense Active High

Generate H Cancel H Help

Y/ 1P Symbol |% Information

FIGURE 9 - BINARY COUNTER CONFIGURATION

2.11.Generate a ".bin" file from the ".axf" created in Part 1 by using the Fromelf command line utility
bundled with ARM/Keil MDK. Use the following syntax to invoke it:

fromelf - -bin - -0 FPGA.bin FPGA.axf

2.12.Generate a ".coe" file from the bin you just made by using the Bin2Coe utility. This is also a
command line utility, and can be invoke using the following syntax:

bin2coe FPGA.bin FPGA.coe 512

2.13.Add a new source of type "IP" named "Memory." Select "Block Memory Generator" for the IP
type. Click "Next" until you arrive on page 3 of the configuration. Configure this page as shown
below in Figure 10.

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

xilinx.com:ip:blk_mem_gen:7.3

Documents View
1P Symbol ax Spf
lgiC* Block Memory Generator
Port A Options
Memary Size
Write Width 32 Range: 1..4608 Read Width: |32
Write Depth 512 Range: 2..9011200 Read Depth: 512
Operating Mode Enable
) Always Enabled
) Write First
ADDRAJE:0] st femis DOUTA[31:0] @ Use ENA Pin
DINAT31:
G) Read First
ENA—
@ Mo Change
WEA[D:0] i
CLka —
%/ 1P Symbol | ¥ Power Estimation Datasheet Page 3 of 6

Next >] [Generate] [Cancel] [Help

FIGURE 10 - BLOCK MEMORY CONFIGURATION PAGE 3

2.14.0n page 4, check the "Load Init File" box and point to the ".coe" file generated in step 2.12. On
the next page, check the "Use RSTA Pin (set/reset pin)" box. The final page can be left default

settings.

PART 3: HARDWARE SIMULATION

3.1.In the top of the Design View window, select the "Simulation" radio button. This can be difficult
to find, so see Figure 11 below for reference.

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO0 with a Xilinx FPGA

Project Source

Process Tool

[Z) Fle Edit View

D EHG -

Design

i | view:) ﬁi}lmplemenmﬁon @ [l si

e

1=

Hierarchy
- 5] CMO_DSSystem

i £ xc3s500e-4fg320

| F) Mo Processes Running

Q@& & & &I

FIGURE 11 - SWITCHING TO SIMULATION VIEW

3.2.Highlight the top module (CMO_DSSystem) and run the "Simulate Behavioral Model" process,

which can be found below in Figure 12.

H[R SR A

P2 No Processes Running

Processes: Detector - Behavioral

iISim Simulator

Simulate Behavioral Model

| & Start

E’[ﬁ Design

lu'j Files |TD Libran’es|:

Console

FIGURE 12 - LOCATING THE "SIMULATE BEHAVIORAL MODEL" FEATURE

3.3.Ignore the initial simulation ISIM displays as the clock signal is not yet defined. To do this, right
click the "clock_in" signal and select the "force clock" option. Use the parameters shown below

in Figure 13.

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

=T Define Clock o E——)

Enter parameters below to force the signal to an
alternating pattern (clock). Assignments made from within
HDL code or any previously applied constant or clock force
will be overridden

Signal Mame: fem0_dssystem/dodk_in

Value Radix Binary E

Leading Edge Value: 1
Trailing Edge Value: 0
Starting at Time Offset: 0
Cancel after Time Offset:

Duty Cyde (%%):

Period

FIGURE 13 - CLOCK_IN PARAMETERS

3.4.Manually key in 300 us in the simulation time box on the far right side of the toolbar. Then click
the "Run for the time specified on the toolbar button to the immediate left. See Figure 14 for
assistance in locating these items.

[-T15im (P-494) - [Defau

|z File Edit View Simulation Window Layout Help

D}H‘ =i B ®|") ’|M.M 9 = O & i s 2 " E ,.|@Re4aunch

Instances and Processes + 0 & X| Objects

Ciren dbines bimrbe fne el A b

FIGURE 14 - MANUAL SIMULATION TIME TOOLBAR LOCATION

3.5. After this simulation runs, verify that the system is performing as expected by locating the led3
signal. Confirm that this signal switches between a high and low state as shown in Figure 15.

iy led3 0 _
P

FIGURE 15 - LED3 SIGNAL SWITCHING FROM HIGH TO LOW

Louisianan Tech College of Engineering and Science | Implementation

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA

PART 4: HARDWARE VERIFICATION

4.1.Add another new source to the project. Select "Implementation Constraints File" for the source
type and name it "CMO_DSSystem." This adds an empty ".ucf" file. Copy and paste the Nexys2
UCF code from the "Appendix" section into this file.

4.2.Change the "main.c" program so that it uses the period of 20000000 instead of 200 (200 was
used for simulation purposes). Recompile the program, and repeat steps 2.11 through 2.14 in
order to use this new period value.

4.3.Under the "Tools" menu, select "iIMPACT." This tools will flash the system with built in program
onto the FPGA. Once this is done, you should see the LED3 blinking.

CONCLUSIONS

Congratulations! You have successfully implemented an ARM Cortex-MO DesignStart processor running
a pre-loaded program on a Xilinx FPGA. You have also performed functionality tests along the way
including software simulation and hardware simulation.

Louisianan Tech College of Engineering and Science | Conclusions

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

APPENDIX

The source code needed to carry out this project is listen below

MAIN.C

/I Define where the top of memory is.
#define TOP_OF_RAM 0x800U

/I Define heap starts...
#define HEAP_BASE 0x47fU

Il
/I Simple "Blinking Led via Memory Access detection” program.

/I This program makes a memory access at regular intervals

/I In the Nexys2 system there is a pattern detector attached to the

/I HWRead bus, so when two specific patterns are detected, a Led toggles its state
/I pattern Oxaaaa5555 turns on the led, pattern OxfOfOfOfO turns it off.

Il

#define LedOn Oxaaaa5555
t#define LedOff OxfOfOfOfO

int main(void)

{
unsigned int counter; /I dummy
unsigned int ii; /I loop iterator
unsigned int trap; /I memory access pattern receiver
unsigned int period; /l time interval for memory access
//period=20000000; /I period for FPGA implementation; roughly 3 seconds
for a 10MHz osc in CMO_DS
period=200; /I period for simulations in ARM/Keil MDK and Xilinx ISIM tool
while (1)
{
counter=0:;
for (ii=0;ii<period;ii++)
{
counter++;
}
trap=LedOn; /I memory access pattern (turn on)
for (ii=0;ii<period;ii++)
{
counter++;
}
trap=LedOff; /I memory access pattern (turn off)
trap++; /I dummy
}
}

Louisianan Tech College of Engineering and Science | Appendix

Step by Step: Implementing a Cortex-MO with a Xilinx FPGA RYaR0EsVAVYbIokk]

VECTORS.C

I/l Define where the top of memory is.
#define TOP_OF_RAM 0x400U

extern int main(void); /I Use C-library initialization function.

__attribute__ ((section("__Vectors")))
static void (* const vector_table[])(void) =

{
(void (*)(void)) TOP_OF_RAM, /I Initial value for stack pointer.
(void (*)(void)) main, /I Reset handler is C initialization.
0, /I No HardFault handler, just cause lockup.
0, /[No NMI handler, just cause lockup.
o/1... /I Additional handlers would be listed here.
¥
UCF FILE

clock pin for Nexys 2 Board
NET "Clock_In" LOC = "B8"; # Bank=0, Pin name=IP_L13P_0/GCLKS8, Type=GCLK, Sch
name=GCLKO

Leds
NET "Led0" LOC ="J14"; # Bank=1, Pin name=10_L14N_1/A3/RHCLK7, Type=RHCLK/DUAL,
Sch name=JD10/LDO

NET "Led1" LOC ="J15"; # Bank=1, Pin name=10_L14P_1/A4/RHCLK®6, Type=RHCLK/DUAL,
Sch name=JD9/LD1

NET "Led2" LOC = "K15"; # Bank=1, Pin name=10_L12P_1/A8/RHCLK2, Type=RHCLK/DUAL,
Sch name=JD8/LD2

NET "Led3" LOC = "K14"; # Bank=1, Pin name=10_L12N_1/A7/RHCLK3/TRDY1,
Type=RHCLK/DUAL, Sch name=JD7/LD3

NET "Led4" LOC = "E17"; # Bank=1, Pin name=10, Type=I/O, Sch name=LD4 s3e500 only
NET "Led5" LOC ="P15"; # Bank=1, Pin name=10, Type=I/O, Sch nhame=LD5 s3e500 only
NET "Led6" LOC ="F4"; # Bank=3, Pin name=I0O, Type=I/O, Sch name=LD6 s3e500 only

NET "Led7" LOC = "R4"; # Bank=3, Pin name=IO/VREF_3, Type=VREF, Sch name=LD7

s$3e500 only

Louisianan Tech College of Engineering and Science | Appendix

