SECTION 8.1 – Properties of Inequalities

Definition of I	<i>inequality</i> : If <i>a</i> and <i>b</i> are two positive number real numbers, the	o real numbers, then $a < b$ if p such that $b = a + p$. If a and en $a > b$ iff $b < a$.	f there is a and b are two
Theorem:	If the same quantity is added to both sides of an inequality, then the sums are unequal and in the same order. $(a < b \implies a+c < b+c)$		
Theorem:	If equal quantities are added to unequal and in the same order.	unequal quantities, then the s $(a < b \text{ and } c = d \implies$	sums are $a+c < b+d$)
Theorem:	If unequal quantities are subtracted from equal quantities, then the differences are unequal but in the opposite order. $(a < b \text{ and } c = d \implies c - a > d - b)$		
Theorem:	If both sides of an inequality are multiplied by a positive number, then the products are unequal and in the same order. $(a < b \text{ and } c > 0 \implies ac < bc)$		
Theorem:	If both sides of an inequality and products are unequal but in the $(a < b \text{ and } c < 0 \implies ac > bc)$	e multiplied by a negative nu opposite order.	mber, then the
Theorem:	Transitive Law of Inequalities	If $a < b$ and $b < c$, the	a < c.
Theorem:	If unequal quantities are added to unequal quantities in the same order, then the sums are unequal quantities in the same order. $(a < b \text{ and } c < d \implies a + c < b + d)$		
Theorem:	In a triangle, an exterior angle angle.	s greater than either nonadjad	cent interior
	Given: $\triangle ABC$ with exterior \measuredangle Prove: $m \measuredangle 1 > m \measuredangle 2$ and $m \measuredangle 1$	$> m \measuredangle C$	\rightarrow