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Introduction to Molecular Dynamics Simulation

Michael P. Allen

Centre for Scientific Computing and Department of Physics,
University of Warwick, Coventry CV4 7AL, United Kingdom

E-mail: m.p.allen@warwick.ac.uk

In this chapter a summary is given of the key ingredients necessary to carry out a molecular
dynamics simulation, with particular emphasis on macromolecular systems. We discuss the
form of the intermolecular potential for molecules composed of atoms, and of non-spherical
sub-units, giving examples of how to compute the forces and torques. We also describe some
of the MD algorithms in current use. Finally, we briefly refer to the factors that influence the
size of systems, and length of runs, that are needed to calculate statistical properties.

1 The Aims of Molecular Dynamics

We carry out computer simulations in the hope of understanding the properties of assem-
blies of molecules in terms of their structure and the microscopic interactions between
them. This serves as a complement to conventional experiments, enabling us to learn
something new, something that cannot be found out in other ways. The two main families
of simulation technique are molecular dynamics (MD) and Monte Carlo (MC); addition-
ally, there is a whole range of hybrid techniques which combine features from both. In
this lecture we shall concentrate on MD. The obvious advantage of MD over MC is that it
gives a route to dynamical properties of the system: transport coefficients, time-dependent
responses to perturbations, rheological properties and spectra.

Computer simulations act as a bridge (see Fig. 1) between microscopic length and time
scales and the macroscopic world of the laboratory: we provide a guess at the interactions
between molecules, and obtain ‘exact’ predictions of bulk properties. The predictions are
‘exact’ in the sense that they can be made as accurate as we like, subject to the limita-
tions imposed by our computer budget. At the same time, the hidden detail behind bulk
measurements can be revealed. An example is the link between the diffusion coefficient
and velocity autocorrelation function (the former easy to measure experimentally, the latter
much harder). Simulations act as a bridge in another sense: between theory and experi-
ment. We may test a theory by conducting a simulation using the same model. We may
test the model by comparing with experimental results. We may also carry out simulations
on the computer that are difficult or impossible in the laboratory (for example, working at
extremes of temperature or pressure).

Ultimately we may want to make direct comparisons with experimental measurements
made on specific materials, in which case a good model of molecular interactions is essen-
tial. The aim of so-called ab initio molecular dynamics is to reduce the amount of fitting
and guesswork in this process to a minimum. On the other hand, we may be interested
in phenomena of a rather generic nature, or we may simply want to discriminate between
good and bad theories. When it comes to aims of this kind, it is not necessary to have a
perfectly realistic molecular model; one that contains the essential physics may be quite
suitable.
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Figure 1. Simulations as a bridge between (a) microscopic and macroscopic; (b) theory and experiment.

2 Molecular Interactions

Molecular dynamics simulation consists of the numerical, step-by-step, solution of the
classical equations of motion, which for a simple atomic system may be written

mir̈i = f i f i = − ∂

∂ri
U (1)

For this purpose we need to be able to calculate the forces f i acting on the atoms, and these
are usually derived from a potential energy U(rN ), where rN = (r1, r2, . . . rN ) repre-
sents the complete set of 3N atomic coordinates. In this section we focus on this function
U(rN ), restricting ourselves to an atomic description for simplicity. (In simulating soft
condensed matter systems, we sometimes wish to consider non-spherical rigid units which
have rotational degrees of freedom: rotational equations of motion and interaction poten-
tials will be considered in section 5).

2.1 Non-bonded Interactions

The part of the potential energy Unon-bonded representing non-bonded interactions between
atoms is traditionally split into 1-body, 2-body, 3-body . . . terms:

Unon-bonded(rN ) =
∑

i

u(ri) +
∑

i

∑

j>i

v(ri, rj) + . . . . (2)

The u(r) term represents an externally applied potential field or the effects of the container
walls; it is usually dropped for fully periodic simulations of bulk systems. Also, it is
usual to concentrate on the pair potential v(ri, rj) = v(rij) and neglect three-body (and
higher order) interactions. There is an extensive literature on the way these potentials are
determined experimentally, or modelled theoretically1–4.

In some simulations of complex fluids, it is sufficient to use the simplest models that
faithfully represent the essential physics. In this chapter we shall concentrate on continu-
ous, differentiable pair-potentials (although discontinuous potentials such as hard spheres
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Figure 2. Lennard-Jones pair potential showing the r−12 and r−6 contributions. Also shown is the WCA shifted
repulsive part of the potential.

and spheroids have also played a role, see e.g. 5). The Lennard-Jones potential is the most
commonly used form:

vLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (3)

with two parameters: σ, the diameter, and ε, the well depth. This potential was used,
for instance, in the earliest studies of the properties of liquid argon6, 7 and is illustrated
in Fig. 2. For applications in which attractive interactions are of less concern than the
excluded volume effects which dictate molecular packing, the potential may be truncated
at the position of its minimum, and shifted upwards to give what is usually termed the WCA
model8. If electrostatic charges are present, we add the appropriate Coulomb potentials

vCoulomb(r) =
Q1Q2

4πε0r
, (4)

where Q1, Q2 are the charges and ε0 is the permittivity of free space. The correct handling
of long-range forces in a simulation is an essential aspect of polyelectrolyte simulations,
which will be the subject of the later chapter of Holm9.

2.2 Bonding Potentials

For molecular systems, we simply build the molecules out of site-site potentials of the form
of Eq. (3) or similar. Typically, a single-molecule quantum-chemical calculation may be
used to estimate the electron density throughout the molecule, which may then be mod-
elled by a distribution of partial charges via Eq. (4), or more accurately by a distribution of
electrostatic multipoles4, 10. For molecules we must also consider the intramolecular bond-
ing interactions. The simplest molecular model will include terms of the following kind:
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Uintramolecular =
1

2

∑

bonds

krij
(
rij − req

)2 (5a)

+
1

2

∑

bend
angles

kθijk
(
θijk − θeq

)2
(5b)

+
1

2

∑

torsion
angles

∑

m

kφ,mijkl

(
1 + cos(mφijkl − γm)

)
(5c)

The geometry is illustrated in Fig. 3. The “bonds” will typically involve the separation
rij = |ri−rj | between adjacent pairs of atoms in a molecular framework, and we assume
in Eq. (5a) a harmonic form with specified equilibrium separation, although this is not
the only possibility. The “bend angles” θijk are between successive bond vectors such as
ri − rj and rj − rk, and therefore involve three atom coordinates:

cos θijk = r̂ij · r̂jk =
(
rij · rij

)−1/2(
rjk · rjk

)−1/2(
rij · rjk

)

where r̂ = r/r. Usually this bending term is taken to be quadratic in the angular dis-
placement from the equilibrium value, as in Eq. (5b), although periodic functions are also
used. The “torsion angles” φijkl are defined in terms of three connected bonds, hence four
atomic coordinates:

cosφijkl = −n̂ijk · n̂jkl , where nijk = rij × rjk , njkl = rjk × rkl ,
and n̂ = n/n, the unit normal to the plane defined by each pair of bonds. Usually the
torsional potential involves an expansion in periodic functions of order m = 1, 2, . . .,
Eq. (5c).

A simulation package force-field will specify the precise form of Eq. (5), and the var-
ious strength parameters k and other constants therein. Actually, Eq. (5) is a consider-
able oversimplification. Molecular mechanics force-fields, aimed at accurately predicting
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structures and properties, will include many cross-terms (e.g. stretch-bend): MM311–13 and
MM414–16 are examples. Quantum mechanical calculations may give a guide to the “best”
molecular force-field; also comparison of simulation results with thermophysical proper-
ties and vibration frequencies is invaluable in force-field development and refinement. A
separate family of force fields, such as AMBER17, 18, CHARMM19 and OPLS20 are geared
more to larger molecules (proteins, polymers) in condensed phases; their functional form
is simpler, closer to that of Eq. (5), and their parameters are typically determined by quan-
tum chemical calculations combined with thermophysical and phase coexistence data. This
field is too broad to be reviewed here; several molecular modelling texts21–23 (albeit target-
ted at biological applications) should be consulted by the interested reader. The modelling
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Figure 4. The FENE+WCA potential, with its separate FENE (attractive) and WCA (repulsive) components,
between bonded atoms in a coarse-grained polymer chain. Also shown is the equivalent harmonic potential.
Unlike the harmonic spring, the FENE potential cannot be extended beyond a specified limit, here R0 = 1.5σ.
For more details see Ref. 24.

of long chain molecules will be of particular interest to us, especially as an illustration of
the scope for progressively simplifying and “coarse-graining” the potential model. Var-
ious explicit-atom potentials have been devised for the n-alkanes25. More approximate
potentials have also been constructed26–28 in which the CH2 and CH3 units are represented
by single “united atoms”. These potentials are typically less accurate and less transfer-
able than the explicit-atom potentials, but significantly less expensive; comparisons have
been made between the two approaches29. For more complicated molecules this approach
may need to be modified. In the liquid crystal field, for instance, a compromise has been
suggested30: use the united-atom approach for hydrocarbon chains, but model phenyl ring
hydrogens explicitly.

In polymer simulations, there is frequently a need to economize further and coarse-
grain the interactions more dramatically: significant progress has been made in recent
years in approaching this problem systematically31, 32. Finally, the most fundamental prop-
erties, such as the entanglement length in a polymer melt33, may be investigated using a
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simple chain of pseudo-atoms or beads (modelled using the WCA potential of Fig. 2, and
each representing several monomers), joined by an attractive finitely-extensible non-linear
elastic (FENE) potential24 which is illustrated in Fig. 4.

vFENE(r) =

{
− 1

2kR
2
0 ln

(
1− (r/R0)2

)
r < R0

∞ r ≥ R0

(6)

The key feature of this potential is that it cannot be extended beyond r = R0, ensuring (for
suitable choices of the parameters k andR0) that polymer chains cannot move through one
another.

2.3 Force Calculation

Having specified the potential energy function U(rN ), the next step is to calculate the
atomic forces

f i = − ∂

∂ri
U(rN )

For site-site potentials this is a simple exercise. For the intramolecular part of the potential,
it is a little more involved, but still a relatively straightforward application of the chain
rule. Examples of how to do it are given in appendix C of Ref. 34. As a simple illustration,
consider one of the bending potential terms for the polymer of Fig. 3, supposing that it may
be written

v = −k cos θ234 = −k(r23 · r23)−1/2(r34 · r34)−1/2(r23 · r34)

This will contribute to the forces on all three atoms. To calculate these, we need:

∂

∂r2
(r23 · r34) = r34

∂

∂r3
(r23 · r34) = r23 − r34

∂

∂r4
(r23 · r34) = −r23

∂

∂r2
(r23 · r23) = 2r23

∂

∂r3
(r23 · r23) = −2r23

∂

∂r4
(r23 · r23) = 0

∂

∂r2
(r34 · r34) = 0

∂

∂r3
(r34 · r34) = 2r34

∂

∂r4
(r34 · r34) = −2r34

and hence

∂

∂r2
cos θ234 = r−1

23 r
−1
34

(
r34 −

r23 · r34

r2
23

r23

)

∂

∂r3
cos θ234 = r−1

23 r
−1
34

(
r23 · r34

r2
23

r23 −
r23 · r34

r2
34

r34 + r23 − r34

)

∂

∂r4
cos θ234 = r−1

23 r
−1
34

(
r23 · r34

r2
34

r34 − r23

)

A similar approach applied to the torsional potential gives the forces on all four involved
atoms.
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3 The MD Algorithm

Solving Newton’s equations of motion does not immediately suggest activity at the cutting
edge of research. The molecular dynamics algorithm in most common use today may even
have been known to Newton35. Nonetheless, the last decade has seen a rapid develop-
ment in our understanding of numerical algorithms; a forthcoming review36 and a book37

summarize the present state of the field.
Continuing to discuss, for simplicity, a system composed of atoms with coordinates

rN = (r1, r2, . . .rN ) and potential energy U(rN ), we introduce the atomic momenta
pN = (p1,p2, . . .pN ), in terms of which the kinetic energy may be written K(pN ) =∑N
i=1

∣∣pi
∣∣2/2mi. Then the energy, or hamiltonian, may be written as a sum of kinetic and

potential termsH = K + U . Write the classical equations of motion as

ṙi = pi/mi and ṗi = f i (7)

This is a system of coupled ordinary differential equations. Many methods exist to perform
step-by-step numerical integration of them. Characteristics of these equations are: (a) they
are ‘stiff’, i.e. there may be short and long timescales, and the algorithm must cope with
both; (b) calculating the forces is expensive, typically involving a sum over pairs of atoms,
and should be performed as infrequently as possible. Also we must bear in mind that the
advancement of the coordinates fulfils two functions: (i) accurate calculation of dynamical
properties, especially over times as long as typical correlation times τa of properties a of
interest (we shall define this later); (ii) accurately staying on the constant-energy hypersur-
face, for much longer times τrun � τa, in order to sample the correct ensemble.

To ensure rapid sampling of phase space, we wish to make the timestep as large as
possible consistent with these requirements. For these reasons, simulation algorithms have
tended to be of low order (i.e. they do not involve storing high derivatives of positions,
velocities etc.): this allows the time step to be increased as much as possible without jeop-
ardizing energy conservation. It is unrealistic to expect the numerical method to accurately
follow the true trajectory for very long times τrun. The ‘ergodic’ and ‘mixing’ proper-
ties of classical trajectories, i.e. the fact that nearby trajectories diverge from each other
exponentially quickly, make this impossible to achieve.

All these observations tend to favour the Verlet algorithm in one form or another, and
we look closely at this in the following section. For historical reasons only, we mention the
more general class of predictor-corrector methods which have been optimized for classical
mechanical equations38, 39; further details are available elsewhere34, 40, 41.

3.1 The Verlet Algorithm

There are various, essentially equivalent, versions of the Verlet algorithm, including the
original method7, 42 and a ‘leapfrog’ form43. Here we concentrate on the ‘velocity Verlet’
algorithm44, which may be written

pi(t+ 1
2δt) = pi(t) + 1

2δtf i(t) (8a)

ri(t+ δt) = ri(t) + δtpi(t+ 1
2δt)/mi (8b)

pi(t+ δt) = pi(t+ 1
2δt) + 1

2δtf i(t+ δt) (8c)
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After step (8b), a force evaluation is carried out, to give f i(t + δt) for step (8c). This
scheme advances the coordinates and momenta over a timestep δt. A piece of pseudo-code
illustrates how this works:

do step = 1, nstep
p = p + 0.5*dt*f
r = r + dt*p/m
f = force(r)
p = p + 0.5*dt*f

enddo

As we shall see shortly there is an interesting theoretical derivation of this version of the
algorithm. Important features of the Verlet algorithm are: (a) it is exactly time reversible;
(b) it is symplectic (to be discussed shortly); (c) it is low order in time, hence permitting
long timesteps; (d) it requires just one (expensive) force evaluation per step; (e) it is easy
to program.

3.2 Constraints

It is quite common practice in classical computer simulations not to attempt to represent
intramolecular bonds by terms in the potential energy function, because these bonds have
very high vibration frequencies (and arguably should be treated in a quantum mechanical
way rather than in the classical approximation). Instead, the bonds are treated as being
constrained to have fixed length. In classical mechanics, constraints are introduced through
the Lagrangian45 or Hamiltonian46 formalisms. Given an algebraic relation between two
atomic coordinates, for example a fixed bond length b between atoms 1 and 2, one may
write a constraint equation, plus an equation for the time derivative of the constraint

χ(r1, r2) = (r1 − r2) · (r1 − r2)− b2 = 0 (9a)
χ̇(r1, r2) = 2(v1 − v2) · (r1 − r2) = 0 . (9b)

In the Lagrangian formulation, the constraint forces acting on the atoms will enter thus:

mir̈i = f i + Λgi

where Λ is the undetermined multiplier and

g1 = − ∂χ

∂r1
= −2(r1 − r2) g2 = − ∂χ

∂r2
= 2(r1 − r2)

It is easy to derive an exact expression for the multiplier Λ from the above equations;
if several constraints are imposed, a system of equations (one per constraint) is obtained.
However, this exact solution is not what we want: in practice, since the equations of motion
are only solved approximately, in discrete time steps, the constraints will be increasingly
violated as the simulation proceeds. The breakthrough in this area came with the pro-
posal to determine the constraint forces in such a way that the constraints are satisfied
exactly at the end of each time step47–49. For the original Verlet algorithm, this scheme is
called SHAKE. The appropriate version of this scheme for the velocity Verlet algorithm is
called RATTLE50. Formally, we wish to solve the following scheme, in which we combine
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(r1, r2) into r, (p1,p2) into p, etc. for simplicity:

p(t+ 1
2δt) = p(t) + 1

2δtf(t) + λg(t)

r(t+ δt) = r(t) + δtp(t+ 1
2δt)/m

choosing λ such that: 0 = χ(r(t+ δt)) (10a)

p(t+ δt) = p(t+ 1
2δt) + 1

2δtf(t+ δt) + µg(t+ δt)

choosing µ such that: 0 = χ̇(r(t+ δt),p(t+ δt)) (10b)

Step (10a) may be implemented by defining unconstrained variables

p̄(t+ 1
2δt) = p(t) + 1

2δtf(t) , r̄(t+ δt) = r(t) + δtp̄(t+ 1
2δt)/m

then solving the nonlinear equation for λ

χ(t+ δt) = χ
(
r̄(t+ δt) + λδtg(t)/m

)
= 0

and substituting back

p(t+ 1
2δt) = p̄(t+ 1

2δt) + λg(t) , r(t+ δt) = r̄(t+ δt) + δtλg(t)/m

Step (10b) may be handled by defining

p̄(t+ δt) = p(t+ 1
2δt) + 1

2δtf(t+ δt)

solving the equation for the second Lagrange multiplier µ

χ̇(t+ δt) = χ̇
(
r(t+ δt), p̄(t+ δt) + µg(t+ δt)

)
= 0

(which is actually linear, since χ̇(r,p) = −g(r) · p/m) and substituting back

p(t+ δt) = p̄(δt) + µg(t+ δt)

In pseudo-code this scheme may be written

do step = 1, nstep
p = p + (dt/2)*f
r = r + dt*p/m
lambda_g = shake(r)
p = p + lambda_g
r = r + dt*lambda_g/m
f = force(r)
p = p + (dt/2)*f
mu_g = rattle(r,p)
p = p + mu_g

enddo

The routine called shake here calculates the constraint forces λgi necessary to ensure
that the end-of-step positions ri satisfy Eq. (9a). For a system of many constraints, this
calculation is usually performed in an iterative fashion, so as to satisfy each constraint
in turn until convergence; the original SHAKE algorithm was framed in this way. These
constraint forces are incorporated into both the end-of-step positions and the mid-step mo-
menta. The routine called rattle calculates a new set of constraint forces µg i to ensure
that the end-of-step momenta satisfy Eq. (9b). This also may be carried out iteratively.
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It is important to realize that a simulation of a system with rigidly constrained bond
lengths, is not equivalent to a simulation with, for example, harmonic springs represent-
ing the bonds, even in the limit of very strong springs. A subtle, but crucial, difference
lies in the distribution function for the other coordinates. If we obtain the configurational
distribution function by integrating over the momenta, the difference arises because in one
case a set of momenta is set to zero, and not integrated, while in the other an integration
is performed, which may lead to an extra term depending on particle coordinates. This
is frequently called the ‘metric tensor problem’; it is explained in more detail in the refer-
ences34, 51, and there are well-established ways of determining when the difference is likely
to be significant52 and how to handle it, if necessary53. Constraints also find an application
in the study of rare events51, or for convenience when it is desired to fix, for example, the
director in a liquid crystal simulation54.

An alternative to constraints, is to retain the intramolecular bond potentials and use a
multiple time step approach to handle the fast degrees of freedom. We discuss this shortly.

3.3 Periodic Boundary Conditions

Small sample size means that, unless surface effects are of particular interest, periodic
boundary conditions need to be used. Consider 1000 atoms arranged in a 10 × 10 × 10
cube. Nearly half the atoms are on the outer faces, and these will have a large effect on the
measured properties. Even for 106 = 1003 atoms, the surface atoms amount to 6% of the
total, which is still nontrivial. Surrounding the cube with replicas of itself takes care of this
problem. Provided the potential range is not too long, we can adopt the minimum image
convention that each atom interacts with the nearest atom or image in the periodic array.
In the course of the simulation, if an atom leaves the basic simulation box, attention can
be switched to the incoming image. This is shown in Figure 5. Of course, it is important
to bear in mind the imposed artificial periodicity when considering properties which are
influenced by long-range correlations. Special attention must be paid to the case where the
potential range is not short: for example for charged and dipolar systems.

3.4 Neighbour Lists

Computing the non-bonded contribution to the interatomic forces in an MD simulation
involves, in principle, a large number of pairwise calculations: we consider each atom i
and loop over all other atoms j to calculate the minimum image separations rij . Let us
assume that the interaction potentials are of short range, v(rij) = 0 if rij > rcut, the
potential cutoff. In this case, the program skips the force calculation, avoiding expensive
calculations, and considers the next candidate j. Nonetheless, the time to examine all
pair separations is proportional to the number of distinct pairs, 1

2N(N − 1) in an N -atom
system, and for every pair one must compute at least r2

ij ; this still consumes a lot of time.
Some economies result from the use of lists of nearby pairs of atoms. Verlet7 suggested

such a technique for improving the speed of a program. The potential cutoff sphere, of
radius rcut, around a particular atom is surrounded by a ‘skin’, to give a larger sphere of
radius rlist as shown in Figure 6. At the first step in a simulation, a list is constructed of
all the neighbours of each atom, for which the pair separation is within rlist. Over the next
few MD time steps, only pairs appearing in the list are checked in the force routine. From
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Figure 5. Periodic boundary conditions. As a particle moves out of the simulation box, an image particle moves
in to replace it. In calculating particle interactions within the cutoff range, both real and image neighbours are
included.

Figure 6. The Verlet list on its construction, later, and too late. The potential cutoff range (solid circle), and the
list range (dashed circle), are indicated. The list must be reconstructed before particles originally outside the list
range (black) have penetrated the potential cutoff sphere.

time to time the list is reconstructed: it is important to do this before any unlisted pairs
have crossed the safety zone and come within interaction range. It is possible to trigger the
list reconstruction automatically, if a record is kept of the distance travelled by each atom
since the last update. The choice of list cutoff distance rlist is a compromise: larger lists
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Figure 7. The cell structure. The potential cutoff range is indicated. In searching for neighbours of an atom, it is
only necessary to examine the atom’s own cell, and its nearest-neighbour cells (shaded).

will need to be reconstructed less frequently, but will not give as much of a saving on cpu
time as smaller lists. This choice can easily be made by experimentation.

For larger systems (N ≥ 1000 or so, depending on the potential range) another tech-
nique becomes preferable. The cubic simulation box (extension to non-cubic cases is pos-
sible) is divided into a regular lattice of ncell × ncell × ncell cells; see Figure 7. These cells
are chosen so that the side of the cell `cell = L/ncell is greater than the potential cutoff dis-
tance rcut. If there is a separate list of atoms in each of those cells, then searching through
the neighbours is a rapid process: it is only necessary to look at atoms in the same cell as
the atom of interest, and in nearest neighbour cells. The cell structure may be set up and
used by the method of linked lists55, 43. The first part of the method involves sorting all
the atoms into their appropriate cells. This sorting is rapid, and may be performed every
step. Then, within the force routine, pointers are used to scan through the contents of cells,
and calculate pair forces. This approach is very efficient for large systems with short-range
forces. A certain amount of unnecessary work is done because the search region is cubic,
not (as for the Verlet list) spherical.

4 Time Dependence

A knowledge of time-dependent statistical mechanics is important in three general areas
of simulation. Firstly, in recent years there have been significant advances in the under-
standing of molecular dynamics algorithms, which have arisen out of an appreciation of the
formal operator approach to classical mechanics. Second, an understanding of equilibrium
time correlation functions, their link with dynamical properties, and especially their con-
nection with transport coefficients, is essential in making contact with experiment. Third,
the last decade has seen a rapid development of the use of nonequilibrium molecular dy-
namics, with a better understanding of the formal aspects, particularly the link between the
dynamical algorithm, dissipation, chaos, and fractal geometry. Space does not permit a full
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description of all these topics here: the interested reader should consult Refs 56,57,51 and
references therein.

The Liouville equation dictates how the classical statistical mechanical distribution
function %(rN ,pN , t) evolves in time. From considerations of standard, Hamiltonian,
mechanics45 and the flow of representative systems in an ensemble through a particular
region of phase space, it is easy to derive the Liouville equation

∂%

∂t
= −

{∑

i

ṙi ·
∂

∂ri
+ ṗi ·

∂

∂pi

}
% ≡ −iL% , (11)

defining the Liouville operator iL as the quantity in braces. Contrast this equation for
% with the time evolution equation for a dynamical variable A(rN ,pN ), which comes
directly from the chain rule applied to Hamilton’s equations

Ȧ =
∑

i

ṙi ·
∂A

∂ri
+ ṗi ·

∂A

∂pi
≡ iLA . (12)

The formal solutions of the time evolution equations are

%(t) = e−iLt%(0) and A(t) = eiLtA(0) (13)

where, in either case, the exponential operator is called the propagator. A number of ma-
nipulations are possible, once this formalism has been established. There are useful analo-
gies both with the Eulerian and Lagrangian pictures of incompressible fluid flow, and with
the Heisenberg and Schrödinger pictures of quantum mechanics (see e.g. Ref. 58, Chap. 7,
and Ref. 59, Chap. 11). These analogies are particularly useful in formulating the equa-
tions of classical response theory60, linking transport coefficients with both equilibrium
and nonequilibrium simulations56.

The Liouville equation applies to any ensemble, equilibrium or not. Equilibrium means
that % should be stationary, i.e. that ∂%/∂t = 0. In other words, if we look at any phase-
space volume element, the rate of incoming state points should equal the rate of outflow.
This requires that % be a function of the constants of the motion, and especially % = %(H).
Equilibrium also implies d〈A〉/dt = 0 for any A. The extension of the above equations to
nonequilibrium ensembles requires a consideration of entropy production, the method of
controlling energy dissipation (thermostatting) and the consequent non-Liouville nature of
the time evolution56.

4.1 Propagators and the Verlet Algorithm

The velocity Verlet algorithm may be derived by considering a standard approximate
decomposition of the Liouville operator which preserves reversibility and is symplectic
(which implies that volume in phase space is conserved). This approach61 has had several
beneficial consequences.

The Liouville operator of equation (13) may be written62

eiLt =
(
eiLδt

)nstep

approx
+O(nstepδt

3)

where δt = t/nstep and an approximate propagator, correct at short timesteps δt → 0,
appears in the parentheses. This is a formal way of stating what we do in molecular dy-
namics, when we split a long time period t into a large number nstep of small timesteps δt,
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using an approximation to the true equations of motion over each timestep. It turns out that
useful approximations arise from splitting iL into two parts61

iL = iLp + iLr . (14)

where

iLp =
∑

i

ṗi ·
∂

∂pi
=
∑

i

f i ·
∂

∂pi
(15a)

iLr =
∑

i

ṙi ·
∂

∂ri
=
∑

i

m−1
i pi ·

∂

∂ri
. (15b)

The following approximation

eiLδt = e(iLp+iLr)δt ≈ eiLpδt/2 eiLrδt eiLpδt/2 (16)

is asymptotically exact in the limit δt→ 0. For nonzero δt this is an approximation to eiLδt

because in general iLp and iLr do not commute, but it is still exactly time reversible and
symplectic.

Effectively, we are propagating the equation of motion in steps which ignore, in turn,
the kinetic part and the potential part of the hamiltonian. A straightforward derivation51

shows that the effect of each operator on a dynamical variable A
(
rN ,pN

)
is to advance,

respectively, the coordinates and the momenta separately:

eiLrδtA
(
r,p

)
= A

(
r +m−1pδt,p

)
(17a)

eiLpδtA
(
r,p

)
= A

(
r,p+ fδt

)
(17b)

where, to avoid clutter, we have written r,p for rN ,pN . It is then easy to see that the three
successive steps embodied in equation (16), with the above choice of operators, generate
the velocity Verlet algorithm.

Such a formal approach may seem somewhat abstract, but has been invaluable in un-
derstanding the excellent performance of Verlet-like algorithms in molecular dynamics,
and in extending the range of algorithms available to us. It may be shown that, although
the trajectories generated by the above scheme are approximate, and will not conserve the
true energy H, nonetheless, they do exactly conserve a “pseudo-hamiltonian” or “shadow
hamiltonian” H which differs from the true one by a small amount (vanishing as δt → 0.
This means that no drift in the energy will occur: the system will remain on a hypersurface
in phase space which is “close” (in the above sense) to the true constant-energy hypersur-
face. Such a stability property is extremely useful in molecular dynamics, since we wish
to sample constant-energy states.

An example may make things clearer. Consider a simple harmonic oscillator63, of
natural frequency ω, representing perhaps an interatomic bond in a diatomic molecule.
The equations of motion are

ẋ = p/m ṗ = −mω2x

For these equations, a few lines of algebra shows that the following shadow hamiltonian

H(x, p) =
p2/2m

1− (ωδt/2)2
+ 1

2mω
2x2
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is exactly conserved by the velocity Verlet algorithm. In a phase portrait, the simulated
system remains on a constant-H ellipse which differs only slightly (for small ωδt) from
the true constant-H ellipse. This is illustrated in Fig. 8, where we deliberately choose a
high step size δt = 0.7/ω to accentuate the differences. Note that, even for this value of
δt, the energy conservation is very good (the deviation is O(δt2)). At the same time, the
frequency of oscillation is shifted from the true value, so the trajectories steadily diverge
from each other.
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Figure 8. Velocity Verlet algorithm for simple harmonic oscillator with initial conditions x(0) = 1, p(0) = 0.
The outer circle shows the exact trajectory, conserving the true hamiltonian H; the inner ellipse is a contour
of constant shadow hamiltonian H for a (relatively large) timestep δt = 0.7/ω. The circles show the exact
solutions at regular intervals δt; the squares show the corresponding velocity Verlet phase points, connected by
straight sections representing the intermediate steps in the algorithm.

4.2 Multiple Timesteps

An important extension of the MD method allows it to tackle systems with multiple time
scales: for example, molecules which have very strong internal springs representing the
bonds, while interacting externally through softer potentials; molecules having strongly-
varying short-range interactions but more smoothly-varying long-range interactions; or
perhaps molecules consisting of both heavy and light atoms. A simple MD algorithm will
have to adopt a timestep short enough to handle the fastest variables.

An attractive improvement is to handle the fast motions with a shorter timestep64, 61, 65.
A time-reversible Verlet-like multiple-timestep algorithm may be generated using the Li-
ouville operator formalism described above. Here we suppose that there are two types of
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force in the system: “slow” F i, and “fast” f i. The momentum satisfies ṗi = f i + F i.
Then we break up the Liouville operator iL = i

�
p + iLp + iLr:

i
�
p =

∑

i

F i ·
∂

∂pi
(18a)

iLp =
∑

i

f i ·
∂

∂pi
(18b)

iLr =
∑

i

m−1pi ·
∂

∂ri
(18c)

The propagator approximately factorizes

eiL∆t ≈ ei � p∆t/2 ei(Lp+Lr)∆t ei � p∆t/2

where ∆t represents a long time step. The middle part is then split again, using the con-
ventional separation, and iterating over small time steps δt = ∆t/nstep:

ei(Lp+Lr)∆t ≈
[
eiLpδt/2 eiLrδt eiLpδt/2

]nstep
.

So the fast-varying forces must be computed many times at short intervals; the slow-
varying forces are used just before and just after this stage, and they only need be calculated
once per long timestep.

This translates into a fairly simple algorithm, based closely on the standard velocity
Verlet method. Written in a Fortran-like pseudo-code, it is as follows. At the start of the
run we calculate both rapidly-varying (f) and slowly-varying (F) forces, then, in the main
loop:

do STEP = 1, NSTEP
p = p + (DT/2)*F
do step = 1, nstep

p = p + (dt/2)*f
r = r + dt*p/m
f = force(r)
p = p + (dt/2)*f

enddo
F = FORCE(r)
p = p + (DT/2)*F

enddo

The entire simulation run consists of NSTEP long steps; each step consists of nstep
shorter sub-steps. DT and dt are the corresponding timesteps, DT = nstep*dt.

A particularly fruitful application, which has been incorporated into computer codes
such as ORAC66, is to split the interatomic force law into a succession of components
covering different ranges: the short-range forces change rapidly with time and require a
short time step, but advantage can be taken of the much slower time variation of the long-
range forces, by using a longer time step and less frequent evaluation for these. Having
said this, multiple-time-step algorithms are still under active study67, and there is some
concern that resonances may occur between the natural frequencies of the system and the
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various timesteps used in schemes of this kind68, 69. Significant efforts have been made in
recent years to overcome these problems and achieve significant increases in step size by
alternative methods70–72. The area remains one of active research73, 36.

5 Rigid Molecule Rotation

In certain applications, particularly in the simulation of liquid crystals, colloidal systems,
and polymers, it is advantageous to include non-spherical rigid bodies in the molecular
model. This means that we must calculate intermolecular torques as well as forces, and
implement the classical dynamical equations for rotational motion.

If the intermolecular forces are expressed as sums of site-site (or atom-atom) terms,
the conversion of these into centre-of-mass forces, and torques about the centre of mass, is
easily performed. Consider two molecules A and B, centre-of-mass position vectors RA,
RB . Define the intermolecular vectorRAB = RA−RB , and suppose that the interaction
potential may be expressed

vAB =
∑

i∈A

∑

j∈B
v(rij)

where i and j are atomic sites in the respective molecules. Then we may compute

force on A due to B: FAB =
∑

i∈A

∑

j∈B
f ij = −FBA

torque on A due to B: NAB =
∑

i∈A

∑

j∈B
riA × f ij

torque on B due to A: NBA =
∑

i∈A

∑

j∈B
rjB × f ji

where riA = ri − RA is the position of site i relative to the centre of molecule A (and
likewise for rjB). Note that NAB 6= −NBA (a common misconception), but that the
above equations give directly

NAB +NBA +RAB × FAB = 0 (19)

provided the forces satisfy f ij = −f ji and act along the site-site vectors rij . This is
the expression of local angular momentum conservation, which follows directly from the
invariance of the potential energy vAB to a rotation of the coordinate system. (Note, in
passing, that, in periodic boundaries, angular momentum is not globally conserved).

There is also a trend to use rigid-body potentials which are defined explictly in terms
of centre-of-mass positions and molecular orientations. An example is the Gay-Berne
potential74

vGB
AB(R, â, b̂) = 4ε(R̂, â, b̂)

[
%−12 − %−6

]
(20a)

with % =
R− σ(R̂, â, b̂) + σ0

σ0
(20b)

which depends upon the molecular axis vectors â and b̂, and on the direction R̂ and mag-
nitude R of the centre-centre vector RAB , which we write R here and henceforth. The
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parameter σ0 determines the smallest molecular diameter and there are two orientation-
dependent quantities in the above shifted-Lennard-Jones form: a diameter σ(R̂, â, b̂) and
an energy ε(R̂, â, b̂). Each quantity depends in a complicated way (not given here) on pa-
rameters characterizing molecular shape and structure. This potential has been extensively
used in the study of molecular liquids and liquid crystals75, 76, 54, 77–79and will be discussed
further in a later chapter80. Generalizations to non-uniaxial rigid bodies81–83 have also been
studied: here, the diameter and energy parameters depend on the full orthogonal orientation
matrices â, b̂, which convert from space-fixed (xyz) to molecule-fixed (123) coordinates,
and whose rows are the three molecule-fixed orthonormal principal axis vectors âα, b̂β ,
α, β = 1, 2, 3.

We go through the following derivation in some detail, as it is seldom presented. A
very common case is when the pair potential may be written in the form84

vAB = vAB
(
R, {âα · R̂}, {b̂β · R̂}, {âα · b̂β}

)
(21)

i.e. a function of the centre-centre separation R, and all possible scalar products of the unit
vectors R̂, âα and b̂β . Using the chain rule, we may write the force on A:

FAB = −∂vAB
∂R

= −∂vAB
∂R

∂R

∂R
−
∑

ê=â,b̂

∂vAB

∂(ê · R̂)

∂(ê · R̂)

∂R

= −∂vAB
∂R

R̂−
∑

ê=â,b̂

∂vAB

∂(ê · R̂)

ê− (ê · R̂)R̂

R
. (22)

The sum ranges over all the orientation vectors on both molecules, ê = {âα, b̂α}. The
derivatives of the potential are easily evaluated, assuming that it has the general form of
Eq. (21). To calculate the torques, we follow the general approach of Ref. 84. Consider
the derivative of vAB with respect to rotation of molecule A through an angle ψ about any
axis n̂. By definition, this gives:

n̂ ·NAB = −∂vAB
∂ψ

= −
∑

α

∑

ê=R̂,b̂

∂vAB
∂(ê · âα)

∂(ê · âα)

∂ψ
. (23)

The sum is over all combinations of unit vectors (âα, ê) for which one, âα, rotates with
the molecule while the other, ê = R̂ or b̂β , remains stationary. This has the effect45

∂âα
∂ψ

= n̂× âα ⇒ ∂(ê · âα)

∂ψ
= ê · n̂× âα = −n̂ · ê× âα .

Then Eq. (23) gives

n̂ ·NAB = n̂ ·
∑

α

∑

ê=R̂,b̂

∂vAB
∂(ê · âα)

ê× âα . (24)

Choosing n̂ to be each of the coordinate directions in turn allows us to identify every
component of the torque:

NAB =
∑

α

∑

ê=R̂,b̂

∂vAB
∂(ê · âα)

ê× âα . (25)
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Writing this out explicitly for molecules A and B:

NAB =
∑

α

∂vAB

∂(âα · R̂)
R̂× âα −

∑

αβ

∂vAB

∂(âα · b̂β)
âα × b̂β (26a)

NBA =
∑

β

∂vAB

∂(b̂β · R̂)
R̂× b̂β +

∑

αβ

∂vAB

∂(âα · b̂β)
âα × b̂β . (26b)

Note that eqns (22), (26a) and (26b) giveNAB +NBA +R× fAB = 0 as before.
If the potential is not (easily) expressible in terms of scalar products, a similar deriva-

tion gives the expressions

fAB = −∂vAB
∂R

= −∂vAB
∂R

R̂− ∂vAB

∂R̂

[
1− R̂R̂

R

]
(27a)

NAB = −
∑

α

âα ×
∂vAB
∂âα

(27b)

NBA = −
∑

β

b̂β ×
∂vAB

∂b̂β
(27c)

which may be more convenient. Specific examples of the use of these equations in the
context of liquid crystal simulations are given elsewhere85.

Methods for integrating the rotational equations of motion, using a symplectic splitting
method akin to that of section 4.1 have been described elsewhere. These tend to fall into
two categories: those based on the rotation matrix86–88, and those based on quaternion
parameters89. Here, we present briefly the former approach. Consider molecule A, and
drop its identifying suffix. Assuming that the inertia tensor I is diagonal in the frame
defined by the âα vectors, the body-fixed angular momentum vector is defined byπ = I·ω,
and the rotation matrix satisfies the equation

dâ

dt
= â ·Ω where Ω =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




The angular momentum satisfies

dπ
dt

= π × I−1π +N

where the torque N is expressed in body-fixed coordinates. Then, the essential idea is to
split the rotational propagator

eiLπδt/2 eiLfreeδt eiLπδt/2

where the first and last components advance the angular momentum, using the computed
torque, and the central part corresponds to free rotation governed by the kinetic energy part
of the hamiltonian. In some special cases, the free rotation problem can be solved exactly,
but in the general case it is split further into three separate rotations, each corresponding to
a single element of the diagonal inertia tensor.
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6 Molecular Dynamics in Different Ensembles

In this section we briefly discuss molecular dynamics methods in the constant-NV T en-
semble; the reader should be aware that analogous approaches exist for other ensembles,
particularly to simulate at constant pressure or stress.

There are three general approaches to conducting molecular dynamics at constant tem-
perature rather than constant energy. One method, simple to implement and reliable, is
to periodically reselect atomic velocities at random from the Maxwell-Boltzmann distri-
bution90. This is rather like an occasional random coupling with a thermal bath. The
resampling may be done to individual atoms, or to the entire system; some guidance on the
reselection frequency may be found in Ref. 90.

A second approach91, 92, is to introduce an extra ‘thermal reservoir’ variable into the
dynamical equations:

ṙi = pi/m (28a)
ṗi = f i − ζpi (28b)

ζ̇ =

∑
iα p

2
iα/m− gkBT

Q
≡ ν2

T

[∑
iα p

2
iα/m

gkBT
− 1

]
= ν2

T

[T
T
− 1

]
. (28c)

Here ζ is a friction coefficient which is allowed to vary in time; Q is a thermal inertia
parameter, which may be replaced by νT , a relaxation rate for thermal fluctuations; g ≈
3N is the number of degrees of freedom. T stands for the instantaneous ‘mechanical’
temperature. It may be shown that the distribution function for the ensemble is proportional
to exp{−βW} whereW = H + 1

23NkBTζ
2/ν2

T . These equations lead to the following
time variation of the system energyH =

∑
iα p

2
iα/2m+ U , and for the variableW:

Ḣ =
∑

iα

piαṗiα/m−
∑

fiαṙiα = −ζ
∑

iα

p2
iα/m

Ẇ = −3NkBTζ .

If T > T , i.e. the system is too hot, then the ‘friction coefficient’ ζ will tend to increase;
when it is positive the system will begin to cool down. If the system is too cold, the reverse
happens, and the friction coefficient may become negative, tending to heat the system up
again. In some circumstances, this approach generates non-ergodic behaviour, but this may
be ameliorated by the use of chains of thermostat variables93. Ref. 94 gives an example of
the use of this scheme in a biomolecular simulation.

It is also possible to extend the Liouville operator-splitting approach to generate algo-
rithms for molecular dynamics in these ensembles65. Some care needs to be taken, because
eqns (28) are not hamiltonian, but it turns out to be possible to correct this using a suitable
Poincaré transformation95 and to implement the resulting symplectic method in an elegant
fashion96, 36.

7 How Long? How Large?

Molecular dynamics evolves a finite-sized molecular configuration forward in time, in a
step-by-step fashion. There are limits on the typical time scales and length scales that can
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be investigated and the consequences must be considered in analyzing the results. Simula-
tion runs are typically short: typically t ∼ 103–106 MD steps, corresponding to perhaps a
few nanoseconds of real time, and in special cases extending to the microsecond regime97.
This means that we need to test whether or not a simulation has reached equilibrium be-
fore we can trust the averages calculated in it. Moreover, there is a clear need to subject the
simulation averages to a statistical analysis, to make a realistic estimate of the errors. How
long should we run? This depends on the system and the physical properties of interest.

Suppose one is interested in a variable a, defined such that 〈a〉 = 0. The time correla-
tion function 〈a(t0)a(t0 + t)〉 relates values calculated at times t apart; assuming that the
system is in equilibrium, this function is independent of the choice of time origin and may
be written 〈a(0)a(t)〉. It will decay from an initial value 〈a(0)a(0)〉 ≡

〈
a2
〉

to a long-time
limiting value

lim
t→∞

〈a(0)a(t)〉 = lim
t→∞

〈a(0)〉 〈a(t)〉 = 0

as the variables a(0) and a(t) become uncorrelated; this decay occurs over a characteristic
time τa. Formally we may define a correlation time

τa =

∫ ∞

0

dt 〈a(0)a(t)〉 /〈a2〉.

Alternatively, if time correlations decay exponentially at long time, τa may be identified
approximately from the limiting form

〈a(0)a(t)〉 ∝ exp{−t/τa} .
Similarly, define a spatial correlation function 〈a(0)a(r)〉 relating values computed at

different points r apart. Spatial isotropy allows us to write this as a function of the distance
between the points, r, rather than the vector r: note that this symmetry is broken in a liquid
crystal. Spatial homogeneity, which applies to simple liquids (but not to solids or smectic
liquid crystals) allows us to omit any reference to an absolute origin of coordinates. This
function decays from a short-range nonzero value to zero over a characteristic distance ξa,
the correlation length.

It is almost essential for simulation box sizes L to be large compared with ξa, and for
simulation run lengths τ to be large compared with τa, for all properties of interest a. Only
then can we guarantee that reliably-sampled statistical properties are obtained. Roughly
speaking, the statistical error in a property calculated as an average over a simulation run
of length τ is proportional to

√
τa/τ : the time average is essentially a sum of ∼ τ/τa

independent quantities, each an average over time τa. Within the time periods τa, values
of a are highly correlated. A similar statement can be made about properties which are ef-
fectively spatial averages over the simulation box volume L3: root-mean-square variations
of such averages are proportional to

√
(ξa/L)3. This means that collective, system-wide

properties deviate by only a relatively small amount from their thermodynamic, large-
system, limiting values; the deviation becomes smaller as the averaging volume increases,
and is also determined by the correlation length.

Near critical points, special care must be taken, in that these inequalities will almost
certainly not be satisfied, and indeed one may see the onset of non-exponential decay of the
correlation functions. In these circumstances a quantitative investigation of finite size ef-
fects and correlation times, with some consideration of the appropriate scaling laws, must
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be undertaken. Phase diagrams of soft-matter systems often include continuous phase tran-
sitions, or weakly first-order transitions exhibiting significant pre-transitional fluctuations.
One of the most encouraging developments of recent years has been the establishment of
reliable and systematic methods of studying critical phenomena by simulation, although
typically the Monte Carlo method is more useful for this type of study98–100, 34, 101, 51.

8 Conclusions

In this introduction, I have tried to focus on points that seem to me both topical and essen-
tial to the mainstream of complex fluid dynamics. Others might have chosen a different
perspective, or focused on different aspects. Exciting areas which I have had to omit in-
clude the use of molecular dynamics to study rare events, the development of mesoscale
modelling techniques such as dissipative particle dynamics, the incorporation of electronic
degrees of freedom through ab initio molecular dynamics, and the efficient implementation
of simulation algorithms on parallel computers. One could argue that these are advanced
topics, but they are progressively entering the mainstream, and ready-written packages are
steadily removing the need to explain some of the lower-level technical issues which I
have included here. Nonetheless, I am a firm believer in understanding what is happening
“under the hood”, even if one does not intend to become a “mechanic”, and hopefully the
foregoing material will help towards that end.
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