Section 8.3: Introduction to Probability

Terminology

Experiment - an activity or occurrence with an observable result
Trial - each repetition of an experiment
Outcomes - the possible results of each trial
Equally Likely Outcomes - each outcome is equally likely to occur
Examples: tossing a coin, rolling a die
Sample Space - the set of all possible outcomes for an experiment
Examples: Sample space for tossing a coin
Sample space for rolling a die
Sample space for tossing a coin and rolling a die
Sample space for a family with three children
Event - a subset of outcomes from a sample space
Examples: Event of a family with 3 children having exactly 2 girls
Event of a family with 3 children having all the same sex
Event of a family with 3 children having all girls
Simple Event - an event with only one possible outcome
Certain Event - an event equals the sample space
Impossible Event - an event with no possible outcome
Examples: Sample space for a die
Event of rolling a 4
Event of rolling a number less than 10
Event of rolling a 7
Mutually Exclusive Events - events that cannot occur at the same time
Example: tossing a coin and getting a head and tail

Probability - the likelihood that a particular event will occur
$P(E)=\frac{n(E)}{n(S)}=\frac{\text { number of times event could happen }}{\text { number of total outcomes in sample space }}$
Examples: \quad P(rolling an even number on a die)
P (rolling a number greater than 4)
P (rolling a number less than 10)
$P($ rolling an 8)
P (drawing an ace from a deck of cards)
P (drawing a face card)
P (drawing a spade)
$\mathrm{P}($ drawing a spade or heart)
NOTE: $\quad 0 \leq P(E) \leq 1$

Section 8.4 (Part 1): Properties of Probability

Union Rule for Probability

$P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$P(E \cup F)=P(E)+P(F) \quad$ if E and F are mutually exclusive

Examples: If a single card is drawn from a deck of cards, find the probability that it will be red or a face card.

If two dice are rolled, find the probability that the first die shows a 2 or the sum is 6 or 7 .

If two dice are rolled, find the probability that the sum is 11 or the second die is 5 .

Complement Rule for Probability
$P\left(E^{\prime}\right)=1-P(E) \quad$ or $\quad P(E)=1-P\left(E^{\prime}\right)$
Examples: If a die is rolled, what is the probability that any number but 5 will come up?

If two fair dice are rolled, find the probability that the sum of the numbers showing is greater than 3 .

