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PREFACE 

FUNCTIONS IN MATHEMATICS: INTRODUCTORY 

EXPLORATIONS FOR SECONDARY SCHOOL TEACHERS 

 

About this Text 

 

The presentation of topics in this text is done in a “discovery-based” format so as to 

invite the learner/reader to actively participate in the Explorations that develop the 

material in a logical manner. 

 

This manuscript is intended to be used primarily for a one-semester lower-division 

mathematics course. The course assumes that students have a working knowledge of the 

basic concepts of Calculus associated with differentiation and integration, but this is not a 

rigid prerequisite. Due to the collaborative nature of the delivery of the course, we have 

had students succeed in the course who have not had a Calculus background. The topics 

covered in this text serve to synthesize important topics from secondary mathematics 

curriculum and to connect these topics to university-level mathematics. We believe that 

the material and mathematical connections made in this text are worthwhile and 

extremely well suited for a discovery-based mathematics course for preservice secondary 

teachers. The course topics were born out of notes used for an introductory mathematics 

course that is taught to lower-division mathematics majors in the UTeach Program in the 

College of Natural Sciences at the University of Texas. UTeach mathematics majors, in 

addition to earning an undergraduate degree in mathematics, are seeking state teaching 

certification in middle school or high school mathematics. 

 

 

Suggestions for Using this Text 

 

Instructors of a course using this text are encouraged to present the material of the book 

in an inquiry-based method. That is, allow students to work through the Explorations of 

the text collaboratively and devote considerable class time to student presentation of 

results. The instructor is further encouraged to take on the role of facilitator in the course 

in that one of the goals of the course would be to bring students to the point where 

students would not simply present results, but also challenge and correct each other 

concerning the formal logic, mathematical language, and methods employed in their 

presentations. This is a book and a course about getting students to think deeply and 

logically about fundamental ideas in mathematics. 

 

Further, instructors are encouraged to add any relevant topics, exercises, and explorations 

to those presented in the text that are felt necessary based on student make-up and 

individual goals for the course. The authors welcome any suggestions along those lines. 

Please feel free to use the material of the text as a springboard for exploration of 

tangential topics and connections based upon student interest, deficiencies, and 

discussion. 
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Lastly, to the student, we encourage students to view the topics and Explorations of the 

text as vehicles to be used toward thinking deeply about concepts and connections 

between concepts that you may have seen before but not in the same depth or context. 
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INTRODUCTION 

FUNCTIONS IN MATHEMATICS: INTRODUCTORY 

EXPLORATIONS FOR SECONDARY SCHOOL TEACHERS 

 
The layout of this text is presented in sections labeled by “Lesson” of instruction. It is 

assumed that these Lessons correspond to class periods of approximately one and one-

half hours in duration. Even so, it may be the case that you don’t use all of the 

Explorations within, or that you don’t finish the Explorations of each Lesson, or that you 

are working with a shorter class period in which some Explorations will continue over 

multiple days. The Lesson sections are numbered in order and do not include such things 

as time allotted for class tests or discussion of tangential topics. 

 

The key to experiencing this course is to approach the associated teaching and learning 

with a flexible mindset. Let the Explorations take you in many directions based upon the 

presentation and discussion of the material under investigation. Consider and be open to 

the fact that there are often multiple ways to approach or obtain the desired result for a 

given Exploration. Much of the learning in this course will come from listening to others’ 

justifications and explanations of how a result was obtained. 

 
Let us begin! 
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UNIT ONE 

FUNCTIONS, RATES, AND PATTERNS 

 

 

Lesson 1: Getting Started 
 

The three Explorations of this section are meant to “get you started” on the right track 

regarding the expectations of this text. This text is meant to accompany a mathematics 

course that, among other things, is about “thinking.” By this we mean it is our intention 

that the activities presented within will entice you to think deeply about some of the 

mathematics you’ve encountered previously, about new ideas presented, and about the 

connections between the two. With this in mind, let’s get started. 

 

 

 

 

Exploration 1.1: A Common Cube Conundrum 

 

Suppose one desired to move along the surface of the cube from the top far corner 

(point A) to the near bottom corner (point B). Would the dark line path marked in the 

picture be the shortest route from point A to point B? If you agree, justify your answer. 

If you do not agree, describe the shortest path and justify your answer. Is the shortest 

path solution that you have chosen unique? 
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Exploration 1.2: The Efficient Waterline 

 
The city wishes to connect two houses to an existing water supply line using a single 

pump at the supply line and a minimal amount of pipe extended to each house. The 

houses are located at different distances from the street (as pictured). Where should the 

pump connection be located? Of course, you must justify your answer. 

 

 
 
 

 

 

As mentioned previously, it is important that you also make connections between 

mathematics concepts you are asked to remember and that you newly learn in this course. 

The next Exploration is a good example of making connections between topics and 

concepts in mathematics. 

 

 

 

Exploration 1.3: Making Connections 

 
Given the three topics listed below, devise a visual, verbal, and algebraic way of 

connecting the concepts: 

 

1. The distance formula 

2. The standard equation of a circle (not centered at the origin) 

3. The Pythagorean Theorem 

 

Can you think of further related mathematics topics that can be extended from these 

three? 
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Lesson 2: What is a Function? 
 

In this section, we will take a deeper look at the concept of function in terms of a 

function’s definition, type, and general properties. You have encountered and worked 

with functions in your mathematical experiences so far, but have you really thought much 

about what constitutes a function? 

 

 

 

Exploration 2.1: Function? 
 

Work in groups to answer the question, “What is your definition of a function?” Each 

group should agree upon and present one definition. 

 

Each group should also display their agreed-upon definition for the class and all 

definitions should be recorded by each student. At this point, however, a formal 

definition of function should not yet be agreed upon and formulated. 

 

 

 

 

 

Exploration 2.2: Function an Identification Activity 1 

 

FUNCTION-IDENTIFY? 
Decide, in groups, which of the relations listed below are examples of functions; justify 

your answers. 

 

 FUNCTION? JUSTIFICATION 

1 

 

 

 
2y x= −  

 

 

 

 

 

2 

 

 

x y 

2 4 

-6 -12 

13 26 

-57 -114 
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3 

 

 

(5, 6) 

(3, 2) 

(5, 1) 

 

 

 

 

 

 

 

 

 

 

 

 

4 

 

 
 

 

5 

 

 

y
4
 = 8x

2
 

 

 

 

 

 

 

Also identify: What does the graph of this 

relation look like? 

6 

 
 

 

7 

 

Tom: Blue 

Jill: Brown 

Bill: Green 

Harry: Green 
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Exploration 2.4: “Mapping” a Map—Activity 1 

 
Find a map of your choice. This could be a campus map, a local street map, or state map, 

for example. Use any the information supplied in the map or any subset of the 

information provided to create a function. Be sure to explain your reasoning behind the 

creation of your function. 

 

 

 

 

 

 

 

Exploration 2.4: Function Identification—Activity 2 

 
As you discuss these problems, consider the meaning of the symbols in the set-builder 

notation. These symbols should be discussed in class as part of the next section. 

1. Let A = (a, b, c}, B = {4, 5, 6}, and f = {(a, 6), (b, 4), (c, 6)}.                           

Is f a function from A to B? 

2. Let A = {1, 2, 3}, B = {c, d, e}, and g = {(1, d), (2, c), (1, e)}.                                               

Is g a function from A to B? 

3. Let M  be the set of all museums, N the set of all countries, 

and { }( , )L m n M N the museum m is in the country n= ∈ × . 

      Is L a function from M to N? 

4. Let D be the set of all dogs, and let 

{ }( , )C d o D D the dog d is a parent of the offspring o= ∈ × .                                

Is C a function from D to D? 

 
 

 

 

 

TAKE-HOME EXERCISE: Reflect on your informal work in trying to describe what a 

function is and consider the various group definitions of function presented. Now revise 

the definition you originally created for describing a function in order to develop a more 

refined definition. Explain your reasons for refining (or not refining) your function 

definition. 
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Lesson 3: Functions and Types of Functions 
 

We will now attempt to formalize our definition of function by providing three textbook 

definitions of the concept of function. Note the use of the symbols in each definition. As 

you read over the three provided definitions of a function, you are asked to consider the 

commonality and differences between these definitions and the one that you have 

previously written. Three examples of how a function might be defined are 

 

Given two sets A and B, the set A B× consists of all ordered pairs (a, b) where a A, 

b B. A subset of A B× is called a relation. Thus: 

 
1. A function from A to B is a pairing of elements in A with elements in B in such a way 

that each element in A is paired with exactly one element in B. 

 
2. A function f from A to B is a rule or relation between A and B that assigns each 

element a A to a unique element b B. 

 

3. A function f from A to B is a subset of the Cartesian product  

    A B×  = {(a, b) | a A, b B} such that b is unique for each a A}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• 

• 

• 

 

• 

• 

• 

 

• 

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

 

A B 

f 
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4. A function between A and B is a nonempty relation 

( , ) ( , ) ,f A B such that if a b f and a b f then b b′ ′⊆ × ∈ ∈ = . The domain of f is 

   the set of all first elements of members of f and the range of f is the set of  

   all second elements of members of f. Symbolically: 

      }{ : ( , )domain f a b B a b f= ∃ ∈ ∋ ∈  

   }{ : ( , )range f b a A a b f= ∃ ∈ ∋ ∈  

The set B is referred to as the codomain of f. If it happens that the domain of f is equal 

to all of A, then we say f is a function from A into B and we write :f A B→ . 

  

 

 

 

 
EXERCISE: Consider why it is or is it not important to have a precise definition of the 

term “function.” 

 

 
 

 

 

Historical Notes 

 

 1. Although the notion of a function dates back to the seventeenth century, 

a relation-based definition as we use today was not formulated until the 

beginning of the twentieth century. The concept of mathematical relations 

first appears in the text Geometry, written by Rene Descartes in 1637, and 

the term “function” was introduced about fifty years later by Gottfried 

Wilhelm Leibniz. It was Leonhard Euler, in the eighteenth century, who 

first used today’s notation y = f(x). Finally, it was Hardy who, in 1908, 

defined a function as a relation between two variables x and y such that “to 

some values of x at any rate correspond values of y.” 

 

 2. French author Nicolas Bourbáki is not a single author but a group of 

authors who came together in the late 1950s in an effort to standardize the 

language of modern mathematics. That language is used in the definitions 

that follow. Among the group was mathematician John Tate, who later 

became a faculty member at the University of Texas at Austin. 

 

 

In addition to knowing whether one is working with a function or not, it is often useful to 

know the type of function under investigation based upon the mapping properties of the 

function. 
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Given two sets A and B. 

 

DEFINITION  A function :f A B→ is called surjective (or is said to map A onto B) if 

B = range f.  

DEFINITION  A function :f A B→  is called injective (or one-to-one) if, for all a and 

a′  in A, ( ) ( )f a f a′=  implies that a = a’. 

 

DEFINITION  A function :f A B→  is called bijective if it is both surjective and 

injective. 

If a function is both surjective and injective, then it is said to be 

particularly “well behaved.” 

 

 

      

   Exploration 3.1: Types of Functions 

 

1. Devise and explain two examples for each of a surjective function, an injective 

function, and a bijective function.  

 

 

 

 

 

 

2. Characterize the function f pictured here: 
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The Ubiquitous Quadratic Function 

 

The quadratic function  
2( )f x ax bx c= + +  

can certainly be said to be present everywhere in secondary mathematics curriculum. It is 

likely to be the function that you will investigate the most with your students as a 

secondary mathematics teacher of various levels of mathematics. Due to this fact, we will 

explore some of interesting properties of this function throughout this text. 

 

In the next Exploration, we will try to devise a way to visualize the location of the roots 

of a quadratic when it is the case that the roots are complex. In order to accomplish this 

task, we will allow the domain of the function to be the complex numbers. It is assumed 

that you are comfortable with working with complex numbers and performing some basic 

field operations in this system. 

 

 

 

   Exploration 3.2: Complex Roots Visualization 

Consider the graph of 
2

( ) 4 7f x x x= + +  

1. Graph f(x) in detail in the xy plane of the coordinate system provided on the next 
page without using a graphing calculator. 

 
2. What conclusion can you make about the roots of ( )f x ? 
 
3. Suppose that we can use the complex numbers as the domain for ( )f x . 

 
a. Show that ( 2 3 )f i− +  is a root for f.  
 
b. Show that ( 2 5 )f i− + is a real number and that (3 5 )f i+ is not a real number. 
 
c. Try a few more complex values and make a conjecture about values of a and b for 

which ( )f a bi+ is a real number. Explain how you arrived at your conjecture and 
prove that it is true. 

 
d. Lastly, can you visualize and draw a graphical representation of what your above 

answers imply about the real-valued outputs of f with regard to the inclusion of a 
complex domain? Try to do this using the 3-dimensional coordinate system 
provided below. 

 
 
 
 
 
 
 
 
 
 
 



 13 

Axes template: (be sure to scale axes): 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONNECTIONS EXERCISE: 

 

• Based on your previous experience and the exploration that you completed 

involving “roots” and complex numbers, state four ways one might find the roots 

(or zeros) of a quadratic function. 

 

• Now, using the general formula 2 0ax bx c+ + = , prove that one method that you 

have mentioned is really a general case of the other (i.e., derive the quadratic 

formula). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

i 

x 

y 
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Lesson 4: A Qualitative Look at Rates 
 

By considering specific velocity-time functions of the motion of a particle as rate of 

change functions and then trying to draw 1) a rate of change function of the rate of 

change function and 2) a function that “undoes” the given rate of change function. Of 

course, we are talking about creating the acceleration-time function and the position-time 

functions, respectively, when supplied with a velocity-time function. It is assumed that 

you have some conceptual knowledge of the derivative as a rate of change function and 

the definite integral as an accumulation function. As you work through Exploration 4.1, 

try to reconcile both the physical aspects and the mathematics theory behind your 

answers. 

 

 

   Exploration 4.1: A Qualitative Look at Rates 

 

Work with gaining a qualitative understanding of graphs of functions. In particular focus 

on the relationships between acceleration, velocity, and position vs. time in terms of rates 

of change of the functions given. 

 

For each of the following velocity vs. time graphs try to sketch what you think the 

corresponding position-time graph will look like. Then try to sketch the corresponding 

acceleration-time graph. Be prepared to present and justify your results. 
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Lesson 5: A Further Investigation of Rate of Change 
 

We will investigate three separable differential equations and their solutions. These 

equations are each used widely to model growth and decay “real-life” situations usually 

related to populations. Note that these differential equations are simply rate-of-change 

functions. 

 

 

Exploration 5.1: A Further Investigation of Rate of Change: Growth and Decay 

Models from a Differential Equations Point of View 

 

As you work through and present this Exploration, try to focus on being able to present 

your findings with lucid explanations of the mathematics involved and on using correct 

mathematics terminology throughout. 

 

Let L, k, and 0y  be constants. We wish to consider the following three differential 

equations, where y is a function of t. 

1. 
dy

ky
dt

=  

 

2. 0( )
dy

k y y
dt

= −  

 

3. ( )
dy

ky L y
dt

= −  

 

A. Verify that the three functions kty Ce= , 0

kt
y y Ce= + , and 

1 kLt

L
y

Ce
−

=
+

 are 

solutions, respectively, to the equations 1, 2, and 3, where C is a constant. 

 

 

B. Use what you have learned in Calculus to solve each of the three given differential (or 

rate-of-change) equations for y in order to obtain the given general solution. (The method 

of Partial Fractions is helpful in solving Equation 3.) 

 

Note: Each Equation is a mathematical model for describing a physical process. Equation 

1 represents Simple Growth and Decay, Equation 2 is known as Newton’s Law of 

Cooling, while Equation 3 is a general Logistic Model. 

 

The Logistic Model is quite important in population modeling and has application in 

other branches of mathematics, such as Chaos and Dynamics. As a population model, the 

constant L is called the carrying capacity of the model, and the line y = L is a horizontal 

asymptote for the solution. 
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C. Problems 
 

4. The rate of change of the number of wolves W(t) in a population is proportional to the 

quantity 1500 – W(t), where 0t ≥  is time measured in years and k is the constant of 

proportionality. Assume, as an initial condition, that when t = 0 the wolf population is 

500. 

 

a. Write the differential equation that models this situation and show all steps in 

solving the equation for W(t). 

b. Find W(t) in terms of t and k. 

c. Use the fact that W(4) = 800, to find k. 

d. Find lim ( )
t

W t
→∞

. 

 

5. The rate of growth of a population B(t) of a certain strand of bacterium is proportional 

to the product of B(t) and the quantity 1200 – B(t), where 0t ≥  is time measured in hours 

and k is the constant of proportionality. 

 

a. Write the differential equation that models this situation and show all steps in 

solving the equation for B(t). 

b. Find B(t) in terms of t and k if B(0) = 200 

c. Use the fact that B(5) = 700 to find k. 

d. Describe the long-term trend of this population. 
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Lesson 6: Conic Sections 

 
We will now turn our attention to the conic sections. A conic section can be defined as 

the curve of intersection of a plane with a right circular cone. The curves created by these 

intersections are the circle, the ellipse, the hyperbola, and the parabola. There are also 

degenerate cases of these curves created, such as the point, the lines, or two intersecting 

lines. Associated with each of these conics is an analytic definition. As was mentioned 

previously, the curve generated by the quadratic equation is a parabola. One might ask, 

for example, how it is that the conic section, the analytic definition, and quadratic 

function describing a parabola are all related. This is the topic to be explored in this 

section. 

 

First we will look at the Conic Sections and then their associated analytic definitions. We 

visualize each conic section as the intersection of a plane with a right circular cone (see 

Figures 1, 2, and 3). 

 
 

Figure 1. Parabola. 

 

 

 
 

Figure 2. Ellipse. 
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Figure 3. Hyperbola. 

Depending on the orientation of the plane, the resulting curve can be a parabola, ellipse, 

circle, or hyperbola (with degenerate forms: point and line or lines). The reader is asked 

to describe the situation in which a Circle arises. 

 

The analytic definitions of the Conic Sections are 

 

 DEFINITION: Parabola. We define a parabola (see Figure A) to be the set of all 

 points in the plane that are equidistant from a fixed point and a fixed line. The 

 fixed point is called the focus of the parabola and the fixed line is called the 

 directrix of the parabola. A special point on the parabola is the vertex, the 

 midpoint of the perpendicular segment from the focus to the directrix. 

 
Figure A. 

 DEFINITION: Ellipse. We define an ellipse to be the set of all points in the 

 plane for which the sum of the distances to two fixed points is constant. The fixed 

 points are called the foci of the ellipse. This definition is illustrated in Figure B. 

 We define the center of an ellipse to be the midpoint of the line segment 

 connecting the foci. 

 

Figure B. 
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 DEFINITION: Hyperbola. We define a hyperbola to be the set of all points in 

 the plane such that the difference of the distances between two fixed points 

 is a constant. This definition is illustrated in Figure C. 

 
 

Figure C. 

 

 
EXERCISE: Based on your discussions in Exploration 1.3, can you provide an analytic 

definition for the CIRCLE? 
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Exploration 6.1: The Conics—Equations from Definitions 

 

 

 
 

                                                         Figure 1.    

 

A. Parabola 

Given: A fixed point F and a fixed line l.                                                                    

The parabola consists of all points P such that FP  is                                                      

equal to PL . (The distance from F to P is the same as                                                                    

the distance from P to the line ; in symbols FP PL= .) 

 

1. Without loss of generality, orient the parabola so that the point F (called the focus of 

the parabola) is on the y-axis and the line  (called the directrix of the parabola) is 

parallel to the x-axis. 

2. From Figure 1, let P be a general point on the parabola; what are its coordinates? 

3. Use the distance formula to find FP : 

4. Use the distance formula to find PL : 

5. Substitute the expressions in 4 & 5 in the equation FP PL= , and simplify using 

algebraic techniques in order to derive a general equation that models the parabola. 

____________________________________ 
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                                                                 Figure 2. 

 

B: Ellipse 

Given: Two fixed points F, G and a fixed positive number k. The ellipse consists 

of all points P such that FP GP k+ = . 

 

The fixed points F and G have coordinates (-c, 0) and (c, 0), respectively. The points A, B 

are points where the ellipse intersects the positive x-axis and positive y-axis, respectively. 

 

1. Use the distance formula to express the relationship FP GP k+ =  in terms of the 

coordinates of an arbitrary point P(x, y), as pictured, which lies on the ellipse. (Your 

expression should involve a sum of two square roots.) 

 

2. Use algebraic techniques to eliminate the square roots that occur in 1. (Note: This 

involves squaring twice; it helps to simplify the result obtained by squaring the first time 

before squaring a second time.) Your expression should involve x, y, c, and k. 

 

3. The next step involves expressing k and c in terms of a and b. Using the fact that A and 

B are points on the ellipse, verify that k = 2a and 2 2 2
c a b= − . 

 

 

4. Substitute the values for k and c into your derived equation to obtain the standard 

equation of the ellipse centered at the origin with semi-major axis of length a and semi-

minor axis of length b: 
2 2

2 2
1

x y

a b
+ = . 

 

_________________________ 
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Figure 3. 

 

 

Hyperbola: 

Given: Two fixed points F, G and a fixed positive number k. The hyperbola 

consists of all points P such that FP GP k− = . 

 

Follow the procedures outlined for the Ellipse noting that the substitution 2 2 2
b c a= −  

will lead to the standard form of the hyperbola centered at the origin. 
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Lesson 7: Spring-Mass Motion Lab—Lab 1 

 
The lab activity that follows enables one to use knowledge of sinusoidal equations from 

trigonometry to model data and to explore further the concept of “rate of change of a 

function.” Various combinations of commercially available probes and computers or 

calculators can be used to do the following lab activity. The authors used a Texas 

Instruments TI-84 graphing calculator connected to a Calculator-Based Laboratory 

(CBL) unit and a Vernier motion detector. The HOOK program was used on the TI 

calculator to store and display data. This program can be found on the TI Website. 

 

 

Lab 1: Spring-Mass Motion Lab 

 

Purpose 

You will find a model to represent a “real world” spring-mass system’s motion (ignoring 

damping). 

 

Set-Up and Procedure 
Apparatus set-up is pictured below: 

 
 

1) Make sure the calculator and the CBL are turned on and that the mass is positioned 

directly above the motion detector. (For best results, one can tape a small square of 

paper to the bottom of the mass, so the detector can better “see” the mass.) 

 

2) Start the HOOK (TI
©

) program on the calculator. 

 

3) Carefully pull the mass down and release it to allow it to oscillate. As soon as you are 

confident that the motion is smooth and only vertical in direction, press [Trigger] on 

the CBL (TI Calculator-Based Lab). 
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4) The motion of the spring-mass will be sent to your calculator as a graph of position vs. 

time. 

 

5) If you do not obtain a fairly smooth and consistent graph, repeat steps 1 through 4 until 

you do. 

 

 

Analysis 

You will determine an equation y C A B x D= + −cos ( )  that represents the position of the 

spring (y) as measured over time (x) and the 1
st
 and 2

nd
 derivatives of this function. 

 

1) Find C in the above equation by using [trace] on your calculator to record the y-value 

of the first max. and the first min. you encounter on your graph. 

    Record  C  below. 

C
y y

=
+max min

2
 

    What is the name given to  C  ? 

 

 

2) A  can be found by using the [trace] feature in your calculator just as you did in 1) 

above. 

A
y y

=
−max min

2
 

    What is the name given to  A  ? 

 

 

 

3) The observed period of the spring’s motion can be found by using [trace] to find the x-

values that correspond to the first two max.’s on your graph and then computing 

x x2 1− . Once you have found the observed period for the graph,  B  can be filled in for 

the sinusoidal equation above by using: 

observed period
B

B
obs per

= ∴ =
2 2π π

. .
 

   Find  B  for your equation. 

 

 

 

                                                                                                                                     

4) D  can be found by using [trace] in your calculator. Record the x-value at the first max. 

on your graph. Record your  D  value here. 

 

 

    What is the name given to the  D  value? 
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5) Now fill in the equation  y C A B x D= + −cos ( )  completely for your particular graph 

and write it here. 

 

 

6) Graph the above equation on your calculator along with the data that you have 

collected. Do the graphs match? At this point, you must show the graphs to your 

instructor before you can continue. Draw a picture of your graph, labeling the period, 

max, mins, etc. 

 

 

7) What would ′y  represent in terms of the motion of the mass-spring? ALSO, find ′y . 

(SHOW ALL WORK) 

 

 

8) What would ′′y represent in terms of the motion of the mass-spring? Find ′′y .  

(SHOW ALL WORK). 

 

 

9) As a check, use NDERIV (in your calculator) to graph the derivative of your original 

equation. Then graph the ′y  equation you found above in the same window. Are there 

any differences? If so why might the two graphs differ? 

 

 

10) Compare the graphs of y and ′y in your calculator. Does their relationship make sense 

based on what you know? Explain. 

 

11) Find the position, velocity, and acceleration of the mass-spring at x = 0.5 sec. 

(SHOW WORK) 

 

 

12) Lastly, explain the usefulness of sinusoidal equations and their derivatives in the “real 

world.” (Give at least two meaningful applications of sinusoidal equations.) 
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Lesson 8: Sequences and Triangular Differences 
 

Our goal in the next few sections will be to devise a way to investigate and categorize 

certain data sets or ordered pairs in order to decide what kind of function models the data. 

To start, we will work with supplied data that can be modeled by the common functions 

taught at the secondary level. These functions are linear, quadratic, power, exponential, 

and logarithmic. Patterns will be identified in the domain set of a given function that lead 

to an identifiable pattern in the range of the function. 

 

In order to use the function-identifying technique alluded to in the previous paragraph, 

we must first focus our attention on exploring some aspects of mathematical sequences 

generated by  

( ) kf n an= , 

 

where n is an element of the natural numbers, a is a real number, and k is an element of 

the positive integers. 

 

 

Your first task, however, is to define what is meant by the term sequence. 

 

 

 

Exploration 8.1: What is a Sequence? 
 

1. Work in groups to settle upon and present a precise definition for the term sequence. 

 

2. Also be prepared to report on where, in your mathematical careers so far, you have 

encountered and worked specifically with sequences and in what capacity. 

 

 

You are now ready for the next Exploration in which you will investigate differences 

between consecutive terms of a defined sequence. 

 

 

Exploration 8.2: Triangular Differences Involving Sequences of the Form 

                                            ( ) kf n an=  

 
1. Take a look at the sequence of square numbers listed in the first row of numbers 

below. The first several terms of the sequence are listed and, below that, the first 

differences of the two numbers immediately above and below that are the second 

differences of the differences (i.e., the second differences). 

 

1   4   9   16   25    36    49    64    81 ... 

3   5   7    9    11    13   15     17 ... 

                                                2   2    2    2     2    2     2 ... 
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Notice that for the sequence n
2
 the second differences are all 2. Now explore the 

differences for the sequence of cubes n
3
. Do you notice any patterns? Make a conjecture 

as to what will happen with the fourth powers and the fifth powers. Next try to make a 

conjecture about the differences and the resulting constant for the sequence of kth powers 

of k
n  where k is a positive integer. [This exploration can be done by hand, with a 

calculator, or in a spreadsheet program such as Excel.] 

 

2. Is there a way of figuring out whether or not there is a coefficient present such as k
cn  

where c is a constant for the sequence of kth powers c k
n ? 

 

3. Explain how the Triangular Differences process is related to the rate of change of your 

sequence function. 

 

4. Explain how your findings for this activity are related to the differentiation rule for a 

certain type of continuous function from Calculus. 

 

 

 

As a challenge activity, you might consider sequences generated by explicit equations 

containing multiple terms of the form k
cn . For example, try applying triangular 

differences for the sequences generated by n
2
, n, and 2 3n n− . Do you notice any 

patterns? What about 22 4n n+  or 25 2 5n n+ − ? This exercise is most efficiently 

investigated using a computer spreadsheet program. 
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Lesson 9: Functions Defined by Patterns 

 
Building upon what was learned in Exploration 8.2, we will now explore data sets 

consisting of ordered pairs. The purpose of this exercise is to detect patterns in the 

domain of a given data set that result in patterns in the range to identify the type of 

function that models the data. The type of patterns that we will look for will be 

arithmetic, geometric, or triangular difference patterns. 

 

 

 

Exploration 9.1: Finding Function Patterns 

 
The goal of this exercise is to try to use what you have learned from the sequence 

exploration that you have previously completed to find a pattern in each domain and 

related range of a given function in order to identify what kind of model may be present 

(i.e., exponential, linear, quadratic, …). At this point, we are not interested in the actual 

equation that models the data, only the kind of model present. Keep in mind that using 

triangular differences is not the only way to discern patterns. Look for ratios or 

multiplication patterns as well. 

 

For each table of data: 
1. Plot the data points and make a conjecture as to what kind of function is present. 

2. Find a pattern in each domain and range for each function provided and try to 

understand how this pattern affects the shape of the graph that you have plotted 

(assuming that the graph is continuous). 

3. Make a conjecture as to what kind of function can be used as a model for the given 

data. 

 

 
Example 1 

              ___x__ f(x) 

2   4            

                        4   9                

           6 14               

          8 19            

           10 24              

 

 

 
Example 2 

___x__    f(x) 

1   15 

            3     5                

               5   19             

                      7   57               

                9 119            
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Example 3 

___x__    f(x) 

1      15 

                        3     135              

   5   1215            

                       7 10935          

 

 

 

It is a more complicated endeavor to find the pattern relationship in Example 4. Be aware 

that sometimes a pattern is revealed not by examining consecutive terms in a domain or 

range sequence; rather, consecutive terms can be considered as those terms, in order, that 

reveal a pattern. Consequently, sometimes ordered pairs can be “skipped” in order to 

discern a pattern relationship in the data. All ordered pairs will be points on the graph of 

the function. It is simply that the proper function pattern may not be revealed by 

examining each consecutive ordered pair. 

  
Example 4 

___x__    f(x) 

3   135 

                          6 1080          

 9 3645 

                        12 8640        

 

 

 
Example 5 

___x__    f(x) 

6  1 

                      18   2                

                      54         3            

                    162   4                   

 

 
 

 

 

 

 

Functions Defined by Patterns—Verification 

 

The patterns that you should have identified in Exploration 9.1 related to some of the 

more common functions studied in mathematics courses are 

 

  Addition-Addition: Linear 

  Constant Second Difference: Quadratic 
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  Product-Product: Power 

  Addition-Product: Exponential 

  Product-Addition: Logarithmic 

 

Of course, at this point your pattern identifications are simply conjectures. In the next 

Exploration, you are asked to verify these conjectures by working with general forms of 

the functions identified by pattern. 

 

 

 

 

Exploration 9.2: Pattern Verification 

 
In this exploration, you are going to work with general forms functions identified by 

pattern in order to discover why certain patterns in the domain of a given function lead to 

predictable behavior for the values produced in the range. 

 

1. Addition-Addition: A Linear Function 
Statement: For a linear function f, adding a constant c to a given domain value results in 

adding a constant to the corresponding range value: 

To verify the statement above, find 2( )f x  in terms of 1( )f x and fill in the statement 

below 

 

2 1 2( ) , ( ) ......If f x mx b and x c x then f x= + = + =  

 

 

2. Add-Constant Second Difference: A Quadratic Function 

Statement: For a function f of the form 2
ax bx c+ +  with domain values k units apart, 

then the second differences between consecutive ( )f x  values are constant and equal to 
22ak . 

To verify the statement above, find the second differences involving ( )f x  evaluated at 

  

1 2 1 3 1, ( ), ( 2 )x x x k x x k= + = + . 

 

 

3. Addition-Product: An Exponential Function 
Statement: For an exponential function f, adding a constant c to a given domain value 

results in multiplying the corresponding range value by a constant: 

To verify the statement above, find 2( )f x  in terms of 1( )f x and fill in the statement 

below 

 

2 1 2( ) , ( ) .....x
If f x ab and x x c then f x= = + =  
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4. Product-Product: A Power Function 
Statement: For a power function f, multiplying a given domain value by a constant c 

results in multiplying the corresponding range value by a constant: 

To verify the statement above, find 2( )f x  in terms of 1( )f x and fill in the statement 

below 

 

2 1 2( ) , ( ) .....k
If f x ax and x cx then f x= = =  

 

 

 

5. Product-Addition: A Logarithmic Function 
Statement: For a logarithmic function f, multiplying a given domain value by a constant 

c results in adding a constant to the corresponding range value: 

 

To verify the statement above, find 2( )f x  in terms of 1( )f x and fill in the statement 

below 

 

2 1 2( ) log , , ( ) ....
n

Given f x a b x if x cx then f x= + = =  
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Lesson 10: Using Functions Defined by Patterns In Application 

 
Now it is time to explore how function patterns may be used in application. We will start 

with a fairly “well-behaved” situation in that it is not hard to discern patterns within the 

data provided. Our goal in a future Exploration will be to use function patterns and other 

learned techniques to investigate data for which finding a model is not so obvious. 

 

 

Exploration 10.1: An Application of Functions Patterns 

 
A slightly radioactive substance, called a “marker,” is used to trace glucose metabolism 
in the heart. This substance has a half-life of about 3 hours. Suppose a dose of this marker 
were injected into a patient. Let M(t) be the amount of the marker measured in 
microcuries (mCi) of that remains over time, t, in hours, as shown in the table. 
 

t in hours M(t) in mCi 
3 5 
6   2.5 
9    1.25 

 

  

1. Determine the number of mCi that remain after 15 hours. 

 
2. Use function pattern properties to make a conjecture as to the type of function that 

models the given data. What type of function models this pattern? 
 
3. Why can’t you use the pattern to find M(22)? 
 
4. Find a particular equation for M(t) (leave your equation exact) and verify that all of the 

M(t) values in the given table satisfy the equation. 

5. Use your equation to calculate the M(22). 

 

6. If another group presents a different equation that works for the given data, show that 
in fact, the different equation is an equivalent form of your conjectured equation. 
Otherwise, can you use concepts learned in a previous Exploration to find a model for 
the radioactive marker data? 
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EXERCISE: The “functions defined by patterns” process can also be used to create data 

sets specific to a desired type of function. 

 
If a function f has values f(5) = 12 and f(10) = 18, use what you have learned about function 

patterns to find f(20) if f is a. an exponential function; b. a linear function; and c. a power 

function. 
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UNIT TWO 

REGRESSION AND MODELING 

 

 

 

Lesson 11: Using Statistical Regression to Fit a Function to Bivariate Data 

 
A regression method called the method of least squares will be used in this section to fit a 

best-fit linear function to data that are conjectured to be linear. A simple linear regression 

is accomplished by finding a line that minimizes the distance between actual data points 

and the predicted values ŷ on the best-fit line. The difference between the predicted value 

at the ith data point ˆ
i

y  and the observed value yi is called a residual, symbolized ei, such 

that  

 

ˆ
i i i

e y y= − . 

 

 

The method of least squares used to find the predicted regression line employs an 

optimization technique from Calculus to minimize the sums of the squares of the 

deviations ˆ
i i

y y−  such that an estimated or fitted regression line of the form 

 

ŷ bx a= +  

 

can be produced. 

 

An example of a scatter plot of data points and a best-fit regression line is displayed in 

Figure 11.1. 

 

 

 

 
 

Figure 11.1. Scatter plot and regression “best-fit” line 

 
One can use technology to avoid some of the tedious mathematics involved in producing 

the regression equation of the best-fit line. Graphing calculators, statistical software, or 
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spreadsheet programs such as Microsoft Excel will calculate a linear regression equation 

to fit data. 

 

 

 

Exploration 11.1: An Example of Linear Regression—Thunderstorms 
This Exploration should be done as a full class exercise as a way for your instructor to 

teach you how to perform a linear regression investigation on relevant technology. 

 

It is conjectured that in a lightning storm, the distance between one and the lightning is 

linearly related to the time interval between the flash and the bang. Consider d the 

distance to the storm in kilometers as a function of time t in seconds. Suppose, as an 

experiment, a friend travels along with the storm and reports the actual distance that the 

storm is from your house as you record the seconds between the flash and the bang. 

 

1. Make a scatter plot of the data and use linear regression to write the particular equation 

for this direct-variation function. 

 

t 2.9 6.1 14.9 28.9 37.2 

d 1.0 2.0 5.0 10.0 12.0 

 

 

2. Use your model to work backwards in order to calculate the times for the thunder 

sound to reach you from lightning bolts that are 1.5, 2.5, and 15 kilometers away. What 

do you call the processes of looking within and beyond your actual data? 

 

CHALLENGE: What would your linear equation be with seconds and miles as your 

                             units? 
 

 

 

 

 

 

 

Exploration 11.2: An Example of Linear Regression—Charles Law 
This time perform this Exploration in groups or on your own to practice the use of 

relevant technology to perform the linear regression process. 

 

Physicist Jacques Charles (1746–1823) discovered that the volume of a gas at a constant 

pressure is linearly dependent on the temperature of the gas. The table below illustrates 

this relationship. In the table hydrogen is held at a constant pressure of one atmosphere. 

The volume V is measured in liters and the temperature T is measured in degrees Celsius. 
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1. Consider V as a function of T and make a scatter plot of the data. 

 

2. Use the table above and what you have learned about linear regression to find a model 

of the linear relationship. 

 

 

Assuming that one started with 1 mole of gas at constant pressure, have you seen the 

values that you found for the T coefficient and the constant in the equation before? If not, 

you might consider doing some background research relating to Gas Laws. 

 

 

 

 

3. Solve the equation that you have found for T to find 

 

                                                                         
0

lim
V

T
+→

. 

 

 

Have you seen the value that you found for the limit before? In what context? 

 

T -40 -20 0 20 40 60 80 

V 19.15 20.79 22.43 24.08 25.72 27.36 29.00 

 

 

In fact, through use of similar methods to that of the Method of Least Squares, 

technology can be used to find regression equations to fit linear, quadratic, power, 

exponential, logarithmic models, or other functions to supplied data. In this sense, 

theoretically, one could fit many different types of functions to a given set of data. So the 

question should be asked, “How, then, does one know which is the best type of model or 

function to fit to a sample of data points?” 

 

Luckily, there are various “tools” available that help one decide which type of regression 

to use to fit a model or function to data. One tool that can be applied is the “functions 

defined by patterns” method explored in previous sections. Another tool available to us is 

the correlation coefficient associated with linear regression. The correlation coefficient r 

measures and describes a relationship or trend between two variables. Note that a 

correlation between two variables does not imply a causal relationship between the two 

variables. The relationship can, however, be characterized as having a positive correlation 

or a negative correlation, depending on whether the linear model associated with the data 

is increasing or decreasing, respectively. The correlation coefficient r can take on the 

values 
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1 1r− ≤ ≤ . 

 

The value for r is obtained by computing the ratio of a measure of covariability between 

variables, divided by a measure of the product of variations within data associated with 

each of the two variables under investigation. The actual derivation of the formula for r is 

beyond the scope of this course. If the value of r is close to negative one, this indicates a 

strong linear correlation between variables from data with a negative trend. If r is close to 

positive one, a strong linear correlation between variables from data with a positive trend 

is indicated. A value of r close to zero indicates little linear correlation between the 

variables under investigation. 

 

It must be noted that most graphing calculators and statistical and spreadsheet programs 

are programmed to display the value of the correlation coefficient r when one performs a 

statistical regression. However, other types of correlation between variables are also 

reported depending on the type of regression performed (i.e., linear versus other types of 

function regression). These are summarized here. Your instructor may choose to discuss 

these coefficient values at length with you. 

 

 

r
2
—The Coefficient of Determination 

 

The value r
2
, the coefficient of determination, measures the proportion of total variation 

in the values of Y that can be accounted for or explained by a linear relationship with the 

values of the random variable X. 

 

 

R
2
—The Coefficient of Multiple Determination 

 

Both graphing calculators and software programs report an R
2
 value for some non-linear 

regression models. This value is called the coefficient of multiple determination. It is 

analogous to the coefficient of determination, r
2
, that applies strictly to linear situations. 

R
2
 can be thought of as a multiple-linear least-squares fit. For example, if 

2
Y ax bx c= + + , then Y can be considered linear in the coefficients a, b, and c with 

2

2 1 2 1( )Y aX bX c where X X= + + = . This same argument can be used for higher-degree 

polynomials. 

 

This quantity represents the proportion of the total variation in the response Y that is 

explained by the fitted model. The closer to 1 the R
2
 value is, the better the “fit” of the 

chosen regression curve. 

 

Lastly, be aware that an r value (correlation coefficient) may be reported by graphing 

calculators and software programs for non-linear functions such as logarithmic, 

exponential, and power functions that can be made linear by transformation. 
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Lesson 12: Residual Plots and an Application 

 

Another tool available to you that can help justify the choice of function used to fit data is 

the residual plot. Recall that a residual ei is the difference between the predicted value at 

the ith data point ˆ
i

y  and the observed value yi. For any type of regression chosen, one can 

plot the residual corresponding to each data point as a function of the explanatory or 

generating value of the bivariate data. If the correct regression model has been chosen, 

one would expect the residual plot to consist of a scatter plot of values nicely distributed 

above and below the value e = 0 as pictured in Figure 12.1. 

 

 

 
 

    Figure 12.1. Residual Plot 

 

 

On the other hand, if the regression model that you have chosen to fit your data is not 

truly the best-fit equation, the residual plot associated with the predicted and actual data 

will display a definite pattern as is depicted in Figure 12.2. Why do you suppose this is 

the case? 

 

 

 
 

Figure 12.2. Residual Plot Displaying a Pattern 

 

 
One must be aware of the fact that there is a limitation to using the residual plot as a tool 

for choosing which type of regression model is best to apply a data set. The limitation is 

that if one does not have enough data points in the set, then it is hard to tell if there is 

truly a pattern in the associated residual plot. 
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Exploration 12.1: An Application Activity Using Residuals 

 

Average Weight and Length Measurements 

for a Common Rockfish Species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Our conjecture is that this is an exponential situation. Perform an exponential 

regression using WEIGHT in grams as a function of LENGTH in centimeters. Draw a 

graph of the scatter plot for the data that includes your regression curve. 

 

2. Next, construct and draw a graph of the residual plot for the regression to confirm or 

reject our conjecture. Comment on the results. 

 

3. Might there be a better model for these data? Test your answer to this question. 

 

Age in 

years 

Length in  

centimeters 

Weight in 

grams 

1 5.2 2 

2 8.5 8 

3 11.5 21 

4 14.3 38 

5 16.8 69 

6 19.2 117 

7 21.3 148 

8 23.3 190 

9 25.0 264 

10 26.7 293 

11 28.2. 318 

12 29.6 371 

13 30.8 455 

14 32.0 504 

15 33.0 518 

16 34.0 537 

17 34.9 651 

18 36.4 719 

19 37.1 726 

20 37.7 810 

 

 
The next Exploration is an activity that will synthesize some of the various techniques 

used to find a function or model that best fits a data set. 
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Exploration 12.2: Kepler and Planets Exploration—Using “Real” Data. 

The table below shows the periods of the orbits of each planet in years and the mean (half 

the sum of greatest and smallest distances or the semi-major axis) distance from the Sun 

in kilometers. 

 

1. Use “function patterns” (remember these are real data) to try to decide what type of 

function these data represent considering period, P, as a function of mean distance, d, 

from the Sun (the semi-major axis of the planet’s orbit). 

2. Based on your answer to question 1, do a regression to find the equation for the 

function that fits this datum. In addition, comment on the r or R
2
 value (whichever 

is appropriate based on your chosen model) associated with the equation. 

3. Plot the scatter plot as shown above along with the regression curve to see how 

well the regression equation fits the data. 

4. Now explore the data and regression equation using residuals. Does the residual 

plot support your choice for the type of regression that you chose? Are there problems 

with trying to interpret the residual plot for this exploration? 

 

5. Kepler derived his three laws of planetary motion from analysis of data such as that 

in the table above. Research Kepler’s Third Law in a reference text or in a physics 

text. Does your regression equation agree with that law? 
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Lesson 13: Terminal Speed Lab 

 

The Terminal Speed Lab, like the previous activity, allows one to synthesize and review 

various topics and concepts explored so far in the course. 

 

 

Falling Spheres and Terminal Speed Investigation 
(The actual lab write-up should be done on separate paper.) 

 

Purpose 

To estimate the terminal speed of a falling sphere and find the distance the object 

falls in order to achieve terminal speed (note: we are not modeling the equation 

for the sphere’s speed over time). 

 

 

Required Equipment 

stopwatch 

long tape measure 

lightweight ball (a Wiffle or Nerf golf ball would be good) 

 

 

Background 

Recall, from Calculus that the area under a graph of a speed (where speed is 

greater than or equal to zero) vs. time curve represents the distance traveled by the 

object. You will investigate the idea that the area under a graph of speed vs. time 

can be used to predict a property of the behavior of objects falling under the 

influence of gravity in the presence of air resistance. If there is no air friction, a 

falling Wiffle ball or Nerf ball falls at constant acceleration g so its change of 

speed is 
 

 

VF – Vo= gt  
 

Where VF = final speed 

               vo = initial speed 

               g = acceleration due to gravity 

               t = time of fall 

[NOTE: Although we can derive the needed formulas for the vector velocity, 

we will apply these derivations in terms of the non-vector speed of the ball. 

This is done simply to display our measurements as positive values for 

simplicity.] 

 

A graph of speed vs. time of fall is shown at the top of the next page, where vo = 

0. The speed axis represents the speed vf of a freely falling object (neglecting air 
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resistance and wind direction, such that speed is measured as a positive entity) at 

the end of any time t. The area under the graph of the line is a triangle of base t 

and height vf. Thus, the area equals (1/2)vf t. 

 

 

If you time a Wiffle or Nerf ball falling from rest a distance of 43.0 m in air, the fall takes 

3.5 s. This is longer than the theoretical time of 2.96 s. Air friction is not negligible for 

most objects, including Wiffle balls. A graph of the actual speed vs. the time of fall looks 

like the curve below. 

 

 
 

 

 

Since air resistance reduces the acceleration of the object to below the theoretical value of 

9.8 m/s
2
, the falling speed is less than the theoretical speed. The difference is small at 

first, but grows as air resistance becomes greater and greater with the increasing speed. 

The graph of actual speed vs. time curve increases more slowly than the theoretical line. 
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Procedure 

1. Using the Wiffle ball select five different sites from which to drop the object. Sites 

should range from 1 meter to 10 meters. You will clock the ball’s time of fall to within 

0.1 s. Consider various releasing techniques, and reaction times associated with the timer 

you use. 
 

2. Practice your technique for dropping and timing to produce maximum consistency and 

avoid error in technique that could drastically affect your results. 
 

3. Measure the height of each location and determine the falling times for your object at 

each site. Repeat three times per site and find the average time of fall for each location. 

 
 

Some Equations 

4. Using your measured value for the height, calculate the theoretical time of fall for your 

object at each location. Remember, this is the time it would take the object to reach the 

ground if there were no air resistance: 

 

2 2

0 0

1 1
0

2 2

2

d v t gt where v d gt

d
t

g

= + = ∴ =

⇒ =

 
 

5. Using your calculated theoretical time of fall from step 4, calculate the theoretical final 

velocity (speed, in our case) for an object falling without air resistance from each location 

you tested. 
 

0 0 0
F F

v v gt where v v gt− = = ∴ =
 

 

Graphing and Calculations 
6. On graph paper, plot theoretical velocity vs. theoretical time. Draw a best-fit line 

between your data points. (See Useful Tables, pg. 4.) 
 

7. Using your recorded actual times, calculate the actual final velocity of your object for 

each height. 
 

 

0
0 0

2 2

2

F F

F

v v v
d t where v d t

d
v

t

+   
= = ∴ =   

  

⇒ =
 

 



 44 

8. On the same graph as in step 6, plot actual final speed vs. time. Starting from the 

origin, sketch your approximation for the actual speed vs. time curve. Your sketch should 

begin to level off after a certain amount of time. The limit this curve approaches is known 

as the terminal speed. 
 

 

9. Using a computer spreadsheet program or graphing calculator, you will attempt to find 

an approximate value for the limit or the terminal speed. Use your graphing calculator to 

find a best-fit regression quadratic equation for your actual data. (Keep in mind that the 

actual curve is not really quadratic, but this method allows you to find a point where the 

derivative is equal to zero, which will be a good approximation for the time at which your 

object reached terminal velocity.) 
 

10. Find the time at which the slope is equal to zero. This represents the maximum value 

for your curve. (This is an approximation for the time at which your object reached 

terminal velocity.) To find the point at which the slope is equal to zero, take the 

derivative of your best-fit regression equation that was generated from your calculator in 

step 9. Set the derivative equal to zero and solve for time. Once you have found this time, 

you can substitute this value into your original equation to find the terminal speed of your 

object. 
 

11. By integrating your best-fit equation from time zero through time maximum from 

step 10, you can determine the fall distance at which your object will reach terminal 

speed. The distance to terminal speed is the area under the curve from time zero through 

time maximum on your graph. 

 

 

Analysis 

1. What can you say about objects whose speed vs. time curves are close to the 

theoretical speed vs. time line? 

 

2. What does the area under your speed vs. time graph represent? 

 

3. If you dropped a large leaf from the Empire State Building, what would its speed vs. 

time graph look like? How might it differ from that of a baseball? 

 

4. The terminal speed of a falling object is the speed at which it stops accelerating. How 

could you tell by glancing at an actual speed vs. time graph if an object had reached 

its terminal speed? 

5. Search references to find the actual equation that models how a small sphere falls in a 

medium and state this equation with a brief description. Also note how terminal speed 
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fits into the equation. 
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Lesson 14: Using Matrices to Find Models 

 

Thus far in the course, we have had occasion to use some knowledge of trigonometric 

functions, solving of a few simple systems of equations, and statistical regression to find 

models to fit bivariate data. In this section, we will use matrices to solve certain systems 

of equations. 

 

Suppose we have a 3 x 3 matrix A that represents a system of equations, along with a 3 x 

1 solution matrix B. In this system, we are trying to solve for three unknown coefficients 

a, b, and c represented by the 3 x 1 matrix C. One might represent this situation with a 

matrix equation such as 

[ ][ ] [ ]A C B= . 

 

Keep in mind that our goal is to find the values of the coefficients of the C matrix. Recall 

that the way to accomplish this task is to multiply both sides of the equation by the 

inverse of the A matrix (provided that it exists) to yield 

 

[ ][ ] [ ]1 1A A C A B− −   =    , 

 

where [ ]1A A−    is equal to the identity matrix, which simplifies to 

 

[ ] [ ]1C A B− =   . 

 

While it is clear that this process allows one to find the solution C matrix, one should ask, 

“Given an invertible system representing A matrix, how does one find the inverse of A?” 

The next example sheds light on the answer to this question. 

 

 

EXAMPLE: How to Find the Inverse of A in a 3 × 3 Matrix 
 

 

The goal is to find A
-1

 if 

 

















−

=

111

312

101

A . 

 

Begin by forming the following 3 × 6 augmented matrix. Perform matrix row operations 

to obtain the identity matrix on the left side, and perform the same operations on the right 

side of this matrix. 
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The right side is equal to A
-1

. That is 

 

















−

−−

−−

=−

113

125

112
1

A  

 

It can be verified that A
-1

A = I3 = AA
-1

. 

 

Challenge: Based on this example, can you provide some general informal justification 

for why this process works? 

 

  

NOTE: 
If it is not possible to obtain the identity matrix on the left side of the augmented matrix 

by using matrix row operations, then A
-1

 does not exist. 
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Exploration 14.1: The Inverse of a Matrix 
In this quick exploration, you are asked to find the inverse of matrix A where: 

 

0 1 2

1 0 3

4 3 8

A

 
 

=  
 − 

 

 

How might you check your answer? 

 

 

 

 

In the next exploration you will be asked to use what you have learned thus far in this 

section to find a model function or relation to fit data. This will be done in the context of 

working with two types of conics that have been previously discussed; the parabola and 

the circle. 

 

 

Exploration 14.2: Using Matrices to Model Functions and Relations 

 
 

• How many data points does one need to use matrices to find an equation for a 

parabola of the form: 

                                          
2

y ax bx c= + +  

 

• Recall [ ] [ ] [ ]
1

A B C
−

= , explain why this will work. 

 

• How many points does one need to use matrices to find an equation for a circle of 

the form: 

                                          
2 20 x y Dx Ey F= + + + +  

 

• Is the above situation a function or a relation? Why? 

 

 

 

 

• Find the equation for a circle containing points: 

(0, 0), (0, 5), (3, 3) 

 

• Find the equation for a circle containing points: 

(-1, -3), (-2, 4), (2, 1) 
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• Find the equation for a parabola containing points: 

(0, 0), (20, 47), (30, 88) 

 

• Find the equation for a parabola containing points: 

(0, 1.60), (10, 1.85), (20, 2.00) 

 

• Lastly, put all equations found above into Standard Form 

 

 

EXTENSION: Now consider 

 
2 20 Ax Cy Dx Ey F= + + + +  

This is the GENERAL Form of the equation for any of the Conic Sections that we 

have previously discussed (neglecting rotations). 

 

• How would one know which conic is represented given an equation in this form? 

 

• Could you put each of the conics represented in this form into the STANDARD 

Form for the specific conic? 
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Lesson 15: The Roller Coaster 

 

The activity that follows serves to pull together various concepts that have been explored 

in the course so far. As you work through this activity, keep in mind that there are 

multiple approaches to achieving the desired outcome of the exploration. 

 

Exploration 15.1: Building a Roller Coaster 

 
An established company, the Thrill Ride Roller Coaster Company, has asked your group 

to help design a roller coaster track. 

 

The Thrill Ride Company wants to build a roller coaster subject to a set of constraints. 

You are told that the company has several engineers who could design a blueprint and 

build the track if only they knew the functions whose graphs would define the desired 

curve of the track. According to a company spokesperson, her people can easily “fit” a 

curve to a set of points; however, the resulting curve does not necessarily satisfy 

constraints involving slopes, concavity, extrema values, smoothness, updateability, etc. 

Furthermore the company’s engineers must first build a scaled-down test model, and thus 

they need the function description for the scale model. Hence your task is to define a 

piecewise function over the interval [0,15] whose graph satisfies the following 

constraints for the roller coaster track (each unit represents 10 meters). 

 

1. The entrance onto the track is at the point (0,10) and the exit is at (15,0). There are just 

two local extrema, a minimum at (4,2) and a maximum at (8,8). (You do not have to 

consider designing the stairs leading to the entrance.) 

 

2. The slope of the curve at the entrance and exit points must be zero in order to facilitate 

getting on and off the roller coaster car. 

 

3. IMPORTANT: The curve must be “smooth,” meaning that the piecewise function must 

be differentiable over its entire domain. 

 

4. For continued customer interest, maintenance, and future customization YOU MUST 

build the roller coaster track out of pieces. Based on the given constraints, you must also 

decide how many functions that you will “sew together” to build the track. 

 

The Thrill Ride Company is skeptical of work that has not been refined, stating that 

whenever safety, cost, or time is involved, they will not accept the plans of a single 

person. Therefore, you are to work in a group of three or four people. 
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UNIT THREE 

EXPLORING FUNCTIONS IN OTHER SYSTEMS 
 
 

 

Lesson 16: A Non-Standard Exploration of the Rate of Change of Functions 
 

We will open this unit without preliminary explanation by having you complete the next 

Exploration involving a further look at functions and rate of change. 

 

 

Exploration 16.1:  

 
For this Exploration, we are concerned with the movement of an object along a path in 

the plane. We are assuming that the plane is a coordinate plane and the object starts at the 

point (0, 0). 

 

As the object moves along the path, each point on the path has two coordinates. The 

coordinates depend on the distance traveled along the path. Let us call this distance S. 

That is, S is the length of the path from the origin (0, 0) to a point P on the path as 

depicted in Figure 1. 

 

 

 
Figure 1. 

 

 

Since the coordinates of P depend on the distance S we write (x(s), y(s)) for the 

coordinates of P. 
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We now wish to examine various types of paths and describe the behavior of the 

functions x(s) and y(s) as S increases. 

 

 

 

Path 1 (A Polygonal Path) 

 

 

 
 

 

(a) Describe the behavior of x(s) between the points O and A, A and B, and B and C. 

 

 

(b) Describe the behavior of y(s) between the points O and A, A and B, and B and C. 

 

 

(c) Can you predict what the graphs of the x(s) and y(s) would look like for the entire 

polygonal path S between the points O and C? 

 

 

(d) Is it possible to write explicit formulas describing the values of x(s) and y(s)? For 

example, can we find x(2) and y(2)? Also, 

  

 (i) What value of s yields the coordinate point (1.5, 1)? 

       (ii) What is y(s) when x(s) = 2.5? 

 

 

(e) Test your prediction from (c) by constructing graphs of x(s) and y(s). What is the 

domain of each of these functions, based on the supplied information? 
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Path 2 (A Parabolic Path) 

 

 
Movement, in this case, is along a parabola with vertex at the origin. The simplest 

algebraic of such a parabola is 2y x= . 

 

 

 
 

(a) Describe the behavior of x(s), y(s). 

 

 

(b) Can we determine x(2) and y(2) from the given information? 

 

 

(c) Can we construct graphs for x(s), y(s) (are they the same graph)? How might you 

accomplish this task; i.e., what materials are needed for you to do this? 

 

Consider using a length of string and the scaled length of the provided ruler. 
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[NOTE: One centimeter on the supplied ruler and one unit on the “Parabolic Path” graph 

can be taken as the same. Please keep in mind that, due to paper copying irregularities, 

the provided ruler is likely not an accurate representation of a standard measurement.] 

 

 

 

 

 

 

 

 

Exploration 16.2:A Parameterization of Movement in the Plane 

 
Often it is useful to investigate a rule or relation between ordered pairs in the plane as 

they relate to yet a third variable or parameter. In this investigation, movement of an 

object in the plane is described by parametric equations. Using a non-standard approach, 

we will describe the path of an object as it moves around the circumference of a circle. 

The relationship between circumference arc length s traversed by the object and 

associated values we will call w(s) and h(s) will be described. Using the origin as our 

reference point, the value of w(s) will represent the horizontal distance in the plane and 

h(s) will represent the vertical distance in the plane used to locate the endpoint of the path 

of our object as it moves in a counter-clockwise direction along the circumference of a 

unit circle. The assumption will be that the chosen portion of the circumference is 

measured from the point (1, 0). 

 

To start, a circle of radius approximately one inch (for simplicity) centered at the origin 

of your coordinate system has been constructed in Figure 1. A thin piece of string of 

approximately 13 inches in length will be needed for this exploration. [NOTE: The scale 

on the supplied ruler and “one inch” unit circle can be taken as the same. Please keep in 

mind that, due to paper copying irregularities, the provided ruler is likely not an accurate 

representation of a standard inch measurement.] 
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Figure 1. (Not drawn to scale) 

 

Exploration procedure: 

 

Place one end of a string at the point (1,0) and run a length of the string along the 

circumference of the provided circle. Take approximate measurements of your s lengths 

at rational multiples of 2π  proceeding around the circle in a counter-clockwise fashion. 

Record readings in this manner starting from zero to twice around the circle. Measure 

your s string lengths using the provided ruler of Figure 2. 

 

 

 
Figure 2. [Ruler: use inches to measure string] 
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Since you are approximating the various chosen s lengths, it might be helpful to note that 

1/8 of an inch is equal to 0.125 inches and thus 1/16 of an inch is approximately equal to 

0.063 inches. 

 

In addition to recording the chosen circumference s lengths, one needs to also record the 

w(s) and h(s) distances associated with each s length as pictured in Figure 1. Recall that 

w(s) represents the horizontal distance in the plane and h(s) represents the vertical 

distance in the plane used to locate the endpoint of an arbitrarily chosen length s along 

the circumference of your circle. It will be helpful to create a table of values in the format 

of Table 1. Keep in mind that you must denote the positive or negative direction of your 

recorded w(s) and h(s) segment lengths depending on which quadrant you are working in 

when recording values. It is suggested that you take ten to twelve measurements as you 

progress around the circumference of the circle. 

 

Table 1 

 

s  w(s) h(s) 

s1  w(s1) h(s1) 

s2  w(s2) h(s2) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

sn  w(sn) h(sn) 

 

1. Describe any patterns you notice in the relationship between s and w(s) and between s 

and h(s) respectively. 

 

 

2. Next, use the data recorded in Table 1 to construct two different graphs. The first graph 

should be a graph of w(s) values as a function of the associated s values, and the second 

graph should be of h(s) values as a function of the associated s values. The graphs of 

Figures 2 and 3 are provided for your use. Be sure to label and scale each graph. 
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Figure 2. 

 

 

 

 

 
Figure 3. 

 

3. Fully describe the pattern of each of the relationships now that you have graphed them. 

 

4. Can you find the value for s such that w(s) and h(s) are of equal value? 

 

5. Can you find the value for s such that w(s) is half that of s? Also, what is the value of 

h(s) at this point? 

 

 

Points for Discussion: 

 

(a) Choose four arbitrary ordered pairs (w(s), h(s)) from your list above and square each 

of w(s) and h(s). Then add the resulting values together. Take the average of your results 

simply to adjust for measurement errors. What does this average represent? 

 

 

(b) We are using a circle of radius 1 unit centered at the origin. What is the effect of using 

a circle of different radius centered at another point? 

 

 

(c) Given what you know circles and their properties, is there another way the parameter 

s could be named? 

 

 

(d) Is it possible to estimate the distance traveled along the circle in terms of the length of 

the circumference of the circle? 
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Challenge: 
 

(e) Perform the same exercise as you have just completed using an ellipse centered at the 

origin with major axis 2 units and minor axis 1 units. What observations can you make 

about these situations compared to the unit circle? 

 

 

(f) Perform the same exercise as you have just completed using the right branch of the 

ellipse 
2 2

1
16 4

x y
+ = . What observations can you make about these situations compared to 

the unit circle? 

 

 

(g) Perform the same exercise as you have just completed using the right branch of the 

hyperbola 2 2 1x y− = . What observations can you make about these situations compared 

to the unit circle? 
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Lesson 17: More Information Needed 

 

Based upon your experience with the last section, you might have a better idea as to how 

to approach Exploration 17.1. 

 

 

Exploration 17.1: Another Position–Time Relationship 

 

At 1:00 p.m., a ship is 10 miles due east of port. At 2:00 p.m., it has sailed to a point 

that is 20 miles east and 50 miles north of the position at 1:00 p.m. Assume that the 

ship continues to sail in this manner as it did from 1:00 p.m. to 2 p.m. 

 
A. Draw a picture or diagram to represent its voyage. 

 

B. Place on your drawing the position of the ship at 3:00 p.m. and at 5:00 p.m. 

 

C. How far north from the port will the ship be at 4:00 p.m.? 

 

D. How far east from the port will the ship be at 4:00 p.m.? 

 

E. Write a function that will give the ship’s position at any given time. 

 

 

 

As a result of completing Exploration 17.1, I hope that you realize that it is not to hard to 

create a function that describes the ship’s north position as a function of its east position. 

The challenge occurs when one tries to introduce the additional information parameter of 

time into the situation. By now, you all should have realized that, in the last few sections, 

we are focusing our attention on the concept of parametric equations. 

 

Previous to this Unit we have worked with equations such as 24 2 5y x x= + − , where the 

variables x and y are related in a direct way. However, as a result of the Explorations of 

this Unit thus far, it should be clear that another way to describe a curve in the plane is to 

describe the x and y coordinates of a point on a curve in terms of a third parameter or 

variable. This third parameter is usually denoted as t. Thus, a parallel set of equations 

used to describe a curve can be given as: 

 

( )

( )

x f t

y g t

=


=
, 

 

where f and g are functions of the parameter t. This parallel set is called the parametric 

equations of the curve. Note that parametric equations can be quite useful for modeling 

the interactions of vectors. We will encounter this application of parametrics in future 

sections. 
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Your instructor may wish to expand upon the examples this section and further relate 

some of these equations to trigonometric concepts that you have also studied in previous 

courses. Your discussion or consideration of these topics might also include techniques 

for switching between parametric and Rectangular representations of curves in the plane. 

In preparation for the next Exploration, a review of the Parametric Chain Rule from 

Calculus would also be in order. 
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Lesson 18: Applications Involving “More Information” 

 

 

Exploration 18.1: Applications 

 
 

A computer game company needs a clock to be integrated into a game scene. You have 
been hired to mathematically create a working clock with the shown radius (based on the 
second hand). The tip of the second hand’s distances x cm and y cm from the left side of 
the shown box and the bottom of the box, respectively, depend on the number of seconds, 
t, since the second hand was pointing straight up. The second hand on the clock must turn 
with a period of 60 seconds and turn, of course, in the clockwise direction. 
 
1. Create parametric equations for x and y in terms of t that satisfy the given conditions 
that the center of the clock is 25 cm from the left edge of the box and 26 cm above the 
bottom of the box with a radius of 17 cm. 
 
2. At what rates are x and y each changing when t = 10 sec? 
 
3. What is the slope of the circular path traced by the tip of the second hand when t = 10 
sec? 
 
4. Eliminate the parameter t and write the Rectangular equation of the circle that models 
the shape and location of the clock relative to the box. 
 

Parametric equations can be used to model more advanced situations such as 

projectile motion. 

 

5. Given  

2

0 0

1
( )

2
h t h v t gt= + −  

(h = height; v0 = initial velocity; g = gravity; t = time; h0 = initial height), use 

parametric equations to explore the change in distance horizontal x, or vertical y, or 

both over time t of a projectile fired from (0, 0) at an angle of 30
0
 with an initial 

velocity of 45 m/sec. 

 

6. Graph this situation to see if you, in fact, have the correct model. 
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Lesson 19: A Lab Involving Vectors 

 

As was previously noted, parametric equations are quite useful when working with 

situations involving vectors. Recall that a vector is a quantity that has both magnitude and 

direction. As you work with the lab of this section, think about the connection between 

vectors and parametric representations. 

 

 

Exploration 19.1: Vector Force Table Lab 

 

Purpose 

In this lab we explore Newton’s 1
st
 Law: ∑ = 0F

�

 at equilibrium and Newton’s 2
nd

 Law: 

F = ma using vector forces on a force table. For the first half of the experiment, 

equilibrium for three vectors will be investigated by resolving each force into its vector 

components. In the second part of the lab, vector addition will be explored by finding a 

resultant between two added vectors and verifying your result using a third vector. As 

you perform the lab, strive to visualize the connection between vector components and 

parametric equations. 

 

 

Method 
A force table system is used under specified conditions to simulate the addition and 

subtraction of vectors. The vectors are created by hanging various gram masses from 

strings that are draped over pulleys and connected to a moveable ring near the center of 

the force table. The ring, when suspended off the table and centered, represents 

equilibrium in the system. For our purposes we will ignore friction at the pulleys. 

 

Force Table System 

 

 
 

 

Procedure & Analysis—Part I 
1. Set up your vector table as shown above making sure that the middle ring is in 

equilibrium (i.e., the ring is not touching the center post on the vector table). Be sure to 

use various masses at each pulley to create your vectors at different angles. 

 

2. For each of the vector string forces, the magnitude of the force can be found by using  

F = ma where m is the mass of the gram masses measured in kilograms, and a is the 

acceleration due to gravity: 9.8 m/s
2
. Show your calculations for finding the magnitude of 
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each of the three vector forces 1 2 3, ,v v and v
� � �

. 

 

 

 
 

3. Using a protractor, draw your vectors precisely onto the coordinate system provided 

below. The angles of the vectors from the horizontal should be correctly shown and the 

magnitudes of the vectors should be proportionately represented. 

 

 

 

4. Now resolve all three vectors into x yF and F∑ ∑ . If you truly have equilibrium, 

what should each of these two sums equal? Show calculations to support your answer. 

 

 

 

 

Procedure & Analysis—Part II 
5. For this part of the lab you will use the same set of three vectors from Part I. 

 

a) Now resolve any two of the vectors into x yF and F∑ ∑  to find the resultant vector. 

Show your calculations. 

 

 

b) Once again, using a protractor, draw your vectors exactly onto the coordinate system 

provided below AND include your drawing of the resultant vector associated with the 

addition of the two vectors you chose to add in question a) above. 
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6. What should the relationship be between the resultant vector found in step 5 and the 

third vector in your system? Did you find the conjectured relationship to be true for your 

system? Support your answer. 

 

 

 

 

Conclusion 
7. Was there error present in your system? If so, what are some of the sources of error? 

 

 

8. What conclusions are you able to make concerning your results keeping in mind the 

“purpose” of the lab from above? 
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Lesson 20: The Golf Shot 

 

“The Golf Shot” activity is another Exploration application that will allow you to use and 

connect a few different concepts that have been covered thus far in the course. 

 

 

Exploration 20.1: Tiger’s Golf Shot 

 

 
 

 

 

Earlier today, at the Golf Classic Open, Tiger Weeds hit a chip shot from the rough that 

just skimmed the top of a 90-foot pine tree and went right into the hole, 220 feet away, 

for an eagle on the 12
th

 fairway. 

 

 

 

 

Max. height: 90 feet   Max. distance: 220 feet 

 

1. Use regression to find an equation for the path of the golf ball. 

 

2. Now use matrices to find the equation for the golf ball’s path. 

 

3. Write the equation for the golf ball’s path using the vertex form of the equation for a 

parabola. 
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3. What is the angle at which the golf ball takes off? 

 
 
 

4. In order to introduce the parameter of TIME t into this situation, first find the time it 

takes the ball to fall to the ground from its maximum height. Then find the ball’s speed 

when it hits the ground. 
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5. Last, use the diagram above and the information that you have found to write a 

parametric relation for the ball’s path that incorporates time and relates this parameter 

to the distance and height that the ball travels. 
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Lesson 21: A Non-Standard Exploration of the Polar Coordinate System 

 

It is assumed that you have had previous experience with the Polar Coordinate System. 

Your instructor may, however, wish to perform a quick review/refresher of the basics of 

the system at this point. The standard introduction to the Polar system usually involves a 

detailing of how one locates points in this system and then a jump to looking at classic 

polar relations involving trigonometric functions such as the Polar roses, cardioids, 

lemniscates, and circles. One then explores how to convert from Polar system to the 

Rectangular and back. 

 

The Exploration of this section explores the Polar system in a completely different 

manner that does not depend upon conversions or trigonometric functions. Rather, this 

Exploration uses comparison as the key tool for understanding the Polar system in 

relation to the Rectangular system. This is accomplished by looking at “similar” 

functions in each system. Estimation and comparison (or commonality) arguments are 

mostly used to lead to understanding of the objectives of the exploration. 

 

Keep in mind that the understanding of two basic concepts is needed to conduct the 

Exploration of this section. The first concept needed is a very basic understanding of 

vectors only in that one needs only to think of a vector as a directed line segment, which 

is a line segment to which a direction has been assigned. The second is an understanding 

of what a radian is. Recall that a radian is defined as an angle such that when its vertex is 

placed at the center of a circle, its sides intersect an arc whose length is equal to the 

radius. Thus there are 2π  radians along the circumference of a given circle. 

 

 

Exploration 20.1: Graphing Cartesian Functions in Polar Coordinates 

 
Doppler radar used on television to report weather conditions; radar screens used by air 

traffic controllers to monitor aircraft traffic at an airport; flight plans filed by private 

aircraft to indicate paths taken as they move from one point to another; sonar positioning 

techniques employed in submarines; distances and compass bearings for directions used 

by campers in wilderness areas—these are but a few examples of the occurrence of 

vectors and polar coordinates in everyday life. 

 

In this exploration we will use vectors to graph familiar equations in Cartesian 

coordinates and compare those to the equivalent graph in polar coordinates. We will use 

“(  ,  )” for Cartesian coordinates and “ , ” for polar coordinates. In Cartesian 

coordinates, a vector will represent the directed line segment from the point ( ),0x  to the 

point ( ), ( )x f x  while in polar coordinates, a vector will represent the directed line 

segment from the pole 0,0  to the point ( ),f θ θ . In the examples and exercises the 

domain of the functions will be limited to the set of nonnegative real numbers. We will 

explore both linear and quadratic expressions. 
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Exploration: 

 

Linear Expressions 

 
1. (Example for your consideration) We begin with a constant function y = c, where 

c > 0. 

 

 
 

Figure 1a. 

  

 

 In this example, the vectors in Cartesian coordinates easily translate to vectors of 

 fixed length bound at the origin with the tip of the vector lying on a circle of 

 radius c. 

 

 
 

Figure 1b. 
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2. One should have little difficulty in graphing y x= , and can use this to interpret 

what should take place with the graph of r θ=  for 0θ ≥ . Use the “vector 

approach” of the previous example as a guide to do this. 
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Quadratic Expressions: 

 

We next consider polar quadratic functions of the form: ( )( )r a bθ θ= − − , where 

0 a b< < ; ( )
2

r aθ= − , where 0a > ; and 2
r a bθ θ= + + , where ( ) 0r θ ≠  for all θ . 

 

3. Use the same vector approach to graph ( ) ( )2 3 2 1 2y x x x x= − + = − −  and the 

corresponding polar graph ( )( )1 2r θ θ= − − on the grids provided below (you 

may have to adjust your scale on each axis). The vertex of the parabolic graph is 

at 
3 1

,
2 4

 
− 

 
 with axis of symmetry at 

3

2
x = . For the polar graph, consider three 

rays corresponding to the values of 1θ =  rad, 
3

2
θ =  rad, and 2θ =  rad. 
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4. Consider a quadratic that has only one positive real root, 

( )
22 4 4 2y x x x= − + = − and the corresponding polar curve, 

( )
22 4 4 2r θ θ θ= − + = − . When constructing the polar graph there is one 

important ray to consider, the ray 2θ =  rad. Use the same vector approach to 

explore the connection between these graphs in the two systems. 
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5. Next consider the quadratic, 2 4 8y x x= − +  which has no real roots and is 

positive for all values of x. Perform the same systems exploration using the 

Cartesian and polar grids below. 
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Extension: 
 

6. Use what you learned previously about Rectangular-Polar graphing connections 

and the Cartesian graph provided in Figure 2 to create a “polar version” of the 

graph for 0 6θ≤ ≤ . 
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Figure 2. 
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Historical Note: 
 

While ancient Greek mathematicians such as Archimedes made references to functions of 

chord length that depended upon angles measured, it was a Persian geographer, Abu 

Rayhan Biruni, circa 1000, who is credited with developing an early foundation for a 

polar coordinate system. The polar coordinate system as known and used today, however, 

is credited as having been developed by Issac Newton circa 1671, and further refined and 

used by Jacob Bernoulli circa 1691. 
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Lesson 22: The Geometry of Complex Numbers 

 
As a warm-up for the Exploration of this section, your instructor should first 

conduct a short review of the field properties of the complex number system and have 

students try to come up with a way to visualize addition and subtraction of complex 

numbers in the coordinate plane. It will also be helpful to understand what is meant by 

the modulus of a complex number. The modulus or absolute value of z x yi= + is 

represented by the symbol z  and is defined as  

 
2 2

z x y= + . 

 

 

 

Exploration 22.1: The Geometry of Complex Numbers 

 
1. Now that you have reviewed the geometry of complex number addition and subtraction 

along with the modulus, a bi+ , of a complex number; try to provide geometric evidence 

of the triangle inequality for complex numbers: 

 

Theorem A: For any complex numbers w and z, .w z w z+ ≤ +  

 

 

 

2. Use Theorem A, above, to algebraically prove an extension of the triangle inequality 

for complex numbers, namely 

 

Theorem B: For any complex numbers w and z, .w z w z− ≥ −  

 

 

 

3. For any z = a + bi, we can define z = a – bi as the conjugate of z. 

 a. If w and z are complex numbers, show that
________

w z w z+ = +  

 b. If w and z are complex numbers, show that 
_______

w z w z⋅ = ⋅  

 

 c. Show that z z z= − =  for all complex numbers z. 

 

 d. Show that wz w z= ⋅  for all complex numbers w and z. 

 

 e. Write z z⋅  in terms of the modulus of z. 
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Definition: If w and z are complex numbers ( 0z ≠ ), then 
w

z
 is the complex number u 

such that w z u= ⋅ . 

 

 f. Find 
w

z
. [Leave your answer in terms of z and w and verify the result.] 

 

 

g. Multiply your answer above by z. Comment on why this makes sense with 

regard to the concept of “division.” 

 

 

 h. Prove that ,
w ww w

and that
z z z z

= =  
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Lesson 23: Complex Numbers in Polar Form and Euler Numbers 

 

Thus far in this course, among other topics, you have explored the Polar Coordinate 

System and complex number properties. In this section, we will combine concepts 

learned about each of these topics in order to explore complex numbers in polar form. 

 

A complex number z x yi= + can also be written in polar form 

 

(cos sin )z r iθ θ= +        

 

where r is equal to z  and θ is defined as the argument of z since 

 

cosx r θ=  and siny r θ= .   

 

The argument θ is found by using the fact that 

 

tan
y

x
θ = ,      

 

where the quadrant containing z must be considered when finding θ. 

 

Also note that cos siniθ θ+  can be written as i
e

θ by using Euler’s Formula 

 

cos sini
e i

θ θ θ= + *.    

 

Therefore, we have  
iz x yi re θ= + = ,   (23.1) 

 

where the latter form in equation (23.1) is called the exponential form or Euler Number. 

 

 

*As a side note notice that, if one works with the power series expansions of 

, cos , andsinxe x x , Euler’s Formula can be found by: 

 

Start with 

 
2 3 4

0

1 ...
2! 3! 4! !

k
x

k

x x x x
e x

k

∞

=

= + + + + + =∑                                 (1) 

 
3 5 7 9 2 1

0

( 1)
sin ...

3! 5! 7! 9! (2 1)!

k k

k

x x x x x
x x

k

+∞

=

−
= − + − + − =

+
∑  
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2 4 6 8 2

0

( 1)
cos 1 ...

2! 4! 6! 8! (2 )!

k k

k

x x x x x
x

k

∞

=

−
= − + − + − =∑  

 
Now replace x in (1) with ix where i is the imaginary number. Thus 

 
2 3 4 5 6 7 8

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ...

2! 3! 4! 5! 6! 7! 8!

ix ix ix ix ix ix ix ix
e ix= + + + + + + + + +  

 

        

2 3 4 5 6 7 8

1 ...
2! 3! 4! 5! 6! 7! 8!

x ix x ix x ix x
ix= + − − + + − − + +  

 

       
2 4 6 8 3 5 7

1 ... ...
2! 4! 6! 8! 3! 5! 7!

x x x x x x x
i x

   
= − + − + − + − + − +   
   

. 

 

Therefore 

cos sinix
e x i x= + . 

 

 

Using the information discussed to this point in the section, one is now ready to attempt 

Exploration 23.1 

 

 

Exploration 23.1: Complex Numbers in Polar Form 
 

A. Given two complex numbers in polar form 

1 1 1 1 2 2 2 2(cos sin ) (cos sin )z r i and z r iθ θ θ θ= + = + , 

1. Show that 1 2 1 2 1 2 1 2[cos( ) sin( )]z z r r iθ θ θ θ= + + + . 

2. Show that 1 1
1 2 1 2

2 2

[cos( ) sin( )]
z r

i
z r

θ θ θ θ= − + − . 

3. Use the result from question 1 to present an argument supporting DeMoivre’s 

Theorem, which states that if z is a complex number in polar form, then for any 

positive integer n 

 

(cos sin )n nz r n i nθ θ= + . 

 

B. Corollary to DeMoivre’s Theorem: For any z = r cisθ and n any positive integer, the 

n distinct nth roots of z are given by 
2n k

rcis
n

θ π+
 for k = 0, 1, 2, 3, …, n – 1. 

 

1.  Use the corollary above to find the five fifth roots of 1. Then graph these roots in the 

complex plane. 
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2. Use the theorem above to factor p(x) = x
3
 – 10, into linear factors with complex 

coefficients. 

 

 

 

 

 

 

EXTENSION: Use the previously discussed Euler Number cos sini
e i

θ θ θ= +  to derive 

some common trigonometric identities. 

1. Write 1 2i i
e e

θ θ⋅  two different ways in order to derive the sine and cosine angle 

addition identities. 

2. Now try to derive the sine and cosine angle subtraction identities by writing 
1

2

i

i

e

e

θ

θ
 two 

different ways. 
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Conclusion 

 
It is the authors’ sincere hope that the Explorations contained within this text have 

enticed you to think deeply about some of the mathematics you’ve encountered 

previously, about new ideas presented, and about the connections between the two. It is 

also our hope that the inquiry-based “open-forum” methodology used to deliver this 

course has broadened your perspective and encouraged you to consider using inquiry-

based teaching methods in your classrooms when you embark upon your professional 

careers as secondary mathematics instructors. 

 

Best wishes, 

 

The Authors 
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