So far, we have only discussed lump sum deposits and payments. However, it is not always possible to make a lump sum deposit or payment. Sometimes, making periodic payments or deposits is necessary.

Two common uses of Annuities:

1. saving money for large purchases such as a home, car, trip, college, etc.
2. retirement

Terminology:

Annuity - a sequence of equal payments made at equal periods of time
Two types of Annuities:

1. ordinary annuity - payments are made at the end of the time period
2. annuity due - payments are made at the beginning of the time period

Payment Period - time between payments
Term - time from first payment period to the end of the last payment period
Future Value of an Ordinary Annuity - final sum on deposit (sum of compound amounts of all payments) when payments are made at the end of the time period

$$
\begin{aligned}
S=R\left[\frac{(1+i)^{n}-1}{i}\right] \quad & \text { where } S \text { is the future value, } \\
& R \text { is the payment at end of each period, } \\
& i=\frac{r}{m} \text { (interest rate / period), and } n=m t \text { (number of periods). }
\end{aligned}
$$

Example 1:

$R=\$ 20,000,6 \%$ interest compounded quarterly for 12 years. Find the future value of this ordinary annuity.

Example 2:

$\mathrm{S}=\$ 43,000$, interest is 6% compounded semiannually for 5 years. Find the periodic payment that will give this future value if payments are made at the end of each period.

Sinking Fund - a fund set up to receive periodic payments
If the payments are all the same and are made at the end of a regular time period, the sinking fund is essentially the same as an ordinary annuity.

Example 3:

Future Value is $\$ 6000$; money earns 8% compounded monthly for 3 years. Find the amount of each payment to be made into a sinking fund.

Future Value of an Annuity Due - final sum on deposit (sum of compound amounts of all payments) when payments are made at the beginning of the time period

$$
\begin{aligned}
S=R\left[\frac{(1+i)^{n+1}-1}{i}\right]- & R \quad \text { where } S \text { is the future value, } \\
& R \text { is the payment at beginning of each period, } \\
& i=\frac{r}{m} \text { (interest rate / period), and } n=m t \text { (number of periods). }
\end{aligned}
$$

Example 4:

Payments of $\$ 1050$ for 6 years at 3.5% compounded annually. Find the Future Value of this annuity due.

