SECTION 8.1 - Properties of Inequalities

Definition of Inequality:
If a and b are two real numbers, then $a<b$ iff there is a positive number p such that $b=a+p$. If a and b are two real numbers, then $a>b$ iff $b<a$.

Theorem: If the same quantity is added to both sides of an inequality, then the sums are unequal and in the same order. $\quad(a<b \Rightarrow a+c<b+c)$

Theorem: If equal quantities are added to unequal quantities, then the sums are unequal and in the same order. $\quad(a<b$ and $c=d \Rightarrow a+c<b+d)$

Theorem: If unequal quantities are subtracted from equal quantities, then the differences are unequal but in the opposite order.
$(a<b$ and $c=d \Rightarrow c-a>d-b)$

Theorem: If both sides of an inequality are multiplied by a positive number, then the products are unequal and in the same order.
$(a<b$ and $c>0 \Rightarrow a c<b c)$

Theorem: If both sides of an inequality are multiplied by a negative number, then the products are unequal but in the opposite order.
$(a<b$ and $c<0 \Rightarrow a c>b c)$

Theorem: Transitive Law of Inequalities If $a<b$ and $b<c$, then $a<c$.

Theorem: If unequal quantities are added to unequal quantities in the same order, then the sums are unequal quantities in the same order.
$(a<b$ and $c<d \Rightarrow a+c<b+d)$

Theorem: In a triangle, an exterior angle is greater than either nonadjacent interior angle.

Given: $\triangle A B C$ with exterior $\Varangle 1$
Prove: $m \Varangle 1>m \Varangle 2$ and $m \Varangle 1>m \Varangle C$

