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Abstract

Heat transport at the microscale is important in microtechnology applications. The

heat transport equations are parabolic two-step equations, which differ from the tradi-

tional heat diffusion equation. In this study, a hybrid finite element - finite difference

(FE-FD) method for solving the parabolic two-step heat transport equations in a three

dimensional irregular geometry double-layered thin film exposed to ultrashort-pulsed

lasers is developed. It is shown that the scheme is unconditionally stable with respect

to the heat source. The method is illustrated by three numerical examples in which

the temperature rise in a gold layer on a chromium padding layer is investigated.
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NOMENCLATURE

C(e,l) volumetric heat capacity of electron gas (e) and metal lattice (l)

Cp volumetric heat capacity

G electron-phonon coupling factor

J laser influence

κ thermal conductivity

K,M conductance and capacitance matrices, respectively

N number of elemental nodal points

On unit outward normal vector

Q heat flux

R reflectivity

rz mesh ratio, ∆t
∆z2

S source term

T, T0 temperature function

t time

tp laser pulse duration

w weight function

δ laser penetration depth

δ2z second order finite difference operator

∇,∇2 gradient and Laplace operators, respectively

∆t,∆z time increment and grid size, respectively

αp generalized coordinates

φp eigenvector

γ specific heat coefficient

ϕ basis and weighting function designation

λp eigenvalue
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1 INTRODUCTION

Multi-layer thin films are important components in many micro-electronic devices. These

films are often used when a single film layer is insufficient to meet device specifications. The

continued reduction in component size has the side effect of increasing the thermal stress on

these films and consequently the devices they comprise. Thus the transportation of thermal

energy through thin films is of vital importance in micro-technological applications.

Understanding the transfer of heat-energy at the micro-scale is important for thermal

processing using a pulse-laser [1]. Often, micro-voids may be found in processed devices.

This is due to thermal expansion. Such defects may cause an amplification of neighboring

defects resulting in severe damage and consequently the failure of the desired device. Thus

a complete understanding of thermal dissipation and defects is necessary to avoid damage

and to increase the efficiency of thermal processing.

Micro-scale heat transfer differs from macro-scale heat transfer in some important ways.

On the micro-scale, energy transport is governed by lattice-electron interaction in metallic

films. Macroscopic energy transport relies upon a heat diffusion model based on Fourier’s law.

This loses accuracy on a micro-scale because of its emphasis on averaged behavior over many

grains. Research has resulted in an energy equation which captures both the classical heat

equation and thermal waves in the same framework [1, 2]. The energy equations describing

the continuous energy flow from hot electrons to lattices can be expressed as a parabolic

two-step model [3, 4]

Ce
∂Te
∂t

= κ∇2Te −G(Te − Tl) + S (1)

Cl
∂Tl
∂t

= G(Te − Tl) (2)

where Te is electron temperature and Tl is lattice temperature. Also, κ is the thermal

conductivity, Ce and Cl are the volumetric electron heat capacity and the volumetric lattice

heat capacity respectively. G is the electron-lattice coupling factor and S is the strength of

the laser heating source. The standard notation ∇2 is the Laplace operator.
In classical (macro scale) heat transfer, the electron and lattice temperatures are assumed

to be equal. Thus this system reduces to the classical model when such an assumption is
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made. However, for sub-picosecond pulses and sub-microscale, the laser energy is absorbed

primarily by free electrons confined within the thin material layer. This energy is then

transferred to the lattice resulting in a lag between the excitement of the electrons and the

transfer of energy to the lattice. As the duration of the laser pulse is short, the source of

heat is turned off before thermal equilibrium between electrons and lattice is reached. This

necessitates a two step model for describing energy transfer in such a situation. Eqs. (1)

and (2) and its consideration over classical energy transfer models has been discussed in [2].

Analytical and numerical solutions for solving Eqs. (1) and (2) have been widely studied

[2-53]. Among these, Qiu and Tien [1, 3-6] studied the heat transfer mechanism during short-

pulse laser heating of metals using both numerical and experimental methods. Joshi and

Majumdar [7] obtained numerical solutions using the explicit upstream difference method.

Tzou and colleagues [2, 8-14] modified Eqs. (1) and (2) to a dual lag phase heat transport

equation and studied the lagging behavior by using the Laplace transform method and the

Reimann-sum approximation for the inverse. Ho et al. [15-16] studied heat transfer in

a multilayered structure using the lattice Boltzmann method. Chen and colleagues [17-

21] employed the corrective smoothed particle methods to solve a dual-phase-lag diffusion

model. Al-Nimr et al. [22-27] investigated the phase lag effect on non-equilibrium entropy

production and studied the effects of radiative and convective thermal losses during short-

pulse laser heating of metals. They [28] also investigated the validity of the two-step model

under harmonic boundary heating. Lin et al. [29] obtained an analytic solution of the dual-

phase-lag model using Fourier series. Antaki and others [30-32] presented a solution of dual

phase lag heat conduction in a semi-infinite slab and investigated the effect of dual phase lag

heat conduction on ignition of a solid. Tang and Araki [33] derived an analytic solution in

finite rigid slabs by using Green’s function and a finite integral transform technique. Smith

et al. [34] presented an analytical and numerical analysis for nonequilibrium heating in metal

films. Lor and Chu [35] studied the propagation of thermal waves in a composite medium

with interface thermal boundary resistance. Dai and Nassar [36-43] developed several finite

difference schemes for solving a dual-phase-lag heat transport equation. Prakash et al. [44]

investigated the non-Fourier microscale effect using a numerical method based on the finite
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element method and Runge-Kutta method. Wang et al. [45-48] analyzed the well-possedness

and solution structure of 1D, 2D, and 3D dual-phase-lag heat transport equations. Kim and

Daniel [49] studied an inverse heat conduct problem for nanoscale structure using sequential

method. Lee et al. [50] investigated the transfer characteristics of a silicon microstructure

irradiated by ultrashort pulsed lasers. Tsai and Hung [51] studied thermal wave propagation

in a bi-layered composite sphere using the dual-phase-lag heat transport equation. Srinivasan

et al. [52] proposed a parallel computation for microscale heat transfer in multilayered thin

films. Recently, Dai and Nassar [53] have developed a three level in time finite difference

scheme for solving the parabolic two-step heat transport equations in a 3D double-layered

rectangular thin film exposed to ultrashort-pulsed lasers. In this article, we extend our study

to the case that the double-layered thin film is irregular in the planar direction and develop

an unconditionally stable FE-FD hybrid scheme for solving the parabolic two-step model.

We employ the hybrid FE-FD method because of the nature of the geometry, where the

thin film is irregular in the planar direction and regular in the z-direction. It should be

pointed out that the hybrid FE-FD method has been widely employed in many research

areas [37,41,54-63].

2 FE-FD Scheme

Consider a double-layered thin film with thickness of order 0.1 m and with length and width

of order 1 mm, which is subjected to a sub picosecond pulse irradiation, as shown in Figure

1. Based on Eqs. (1)-(2) the governing equations can be written

C(m)e

∂T (m)e

∂t
= κ(m)∇2T (m)e −G(m)(T (m)e − T (m)l ) + S(m) (3)

C
(m)
l

∂T
(m)
l

∂t
= G(m)(T (m)e − T (m)l ) (4)

where m = 1, 2. The initial condition is

T (m)e (x, y, z, 0) = T
(m)
l (x, y, z, 0) = T0 (5)
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where T0 is the ambient temperature. The boundary conditions are assumed to be Neumann

boundary conditions
∂T (m)e

∂On
=

∂T
(m)
l

∂On
= 0 (6)

where On is outward unit normal vector. Such boundary conditions arise from the case where

the film is subjected to a short-pulse laser irradiation. Hence, one may assume no heat loss

from the film surfaces in the short time response [2].

At the interface, we assume perfect thermal contact

T (1)e = T (2)e , T
(1)
l = T

(2)
l (7)

κ(1)∇T (1)e = κ(2)∇T (2)e (8)

The exact solution is difficult in general to obtain due to the irregular geometry. Hence

we develop a hybrid finite element - finite difference scheme for solving the above initial

and boundary value problem. To this end, we first employ the finite element method to the

planar direction. That is, multiplying Eq. (3) by a testing function w and applying Green’s

formula and the boundary, Eq. (6), we obtain a weak form as

C(m)e

D

∂T (m)e

∂t
wdxdy − κ(m)

∂D

∂T (m)e

∂On
wds+ κ

D

(
∂T (m)e

∂x

∂w

∂x
+

∂T (m)e

∂y

∂w

∂y
)dxdy

+

D

G(m)(T (m)e − T (m)l )wdxdy +

D

S(m)wdxdy

= 0 (9)

We define the test functions as

T (m)e (x, y, z, t) =
Np

p=1

(T (m)e )p(z, t)ϕp(x, y), T
(m)
l (x, y, z, t) =

Np

p=1

(T
(m)
l )p(z, t)ϕp(x, y) (10)

where ϕp(x, y) is a basis function, and Np is the number of points in the xy cross section.

Further, the source term is written as S(m)h =
Np

p=1
S(m)p ϕp(x, y). Letting w(x, y) = ϕq(x, y)

and substituting Te by (T (m)e )p in Eq. (9), we obtain

Np

p=1

C(m)e

∂(T (m)e )p
∂t

D

ϕpϕqdxdy+
Np

p=1

κ(m)(T (m)e )p
D

(
∂ϕp
∂x

∂ϕq
∂x

+
∂ϕp
∂y

∂ϕq
∂y
)dxdy
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−
Np

p=1

κ(m)
∂2(T (m)e )p

∂z2
D

ϕpϕqdxdy+
Np

p=1

G(m)[(T (m)e )p − (T (m)l )p]

D

ϕpϕqdxdy

−
Np

p=1

S(m)p

D

ϕpϕqdxdy

= 0, (11)

and

Np

p=1

C
(m)
l

∂(T
(m)
l )p
∂t

D

ϕpϕqdxdy−
Np

p=1

G(m)[(T (m)e )p − (T (m)l )p]

D

ϕpϕqdxdy = 0 (12)

where q = 1, ..., Np. Denoting mqp = D ϕpϕqdxdy and kqp = D(
∂ϕp
∂x

∂ϕq
∂x
+

∂ϕp
∂y

∂ϕq
∂y
)dxdy, we

rewrite Eqs. (11) and (12) into matrix form

C(m)e M
∂ OT (m)e

∂t
+ κ(m)KOT (m)e − κ(m)M

∂2 OT (m)e

∂z2
+G(m)M(OT (m)e − OT

(m)
l ) =MOS (13)

and

C
(m)
l M

∂ OT
(m)
l

∂t
−G(m)M(OT (m)e − OT

(m)
l ) = 0 (14)

whereM and K are the capacitance and conductance matrices, respectively.

Eqs. (13) and (14) are then discretized using the finite difference method as follows

C(m)e M
(OT (m)e )n+1k − (OT (m)e )n−1k

2∆t
+ κ(m)K

(OT (m)e )n+1k + 2(OT (m)e )nk + (OT
(m)
e )n−1k

4

−κ(m)Mδ2z
(OT (m)e )n+1k + 2(OT (m)e )nk + (OT

(m)
e )n−1k

4

+G(m)M[
(OT (m)e )n+1k + 2(OT (m)e )nk + (OT

(m)
e )n−1k

4
− (

OT
(m)
l )n+1k + 2(OT

(m)
l )nk + (OT

(m)
l )n−1k

4
]

= M(OS(m))n (15)

and

C
(m)
l M

(OT
(m)
l )n+1k − (OT (m)l )n−1k

2∆t

−G(m)M[(
OT (m)e )n+1k + 2(OT (m)e )nk + (OT

(m)
e )n−1k

4
− (

OT
(m)
l )n+1k + 2(OT

(m)
l )nk + (OT

(m)
l )n−1k

4
]

= 0 (16)
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where (OT (m)e )nk is the approximation of OT
(m)
e (k∆z, n∆t), k = 0, 1, · · · , Nz + 1, and δ2z is the

second-order central difference operator. The interfacial equations are discretized as follows

κ(1)
(OT (1)e )nNz+1 − (OT (1)e )nNz

∆z
= κ(2)

(OT (2)e )n1 − (OT (2)e )n0
∆z

(17)

(OT (1)e )nNz+1 = (
OT (2)e )n0 (18)

Since Eqs. (15) and (16) are three-level in time, we assume

(OT (m)e )0k = (OT
(m)
l )0k = (OT

(m)
e )1k = (OT

(m)
l )1k = T0 (19)

The boundary conditions are assumed to be

(OT (1)e )n0 = (OT
(1)
e )n1 , (OT

(1)
l )n0 = (OT

(1)
l )n1 , (OT

(2)
e )nNz = (

OT (2)e )nNz+1, (
OT
(2)
l )nNz = (

OT
(2)
l )nNz+1 (20)

Based on the FEM, Eqs. (11) and (12) are the first-order approximations of Eqs. (7) and

(8) while the truncation errors of Eqs. (15) and (16) are O(∆t2 +∆z2).

3 NUMERICAL METHOD

We now analyze the stability of the above scheme, Eqs. (15)-(20), with respect to the source

term. To this end, we consider the following eigenvalue problem

Kφp − λpMφp = 0 (21)

where λp is the eigenvalue corresponding to the eigenvector φp. SinceK andM are symmetric

positive definite, we assume that the eigenvectors are orthonormalized with respect to the

capacitance matrixM such that

φTjMφp = δpj (22)

where δpj is 1 if p = j and 0 if p 9= j. Then multiplying Eq. (21) by φTj and using Eq. (22)

yields

φTjKφp − λpδpj = 0 (23)

implying that the eigenvectors are also orthogonal with respect to the matrix K. Further,

λp > 0 since K is positive definite. As the eigenvectors form a basis for the semi discrete
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system in our system, the solution OT (m) may be represented as a linear combination of the

eigenvectors,

OT (m)e (x, y, z, t) =
Np

p=1

(α(m)e (z, t))pϕp(x, y), OT
(m)
l (x, y, z, t) =

Np

p=1

(α
(m)
l (z, t))pϕp(x, y) (24a)

OS
(m)
h =

Np

p=1

S(m)p (z, t)pϕp(x, y) (24b)

where (α(m)e )p and (α
(m)
l )p are the generalized electron and lattice coordinates respectively.

Substituting Eq. (24) into Eqs. (15) and (16), pre-multiplying by φTp , and using the orthog-

onal properties in Eqs. (22) and (23) leads to the result

C(m)e

(α(m)e )n+1pk − (α(m)e )n−1pk

2∆t
+ λpκ

(m) (α
(m)
e )n+1pk + 2(α(m)e )npk + (α

(m)
e )n−1pk

4

− κ(m)

4∆z2
δ2z[(α

(m)
e )n+1pk + 2(α(m)e )npk + (α

(m)
e )n−1pk ]

+
G(m)

4
[(α(m)e )n+1pk + 2(α(m)e )npk + (α

(m)
e )n−1pk − (α(m)l )n+1pk − 2(α(m)l )npk − (α(m)l )n−1pk ]

= (S(m))npk (25)

C
(m)
l

(α
(m)
l )n+1pk − (α(m)l )n−1pk

2∆t

−G
(m)

4
[(α(m)e )n+1pk + 2(α(m)e )npk + (α

(m)
e )n−1pk − (α(m)l )n+1pk − 2(α(m)l )npk − (α(m)l )n−1pk ]

= 0 (26)

κ(1)
(α(1)e )

n
pNz+1 − (α(1)e )npNz

∆z
= κ(2)

(α(2)e )
n
p1 − (α(2)e )np0
∆z

(27a)

(α(1)e )
n
pNz+1 = (α

(2)
e )

n
p0 (27b)

and

(α(m)e )0pk = (α
(m)
l )0pk = (α

(m)
e )1pk = (α

(m)
l )1pk = [(α

(m)
e )0]pk (28)

(α(1)e )
n
p0 = (α

(1)
e )

n
p1, (α(2)e )

n
pNz+1 = (α

(2)
e )

n
pNz (29a)

(α
(1)
l )

n
p0 = (α

(1)
l )

n
p1, (α

(2)
l )

n
pNz+1 = (α

(2)
l )

n
pNz (29b)

for any time level n. Hence, the analysis of the stability of the scheme, Eqs. (16)-(21), can

be switched to analyze the stability of the scheme Eqs. (25)-(29).
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We now employ the discrete energy method [64] to analyze the stability of the above

scheme with respect to the source term. Let Sh be a set of {un = {unpk}, with unp0 = unp1 and
unpNz = u

n
pNz+1}. For any un, vn ∈ Sh, the inner products and norms are defined as

(un, vn) = ∆z
Np

p=1

Nz

k=1

unpkv
n
pk, nunn2 = (un, un)

n∇z̄unn21 = (∇z̄un,∇z̄vn) = ∆z
Np

p=1

Nz+1

k=1

∇z̄unpk∇z̄vnpk

We also define∇zUk = Uk+1−Uk and∇z̄Uk = Uk−Uk−1, the forward difference and backward
difference operators respectively. It can also been seen that the central difference operator

satisfies δ2z = ∇z∇z̄Uk.
Lemma 1. For any un ∈ Sh,

[un+1pk + 2unpk + u
n−1
pk ][u

n+1
pk − un−1pk ] = [u

n+1
pk + unpk]

2 − [unpk + un−1pk ]
2 (30)

Lemma 2. If (α(m)e )npk, m = 1, 2, are the solutions of Eqs. (25)-(29), then

κ(1)∆z
Nz

k=1

δ2z[(α
(1)
e )

n+1
pk + 2(α(1)e )

n
pk + (α

(1)
e )

n−1
pk ] · [(α(1)e )n+1pk + 2(α(1)e )

n
pk + (α

(1)
e )

n−1
pk ]

+κ(2)∆z
Nz

k=1

δ2z[(α
(2)
e )

n+1
pk + 2(α(2)e )

n
pk + (α

(2)
e )

n−1
pk ] · [(α(2)e )n+1pk + 2(α(2)e )

n
pk + (α

(2)
e )

n−1
pk ]

= −κ(1)∆z
Nz+1

k=1

(∇z̄[(α(1)e )n+1pk + 2(α(1)e )
n
pk + (α

(1)
e )

n−1
pk ])

2

−κ(2)∆z
Nz+1

k=1

(∇z̄[(α(2)e )n+1pk + 2(α(2)e )
n
pk + (α

(2)
e )

n−1
pk ])

2 (31)

Proof. We let upk = (α(1)e )
n+1
p + 2(α(1)e )

n
p + (α

(1)
e )

n−1
p and vpk = (α(2)e )

n+1
p + 2(α(2)e )

n
p +

(α(2)e )
n−1
p . Based on Eqs. (27) and (29), the left hand side (LHS) of the equation can be

expressed

LHS = κ(1)∆z
Nz

k=1

[(upk+1 − upk)− (upk − upk−1)]upk

+κ(2)∆z
Nz

k=1

[(vpk+1 − vpk)− (vpk − vpk−1)]vpk

= κ(1)∆z
Nz+1

k=2

[(upk − upk−1)] · upk−1 − κ(1)∆z
Nz

k=1

[(upk − upk−1)] · upk
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+κ(2)∆z
Nz+1

k=2

[(vpk − vpk−1)] · vpk−1 − κ(2)∆z
Nz

k=1

[(vpk − vpk−1)] · vpk

= κ(1)∆z
Nz+1

k=1

[(upk − upk−1)] · upk−1 − κ(1)∆z
Nz+1

k=1

[(upk − upk−1)] · upk

+κ(2)∆z
Nz+1

k=1

[(vpk − vpk−1)] · vpk−1 − κ(2)∆z
Nz+1

k=1

[(vpk − vpk−1)] · vpk

+κ(1)∆z(upNz+1 − upNz)upNz+1 − κ(2)∆z(vp1 − vp0)vp0
−κ(1)∆z(up1 − up0)up0 + κ(2)∆z(vpNz+1 − vpNz)vpNz+1

= −κ(1)∆z
Nz+1

k=1

∇z̄upk ·∇z̄upk − κ(2)∆z
Nz+1

k=1

∇z̄vpk ·∇z̄vpk

which is the RHS of Eq. (31).

Theorem. Suppose that (U (m)e )npk and (U
(m)
l )npk, (V

(m)
e )npk and (V

(m)
l )npk are solutions

of the proposed scheme in Eqs. (25)-(29) with the same initial and boundary conditions

but with different source terms. We represent (ε(m)e )npk = (U (m)e )npk − (V (m)e )npk and (ε
(m)
l )npk

= (U
(m)
l )npk − (V (m)l )npk, m = 1, 2. Then for any n in 0 ≤ n∆t ≤ t0, (ε(m)e )npk and (ε

(m)
l )npk,

m = 1, 2 ,

F (n) ≤ e6t0F (0) + ce6t0 max
1≤ξ≤n

[ne1(ξ)n2 + ne2(ξ)n2] (32)

where

F (n) = 2C(1)e (ε(1)e )
n+1 + (ε(1)e )

n 2
+ 2C

(1)
l (ε

(1)
l )

n+1 + (ε
(1)
l )

n 2

+2C(2)e (ε(2)e )
n+1 + (ε(2)e )

n 2
+ 2C

(2)
l (ε

(2)
l )

n+1 + (ε
(2)
l )

n 2
(33)

c = max{ 1

C
(1)
e

, 1

C
(2)
e

} and em(ξ),m = 1, 2, are the difference of corresponding source terms in

layers 1 and 2 respectively. Hence, this scheme is unconditionally stable with respect to the

source term.

Proof. It can be seen from Eqs. (25) and (26) that (ε(m)e )npk and (ε
(m)
l )npk, m = 1, 2, satisfy

2C(m)e [(ε(m)e )n+1pk − (ε(m)e )n−1pk ] + λpκ
(m)∆t[(ε(m)e )n+1pk + 2(ε(m)e )npk + (ε

(m)
e )n−1pk ]

=
κ(m)∆t

∆z2
δ2z[(ε

(m)
e )n+1pk + 2(ε(m)e )npk + (ε

(m)
e )n−1pk ]−G(m)∆t{[(ε(m)e )n+1pk + 2(ε(m)e )npk + (ε

(m)
e )n−1pk ]

−[(ε(m)l )n+1pk + 2(ε
(m)
l )npk + (ε

(m)
l )n−1pk ]}+ 4∆tem(n)pk (34)
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and

2C
(m)
l [(ε

(m)
l )n+1pk − (ε(m)l )n−1pk ] = G(m)∆t{[(ε(m)e )n+1pk + 2(ε(m)e )npk + (ε

(m)
e )n−1pk ]

−[(ε(m)l )n+1pk + 2(ε
(m)
l )npk + (ε

(m)
l )n−1pk ]} (35)

and also Eqs. (27)-(29). Multiplying Eq. (34) with m = 1 by ∆z[(ε(1)e )
n+1
pk + 2(ε(1)e )

n
pk +

(ε(1)e )
n−1
pk ] and Eq. (35) with m = 2 by ∆z[(ε(2)e )

n+1
pk + 2(ε(2)e )

n
pk + (ε

(2)
e )

n−1
pk ], summing over

p, k from p = 1, · · · , Np and k = 1, · · · , Nz, respectively, combining them together and using

lemmas 1 and 2 gives

2C(1)e (ε(1)e )
n+1 + (ε(1)e )

n 2 − 2C(1)e (ε(1)e )
n + (ε(1)e )

n−1 2
+ 2C(2)e (ε(2)e )

n+1 + (ε(2)e )
n 2

−2C(2)e (ε(2)e )
n + (ε(2)e )

n−1 2
+ rzκ

(1) ∇z̄[(ε(1)e )n+1 + 2(ε(1)e )n + (ε(1)e )n−1]
2

+λpκ
(1)∆t (ε(1)e )

n+1 + 2(ε(1)e )
n + (ε(1)e )

n−1 2
+ rzκ

(2) ∇z̄[(ε(2)e )n+1 + 2(ε(2)e )n + (ε(2)e )n−1]
2

+λpκ
(2)∆t (ε(2)e )

n+1 + 2(ε(2)e )
n + (ε(2)e )

n−1 2
+∆tG(1) (ε(1)e )

n+1 + 2(ε(1)e )
n + (ε(1)e )

n−1 2

+∆tG(2) (ε(2)e )
n+1 + 2(ε(2)e )

n + (ε(2)e )
n−1 2

= ∆tG(1)((ε(1)e )
n+1 + 2(ε(1)e )

n + (ε(1)e )
n−1, (ε(1)l )

n+1 + 2(ε
(1)
l )

n + (ε
(1)
l )

n−1)

+∆tG(2)((ε(2)e )
n+1 + 2(ε(2)e )

n + (ε(2)e )
n−1, (ε(2)l )

n+1 + 2(ε
(2)
l )

n + (ε
(2)
l )

n−1)

+4∆t(e1(n), (ε
(1)
e )

n+1 + 2(ε(1)e )
n + (ε(1)e )

n−1)

+4∆t(e2(n), (ε
(2)
e )

n+1 + 2(ε(2)e )
n + (ε(2)e )

n−1) (36)

where rz = ∆t
∆z2
. Similarly, we obtain from Eq. (35)

2C
(1)
l (ε

(1)
l )

n+1 + (ε
(1)
l )

n 2
+ 2C

(2)
l (ε

(2)
l )

n+1 + (ε
(2)
l )

n 2 − [2C(1)l (ε
(1)
l )

n + (ε
(1)
l )

n−1 2

+2C
(2)
l (ε

(2)
l )

n + (ε
(2)
l )

n−1 2
] +∆tG(1) (ε

(1)
l )

n+1 + 2(ε
(1)
l )

n + (ε
(1)
l )

n−1 2

+∆tG(2) (ε
(2)
l )

n+1 + 2(ε
(2)
l )

n + (ε
(2)
l )

n−1 2

= ∆tG(1)((ε(1)e )
n+1 + 2(ε(1)e )

n + (ε(1)e )
n−1, (ε(1)l )

n+1 + 2(ε
(1)
l )

n + (ε
(1)
l )

n−1)

+∆tG(2)((ε(2)e )
n+1 + 2(ε(2)e )

n + (ε(2)e )
n−1, (ε(2)l )

n+1 + 2(ε
(2)
l )

n + (ε
(2)
l )

n−1) (37)

Adding both Eqs. (36) and (37), and using the fact

(ε(m)e )n+1 + 2(ε(m)e )n + (ε(m)e )n−1
2
+ (ε

(m)
l )n+1 + 2(ε

(m)
l )n + (ε

(m)
l )n−1

2
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−2((ε(m)e )n+1 + 2(ε(m)e )n + (ε(m)e )n−1, (ε(m)l )n+1 + 2(ε
(m)
l )n + (ε

(m)
l )n−1)

≥ 0 (38)

where m = 1, 2, we obtain

2C(1)e (ε(1)e )
n+1 + (ε(1)e )

n 2
+ 2C

(1)
l (ε

(1)
l )

n+1 + (ε
(1)
l )

n 2

+2C(2)e (ε(2)e )
n+1 + (ε(2)e )

n 2
+ 2C

(2)
l (ε

(2)
l )

n+1 + (ε
(2)
l )

n 2

−[2C(1)e (ε(1)e )
n + (ε(1)e )

n−1 2
+ 2C

(1)
l (ε

(1)
l )

n + (ε
(1)
l )

n−1 2
]

−[2C(2)e (ε(2)e )
n + (ε(2)e )

n−1 2
+ 2C

(2)
l (ε

(2)
l )

n + (ε
(2)
l )

n−1 2
]

≤ 4∆t(e1(n), (ε
(1)
e )

n+1 + 2(ε(1)e )
n + (ε(1)e )

n−1)

+4∆t(e2(n), (ε
(2)
e )

n+1 + 2(ε(2)e )
n + (ε(2)e )

n−1) (39)

By the generalized Cauchy-Schwarz’s inequality, we have

2(em(n), (ε
(m)
e )n+1 + 2(ε(m)e )n + (ε(m)e )n−1)

≤ 2C(m)e (ε(m)e )n+1 + (ε(m)e )n
2
+ 2C(m)e (ε(m)e )n + (ε(m)e )n−1

2
+

1

C
(m)
e

nem(n)n2 (40)

where m = 1, 2. Substituting the above inequality into Eq. (39), and using the notation

F (n) as defined in Eq. (33), Eq. (39) can be simplified as

(1− 2∆t)F (n) ≤ (1 + 2∆t)F (n− 1) + 2c∆t(ne1(n)n2 + ne2(n)n2) (41)

where c = max{ 1

C
(1)
e

, 1

C
(2)
e

}. Hence, when 1− 2∆t > ∆t
2
, we have

F (n) ≤ (
1 + 2∆t

1− 2∆t)F (n− 1) +
2c∆t

1− 2∆t(ne1(n)n
2 + ne2(n)n2)

...

≤ (
1 + 2∆t

1− 2∆t)
nF (0) +

2c∆t

1− 2∆t [1 +
1 + 2∆t

1− 2∆t + · · ·+ (
1 + 2∆t

1− 2∆t)
n−1]

· max
1≤ξ≤n

[ne1(ξ)n2 + ne2(ξ)n2]

≤ (
1 + 2∆t

1− 2∆t)
nF (0) +

c

2
[(
1 + 2∆t

1− 2∆t)
n − 1] max

1≤ξ≤n
[ne1(ξ)n2 + ne2(ξ)n2]

≤ (
1 + 2∆t

1− 2∆t)
n{F (0) + c max

1≤ξ≤n
[ne1(ξ)n2 + ne2(ξ)n2]} (42)
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Using the inequalities, (1 + x)n ≤ enx when x > 0, and (1 − x)−1 ≤ e2x when x < 1
2
and

letting x = 2∆t and ∆t be sufficiently small, we see (1+2∆t
1−2∆t)

n ≤ e2n∆te4n∆t ≤ e6n∆t and hence

F (n) ≤ e6n∆tF (0) + ce6n∆t max
1≤ξ≤n

[ne1(ξ)n2 + ne2(ξ)n2]
≤ e6t0{F (0) + c max

1≤ξ≤n
[ne1(ξ)n2 + ne2(ξ)n2]} (43)

which completes the proof.

4 NUMERICAL EXAMPLE

To demonstrate the applicability of the scheme, Eqs. (15) and (16), with initial and boundary

conditions Eqs. (17) - (20), without loss of generality we consider a simple cylindrical double-

layered thin film with thickness of 0.1 m and radius of 0.5 mm as shown in Fig. 2a. The

chosen thermal properties are listed in Table 1 [2, 3, 65]. The source term is chosen to be

Sp = 0.94J(
1−R
tpδ

)e
− z

δ
−2.77( t−2tp

tp
)2 (44)

where R is given as 0.93, δ is given as 15.3 nm and J is given as 13.4 J/m2. J represents

the total energy carried by the laser pulse divided by the laser spot cross section. The figure

tp = 100 fs and represents the full-width-at-half-maximum (FWHM) duration of the laser

pulse. Time, t = 0, is when the laser arrives at the metal surface [1].

The information to formulate the xy planar mesh is used to create our matrix coefficient

system. Figure 2b indicates the triangular mesh created for the matrix coefficient system.

Linear triangle elements are used in this computation.

Three different xy planar meshes were chosen - these being planar meshes with thirty-

three nodes, one with sixty-five nodes and a final mesh with one hundred twenty-nine nodes.

A z-directional grid size, ∆z, of 10−6 m was chosen. A time step of 0.001 ps was also chosen.

Figure 3 gives normalized temperature profiles at the surface directly beneath the heat

source. Figure 3a depicts the electron temperature on the surface over time. The maximum

temperature of Te on the surface was about 1100 K. This plot shows good agreement with the

one obtained by Tzou [2]. The results also show good agreement with Dai and Nassar [53].

Figure 3b shows the normalized lattice temperature profiles at the surface directly beneath

14



the heat source. The maximum temperature rise of Tl was about 10.99 K which is again in

good agreement with other numerical studies [53].

Figure 4 gives temperature rises for both electron and lattice along the z axis for time

(a) t = 0.2 ps, (b) t = 0.25 ps, and (c) t = 0.5 ps. Figures 5 and 6 give contour plots at

(a) t = 0.2 ps, (b) t = 0.25 ps and (c) t = 0.5 ps for the electron and lattice temperatures

respectively along the xz plane.

Figure 7 shows the surface contours for both the electron and lattice temperatures at

time t = 0.25 ps, when the peak electron temperature appears. The lag in coupling electron

and lattice energy exchange is evident. This contour comparison reveals a high electron

temperature and only a slight variation in the lattice/bulk temperature.

To further examine the numerical method, two different cases are explored. First is a

repetitive-pulse heating case. The heat source for this case is chosen to be

Sp = 0.94J(
1−R
tpδ

)e−
z
δ [e

−2.77( t−2tp
tp

)2
+ e

−2.77( t−4tp
tp

)2
] (45)

where J = 13.4 J/m2, R is given to be 0.93, tp = 100 fs, and δ = 15.3 nm. The dense

mesh of the finite element representation was chosen for highest accuracy and the same time

and z-directional (depth) values as in case one were chosen. Figure 8a shows the normalized

change in electron temperature (∆T/(∆T )max) on the surface of the gold/chromium disk.

It can be seen from Figure 8a that there are two peaks in electron temperature due to the

two laser pulses. Figure 8b gives the normalized temperature change for the lattice. A

slight bend is evident at time t = 0.5 ps, as the second electron temperature peak begins

to transfer energy to the lattice. Figure 9a demonstrates the temperature profiles through

the disk along the z-direction through the film. The same three times as in case one were

chosen (t = 0.2 ps, t = 0.25 ps and t = 0.5 ps). This figure shows a peak temperature at

time t = 0.5 ps of nearly 1400 K. Figure 9b demonstrates the lattice temperature profiles

through the film in the z-direction. Again, the temperature profile is similar to the ones in

case one, except that the peak is higher due to the second pulse of the laser.

A third case demonstrates a moving source. The laser is pulsed five times at even time

intervals about the center of the disk. The first pulse is focused on the center of the disk.

The second pulse moves along the x-axis in the positive direction. The third pulse is located
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the same distance from the center along the positive direction of the y-axis. The fourth and

fifth pulses are located likewise along the negative directions of the x- and y-axis respectively.

Figure10 gives a graphical representation.

Figure 11a demonstrates the normalized electron temperature change for the central point

of the top of the thin film’s surface. The distinct laser pulses are evident as the electron

temperature rises sharply with each pulse. Figure 11b demonstrates the normalized lattice

temperature change for the same point. Again, a steady climb is evident with changes caused

by each pulse as the energy is transferred from the electron cloud to the lattice. Contours

for the electron temperature distribution through the thin films are shown in Figure 12. The

first contour is after t = 0.25 ps. This is at the peak electron temperature profile for the first

laser pulse. The second contour demonstrates the temperature distribution through the thin

films after t = 0.75 ps. This represents the peak electron temperature rise for the second

pulse. It is evident that the temperature distribution moves slightly toward the positive

x-direction. The final contour demonstrates the electron temperature distribution through

the thin films after t = 1.75 ps. This represents the peak electron temperature rise for the

fourth laser pulse. This pulse is located along the negative x-axis. A shift in temperature

toward that point is evident in this contour. Figures 13-15 show contours of the temperature

distributions on the surface (xy-plane) at time t = 0.25 ps, t = 0.75 ps and t = 1.75 ps,

respectively. The heat propagation from the moving source is evident in these figures.

5 CONCLUSION

A hybrid finite element-finite difference method has been developed for solving parabolic

two-step micro heat transport equations in a three dimensional double-layered thin film

exposed to ultrashort-pulsed lasers. It is shown that the scheme is unconditionally stable

with respect to the heat source. Numerical results for thermal analysis of a gold layer on a

chromium padding layer are obtained. The method can be readily applied to multiple layers

and irregularly shaped geometries. Further research will focus on the temperature-dependant

thermal property case and thermal deformation induced by ultrashort-pulsed lasers.
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Table 1.Thermal properties for Gold and Chromium [2, 3, 65].

Parameters Gold Chromium

T0 (K) 300 300

C0e (J/m3K) 2.1×104 5.8×104

Cl (J/m3K) 2.5×106 3.3×104

G (W/m3K) 2.6×1016 42×1016

κ (W/mK) 315 94

γ (J/m3K2) 70 193.33
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FIGURE CAPTIONS

Figure 1. Three-dimensional configuration of a double-layered thin film.

Figure 2. A double-layered thin film (a) and a triangular mesh for the xy plane (b).

Figure 3. Electron temperature change (a) and lattice temperature change (b)

on the surface.

Figure 4. Electron temperature profiles (a) and lattice temperature profiles (b)

along the z-direction.

Figure 5. Contours of electron temperature distributions in the xz plane at

(a) t = 0.2 ps, (b) t = 0.25 ps, and (c) t = 0.5 ps.

Figure 6. Contours of lattice temperature distributions in the xz plane at

(a) t = 0.2 ps, (b) t = 0.25 ps, and (c) t = 0.5 ps.

Figure 7. Electron temperature distribution (a) and lattice temperature distribution (b)

in the xy plane at t = 0.25 ps.

Figure 8. Normalized electron temperature change (a) and normalized lattice

temperature change (b) on surface for the repetitive-pulse case.

Figure 9. Electron temperature profiles (a) and lattice temperature profiles (b)

for the repetitive-pulse case.

Figure 10. Graphical representation of pulsed laser on thin film surface.

Figure 11. Normalized electron temperature change (a) and normalized lattice

temperature change (b) on center surface of disk for the moving source case.

Figure 12. Contours of electron temperature distributions at (a) t = 0.25 ps,

(b) t = 0.75 ps, and (c) t = 1.75 ps for the moving source case.

Figure 13. Contours of electron temperature distribution (a) and lattice temperature

distribution (b) in the xy plane at t = 0.25 ps.

Figure 14. Contours of electron temperature distribution (a) and lattice temperature

distribution (b) in the xy plane at t = 0.75 ps.

Figure 15. Contours of electron temperature distribution (a) and lattice temperature

distribution (b) in the xy plane at t = 1.75 ps.
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