SECTION 9.2: THE MULTIPLICATION PRINCIPLE

Multiplication Principle - multiply the number of ways to make each choice to find the total number of choices

Example 1: A combination lock can be set to open any 3-letter sequence. How many such sequences are possible?

Example 2: A teacher has 5 different books to be arranged side by side. How many different arrangements are possible?

FACTORIAL:

$$
\begin{aligned}
& n!=n(n-1)(n-2) \ldots(3)(2)(1) \\
& \text { and } 0!=1
\end{aligned}
$$

SECTION 9.2:
 PERMUTATIONS

Permutations - a selection of items in which order is important

A permutation of r elements from a set of n elements is written as

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Example 3: The teacher mentioned in Example 2 wants to select only 3 of the 5 books to arrange on his desk. How many arrangements are possible?

Example 4: In 1996, eight candidates sought the Republican nomination for president. In how many ways could voters rank their first, second, and third choices?

SECTION 9.2:
 COMBINATIONS

Combinations - a selection of items without regard to order (order is not important)

The number of combinations of n elements taken r at a time is written as

$$
\binom{n}{r} \text { or }{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}=\frac{\text { number of permutations }}{\text { (number choosing)! }}
$$

Example 5: A teacher selects 3 of 5 books to donate to charity. How many combinations are possible?

Example 6: How many committees of 3 people can be formed from a group of 8 people?

Example 7: Three managers are to be selected from a group of 30 to work on a special project.
a) In how many different ways can the managers be selected?
b) In how many ways can the group of 3 be selected if a certain manager must work on the project?

