Definitions:

Circle: the set of all points in the same plane that are a fixed distance from a point called its center

Radius: a line segment drawn from the center of a circle to one of the points on the circle
Chord: a line segment connecting two points on a circle
Diameter: a chord that passes through the center of a circle
Tangent: a line that has exactly one point of intersection with a circle
Point of Tangency: the point of intersection between a circle and a tangent
Arc: \quad a continuous portion of a circle
Semicircle: an arc of a circle whose endpoints are endpoints of a diameter of a circle
Major Arc: an arc that is greater than a semicircle
Minor Arc: an arc that is less than a semicircle
Congruent Circles: two or more circles with congruent radii
Central Angle: an angle whose vertex is at the center of a circle and whose sides are radii of the circle

Measure of an Arc: equal to the number of degrees in the central angle that intercepts the arc
Congruent Arcs: two arcs in the same circle or congruent circles that have the same measure

Definition of Betweenness for Arcs: If A, B, and C are three points on the same arc, and B is between A and C, then $m \overparen{A C}=m \overparen{A B}+m \overparen{B C}$ or any equivalent statement.

Inscribed Angle: an angle whose vertex is on a circle and whose sides are chords of the circle

Secant: a line that intersects a circle in two points

Postulates and Theorems:

From defn. of circle: All radii of the same circle are congruent.

Theorem: The length of a diameter of a circle is twice the length of any of its radii.

Postulate: A line drawn from the center of a circle to a point of tangency is perpendicular to the tangent that passes through the point of tangency.

Postulate: If a line is perpendicular to a radius at the point where the radius intersects a circle, then the line is tangent to the circle.

Theorem: Two circles are congruent if and only if their diameters are congruent.

Theorem: The measure of an inscribed angle is equal to $1 / 2$ the measure of its intercepted arc.

Theorem: The measure of an angle formed by a tangent and a chord is equal to $1 / 2$ the measure of its intercepted arc.

Theorem: If two chords intersect within a circle, the measure of each angle formed is equal to $1 / 2$ the sum of the measures of its intercepted arc and the intercepted arc of its vertical angle.

Theorem: The measure of an angle formed by the intersection of two secants outside a circle is equal to $1 / 2$ the difference of the measures of the intercepted arcs.

Theorem: The measure of an angle formed by the intersection of a tangent and a secant outside a circle is equal to $1 / 2$ the difference of the measures of the intercepted arcs.

