Section 6.4 -- BASIC MATRIX OPERATIONS

A matrix with m rows and n columns has dimensions or size $m \times n$.

Example 1:

Find the size of each matrix:
a) $\left[\begin{array}{cc}6 & 5 \\ 3 & 4 \\ 5 & -1\end{array}\right]$
b) $\left[\begin{array}{ccc}5 & 8 & 9 \\ 0 & 5 & -3 \\ -4 & 0 & 5\end{array}\right]$
c) $\left[\begin{array}{lllll}1 & 6 & 5 & -2 & 5\end{array}\right]$

A matrix with only one row is called a row matrix while a matrix with only one column is called a column matrix. A matrix with the same number of rows as columns is called a square matrix.

Adding and Subtracting Matrices:

Matrices must have the same size in order to add or subtract them. To add or subtract matrices, you simply add or subtract the corresponding elements in each matrix.

Example 2:
a) $\left[\begin{array}{cc}5 & -6 \\ 8 & 9\end{array}\right]+\left[\begin{array}{cc}-4 & 6 \\ 8 & -3\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & 5\end{array}\right]-\left[\begin{array}{ccc}-2 & 3 & 0 \\ 1 & -7 & 2\end{array}\right]$
c) $\left[\begin{array}{cc}-2 & 5 \\ 0 & 1\end{array}\right]-\left[\begin{array}{l}3 \\ 5\end{array}\right]$

The Additive Inverse of a Matrix contains elements that are the opposite of each element in the original matrix.

Example 3:
$\left[\begin{array}{cc}2 & -4 \\ 3 & 5\end{array}\right]$

Additive Inverse would be:

A Zero Matrix is a matrix in which all elements are zero.

Example 4:
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Scalar Product of a Matrix:

Multiply each element of the matrix by the scalar.

Example 5:
$-3\left[\begin{array}{cc}2 & -5 \\ 1 & 7\end{array}\right]$

Assessment:

Let $A=\left[\begin{array}{cc}-2 & 4 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-6 & 2 \\ 4 & 0\end{array}\right]$. Find each of the following:

1) 2 A
2) $-4 B$
3) $-4 A+5 B$
