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                                     Abstract 

 

   To further increase the speed of computation, this 

paper proposed to increase from binary to four-valued 

logic circuits. Four-valued logic circuits allow each 

wire to carry two bits at a time, each logic gate to 

operate two bits at a time, and each memory cell to 

record two bits at a time. The speed of communication 

between devices is also increased due to the increase in 

bandwidth of each wire. To make the base-four 

computations possible, this paper described the design 

and implementation of four-valued logic gates, memory 

cells, and flip-flops. To allow for future developments, 

the design of the memory cell and the flip-flop provided 

in this paper can be extended to be used for infinite-

valued or Fuzzy logic circuits, for fully exploiting 

many-valued logics and fuzzy paradigms in hardware.  

 

 

1. Introduction  

The performances of current computers are reaching 

their limits. Almost all computers of today are built 

based on two-valued logic. Using two-valued logic each 

wire can have two states. The performance of current 

computers depends on most part how quickly the states 

can be changed, which determines the clock speed. 

During the past decades, the clock speed for CPU had 

doubled almost every year. In recent years, the clock 

speed had doubled every 18 months. Now, it has 

become more and more difficult to increase the clock 

speed. The limit is approaching. Now, CPU 

manufacturers try to circumvent the limitation of speed 

by packing more and more “cores” into a chip, which 

resulted in dual-core or quad-core CPUs. However, this 

multi-core approach does not greatly improve the 

performances. This is due in part by the limit of the 

amount of data that can be transferred between the CPU 

and its connected components, which is determined by 

the number of pins on the CPU. Using two-value logic 

each pin on the CPU can have at most two states, and 

again the amount of data that can be transferred is 

determined by the clock speed. Thus, the multi-core 

approach does not circumvent the limitation. 

 

We need an innovative approach to push the speed 

limits. The author proposed that now is the time to 

depart from the two-valued logic to venture into multi-

valued logic and even into infinite-valued (Fuzzy) 

logic. With four-valued logic, for example, each wire 

or CPU pin can have four states, carrying two bits of 

data. This doubles the amount of data that can be 

transferred between the CPU and its connected 

components without increasing the number of pins on 

the CPU.  With eight-valued logic, each CPU pin now 

carries three bits of data, and thus triple the amount of 

data transferring between CPU and its connected 

devices. The extreme case will be the infinite-valued 

or Fuzzy logic. We are now pushing a different limit.  

 

We started in small steps by increasing from two to 

four values. We need four symbols {0, 1, 2, 3} to 

distinguish the four values, as shown in Table 1. The 

four values might represent the four bases {A, C, G, 

T} found in DNA. They might represent probability 

{0, 1/3, 2/3, 1}. The four values can be converted to 

binary numbers {00, 01, 10, 11}. And, they can simply 

represent integer {0, 1, 2, 3}.  We also started from the 

ground up by designing components needed for 

constructing four-valued logic circuits. Four-valued 

logic circuits allow each wire to carry two bits at a 

time, each logic gate to operate two bits at a time, and 

each memory cell to record two bits at a time. In this 

paper, we will focus on the design and implementation 

of four-valued logic gates, memory cells, and flip-

flops.  

 

To allow for future developments, the design of the 

memory cell and the flip-flop provided in this paper 

can be extended to be used for infinite-valued or 

Fuzzy logic circuits, for fully exploiting many-valued 

logics and fuzzy paradigms in hardware. 

 

Symbol DNA Probability Bits Integer 

0 A 0 00 0 

1 C 1/3 01 1 

2 G 2/3 10 2 

3 T 1 11 3 

Table 1: Four-Valued Variables 



 

The remaining of this paper is organized as follows. 

Section 2 outlined the related research and their 

limitations. Section 3 described our design of a four-

valued NOT gate, including the implementation and 

testing results. Section 4 showed a modified four-

valued AND gates. Section 5 showed a modified four-

valued OR gates. Section 6 presented our design of a D-

type many-valued and fuzzy flip-flop, including the 

simulation results. And, Section 7 gave the conclusion 

and outlined the future research.  

 

2. Related Research 

To exploit the base-four computations in hardware, 

we need the fundamental building blocks for four-

valued logic circuits: four-valued logic gates, memory 

cells, and flip-flops. However, even these essential 

logic gates and memory cells are not yet fully 

developed. Currently, many-valued and fuzzy systems 

[30, 31, 20, 14, 9, 18] are usually simulated or 

implemented by using a fuzzifier to convert the inputs, 

using a set of fuzzy rules for processing and inferring, 

and using a defuzzifier to convert the results to outputs. 

To go a step further, researchers are now researching on 

many-valued and fuzzy logic circuits that can fully 

implement fuzzy systems.  

 

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to 

adapt CMOS [28, 3] technologies to implement the 

many-valued and Fuzzy logic gates.  The design of the 

AND gate and the OR gate using CMOS technology 

was reported [5, 2, 1]. We tried to reproduce the results 

reported in [5. 2] but found that we needed to modify 

the circuits slightly to make them work (as shown in 

Section 4 and 5). Other researchers used analog circuits 

to implement the many-valued and fuzzy logic gates 

[29, 13, 24, 6]. However, these analog circuits were 

more difficult to be fabricated.  

 

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in [23, 10, 12, 19, 22, 17, 11, 26, 

16, 21]. Concept of fuzzy flip-flop was first mentioned 

by Hirota [23]. They used analog gates [15, 27, 8] for 

the design their JK-type flip-flop as discussed in [29]. 

Hirota [23] defined fuzzy JK flip-flop based on the 

binary JK flip-flop but using fuzzy operators. Their 

design was based on fuzzy operators such as t-norm, s-

norm, and fuzzy negation. Consider two fuzzy sets x 

and y in universe of discourse U, a S-norm operation 

[4] is defined as,  

)}],(),(max[)( uuu yxyx  
  Uu  

T-norm operation is defined as 

)}],(),(min[)( uuu yxyx     Uu  

Fuzzy negation is defined as follows: 

),(1)( uu xx
     Uu  

 

Based on the fuzzy operations, Hirota [23] defined 

set-type and reset-type fuzzy flip-flop. Reset-type 

fuzzy JK flip-flop has the following characteristic 

equation:  

     )(1)(1)1( tQKtQJtQR     

 

Characteristic equation for set-type JK fuzzy flip-flop 

is as follows 

      )(11)()1( tQKtQJtQS        

 

However, we found that the fuzzy memory cells or 

flip-flops reported previously, such as JK-type flip-

flop [23, 10, 12] and T-type flip-flop [26], have their 

limitations and cannot fully be used as general fuzzy 

memory cells. The flip-flops would not produce the 

correct results under certain input conditions.  

 

We found several unstable conditions for the set-

type and the reset-type JK fuzzy flip-flop defined 

above. Some such examples are provided in Table 2. 

While the initial stored value of Q is 0v and when 

given 4v for inputs J and K, the resulting Q will 

continuously toggling between 4v and 2v. Similar 

unstable conditions appears when initial stored value 

is 2v and given 4v for inputs J and K. Other unstable 

conditions was also observed, but not shown in the 

table, for values J=K=6, J=4 K=6, and J=6 K=4.  

 

Therefore, neither the set-type nor the reset-type 

alone can be used as a fuzzy flip-flop. Hirota [23] 

combined the characteristics of both set-type and 

reset-type fuzzy JK flip flop and introduced a 

fundamental equation for fuzzy JK flip flop. The 

characteristic equation for min-max type fuzzy JK flip 

flop is as follows: 

     )()()1( tQKtQJKJtQ    

 

However, above equation also produced unstable 

conditions such as some shown in Table 2. The 

Initial Q 

 

J K  

1 

Qf 

2 

 

3 

0 4 4 4 2 4 

2 4 4 4 2 4 

4 4 4 2 4 2 

6 4 4 2 4 2 

Table 2: One Unstable Condition for the Set-type or 

Reset-type JK Fuzzy Flip-flop 



researchers tried to eliminate the above unstable 

conditions by introducing a pair of complicated sample 

and hold circuits. The sample and hold circuits latch the 

output during each clock pulse, thus emulating the 

behavior of a flip-flop. However, these circuits were 

difficult to design and cumbersome to modify. Such 

circuits cannot easily be combined with other fuzzy 

circuits. 

 

Virant et al. [26] proposed a design of T-type fuzzy 

flip-flop. The researchers adapted a strategy similar to 

Hirota [23] in the design of the T fuzzy flip-flop. They 

introduced the following two equations for T fuzzy flip-

flop [26]: 

      )(1,min,)(,1minmax)1( tQTtQTtQ   

       )(1,1max,)(,maxmin)1( tQTtQTtQ   

 

However, the T fuzzy flip-flop has its own limitation. 

For example, it cannot be connected in such a way to 

produce a D-type fuzzy flip-flop.  

 

In this paper, we proposed a fuzzy memory cell that 

can also function as a D-type fuzzy flip-flop. Our fuzzy 

memory cell can store any value ranging from zero to 

one, such as the four-valued case {0, 1/3, 2/3, 1}. 

Furthermore, it was built entirely based on fuzzy logic 

gates.  

 

3. Our Design of a Four-valued NOT Gate  

We began from the ground up by considering four-

valued operations that take one input and produce one 

output. Let A be the four-valued input that takes the 

values {0, 1/3, 2/3, 1}, and let Y be the four-valued 

output. For any value of input A, there are four possible 

values of outputs. Thus, there are 4
4
 possible 

operations. An important operation is the NOT 

operation, which could be defined as: NOT(A) = 1 – A.  

 

We attempted to design a four-valued NOT gate 

using digital approach [7]. The design is shown in Fig. 

1. This design uses only digital NOT gate as building 

block. As shown in the figure, the digital NOT gates 

are supplied by different value of voltages. In this 

design, we use (0v, 2v, 4v, 6v) to represent the logic 

values (0, 1/3, 2/3, 1). During our design, we tried 

many different combinations and so far, the 

combination of voltage in the figure produced the best 

result in the case that we limited the maximum voltage 

to be 6v. During our testing, we found that a diode (as 

shown in the Fig. 1) was needed to prevent reverse 

current.  

 

Fig. 2(a) shows the result of one of our tests. The 

gate begins to behave like a four-valued NOT gate 

after the input voltage rising to 2.5v. This is due to the 

threshold voltage required to switch the transistors. If 

we allowed the supply voltage to reach maximum 12v 

and scaled the supply voltages to each digital NOT 

gate accordingly, we were able to get better results as 

shown in Fig. 2 (b).  

 

Although this digital approach is easier to be 

implemented in microchip technology, it requires 

several supply voltages.  

 
 

4. A Modified Four-valued AND gate 

We now consider four-valued operations that take 

two inputs and produce one input. Let the inputs be A, 

B, each of which takes four values, and let Y be the 

four-valued output. With two four-valued inputs, there 

are 16 possible combinations of input values, and for 

each of these combinations there are 4 possible 

outputs. Thus, there are 4
16

 possible operations. Two 

 
Fig. 1. Our Design of Four-valued NOT gate  

 
(a) max voltage 6v  (b) max voltage 12v 

Fig. 2. Test results of Four-valued NOT gate 

 
Fig. 3. A Four-valued AND gate 



important operations are the AND operation and the OR 

operation. In this section, we show a design of a four-

valued AND gates while the design of the OR gate is 

shown in the next section.  

 

The four-valued AND operation could be defined as: 

AND(A, B) = min(A, B). For example, given A = 0, 

and B = 2/3, AND(A, B) = 0.  Fig. 3 shows the circuit 

of a modified four-valued AND gate, which was based 

on the design provided in [5, 2]. When we tried to 

implement the design reported in [5] using discrete 

components, such as microchip 74HC04 and 74HC00, 

we encountered small problem and needed to introduce 

a diode as shown in Fig. 3. The diode blocks reverse 

current from the output, without which wrong results 

are produced. This modification may reflect the special 

needs in the use of discrete components and does not 

necessary imply any fault in the design.  

 

One test result of the AND gate is shown in Fig. 4(a). 

In this test, one of the input to the AND gate is held at 

4v, while the other input allows to vary from 0 to 6v. 

The output is shown in the figure. Fig. 4(b) shows 

another test care where one of the inputs is held at 6v 

and the other input is allowed to vary from 0 to 6v. 

These test results does not fully matched the ideal 

behavior. For example, the ideal case for the output in 

Fig. 3 should be prefect steps. Nevertheless, these 

results showed the AND gate behaves like a four-

valued logic gate having min function.   

 

5. A Modified Four-valued OR gate 

The four-valued OR operation could be defined as: 

OR(A, B) = Max(A, B). For example, given A = 0, and 

B = 2/3, OR(A, B) = 2/3. Fig. 5 shows the circuit of a 

modified four-valued OR gate, which is based on the 

design provided in [5, 2]. The modification is similar 

to that of the AND gate by introducing one diode to 

prevent the reverse current. Fig. 6 show some test 

results. Fig. 6(a) shows the results of a test care where 

one input is held at 2v and the other input is allowed to 

vary from 0 to 6v. Fig. 6(b) shows the results of 

another test care where one input is held at 6v and the 

other input is allowed to vary from 0 to 6v. Despite 

some imperfections, the results show the OR gate 

behaves like many-valued OR gate having max 

function.  

 

6. Our Design of a D-type Fuzzy Flip-flop 

In this section, we present our design of a D-type 

fuzzy flip-flop or fuzzy memory cell [7]. Our design is 

based on an extension of the idea of binary D flip-flop. 

Excitation table for binary D flip flop is shown in 

Table 3. The next state Q(t+1) of a D fuzzy flip-flop is 

characterized as a function of both the present state 

Q(t) and the input state D. Min term expression for 

Q(t+1) is  

)()()1( tQDtDQtQ        

Above equation is also referred to as the 

characteristic equation of the D Flip-flop. A mutually 

equivalent equation can be derived from Table 3 

consisting of max terms  

   )()()1( tQDtQDtQ    

Above two equations can be transformed to fuzzy 

domain by replacing the binary operators by fuzzy 

operators. They can be redefined using min-max type 

operation and fuzzy negation as follows: 

    DtQDtQtQ  )()(1)1(   

    DtQDtQtQ  )()(1)1(   

In which the   represents min operation and   

represents max operation. These two equations, 

however, do not completely transform D flip-flop to 

 
Table 3. Excitation Table for Binary D flip-flop.  

Fig. 5.  A Four-valued OR gate 

 
(a) One input held at 2v  (b) One input held at 6v 

Fig. 6.  Test results of the modified OR gate  

 
(a) One input held at 4v   (b) One input held at 6v 

Fig. 4.  Test Results of the Four-valued AND gate  



the fuzzy domain. Hence, we proposed an equation that 

has the characteristics of both the equations and also 

exhibits an analogy with the binary counterpart, as 

follows: 

      DtQtQDDtQ  )(1)()1(   

 

This equation has led to realization of the circuit of 

D-type fuzzy flip-flop. The design of the new D fuzzy 

flip-flop is shown in Fig. 7, in which the gates are fuzzy 

logic AND, OR, and NOT gates. This D-type fuzzy 

flip-flop can be used as a fuzzy memory cell.  

 

Working of the D-type fuzzy flip-flop (shown in Fig. 

7) can be understood by initially considering binary 

values 0 or 1. If the value of the input D is set at either 

0 or 1 regardless the initial value of Q at time t, Q will 

be set to the value of D. Any value ranging from 0 to 1 

also produce the required results. To get an initial idea 

of the behavior of the D fuzzy flip-flop, we simulated 

our design using MATLAB and Simulink [25]. Fig. 8 

shows the setup of the simulation and the results are 

shown in Fig. 9. The results show that the D fuzzy flip-

flop is simply storing whatever value provided on the 

input D. It is simply a fuzzy memory cell.  

 

We extended the fuzzy memory cell to clocked D 

fuzzy flip-flop. Fig. 10 shows our design of the fuzzy 

flip-flop. This clocked D fuzzy flip-flop can be used in 

the design of sequential fuzzy circuits.  

 

7. Conclusion and Future Research 

The author proposed that now is the time to depart 

from the two-valued logic to venture into multi-valued 

logic and even into infinite-valued or Fuzzy logic. 

However, even the essential logic gates and memory 

cells for many-valued and Fuzzy logic circuits are not 

yet fully developed. This paper focused on the 

development of four-valued logic gates, memory cells, 

and flip-flops for exploiting the base-four 

computations in hardware.  

 

This paper presented the design of the first D-type 

fuzzy flip-flop that can also be used as a fuzzy 

memory cell. It also presented the circuit of a clocked 

D-type fuzzy flip-flop that can be used in the design of 

sequential fuzzy circuits. The D-type fuzzy flip-flop is 

a truly fuzzy component that allows any logical value 

arranging from 0 to 1 to be stored. The fuzzy flip-flop 

is designed entire in the fuzzy domain using fuzzy 

AND gate, fuzzy OR gate, and fuzzy NOT gate. Thus, 

the realization of the flip-flop depends on the 

realization of the fuzzy logic gates. We then 

investigated the hardware realization of the fuzzy logic 

gates. In here, we concentrated on digital approach, 

which resulted in many-valued logic gates. We slightly 

modified existent designs of the four-valued AND gate 

and OR gate in an attempt to test them using discrete 

components. We then proposed a design of four-

valued NOT gate. However, using off-the-shelf 

 
Fig. 7.  A New D-type Fuzzy Flip-Flop 

 
Fig. 10.   Clocked D-type Fuzzy Flip-Flop 

 
(a) Input D 

 
(b) Output Q 

Fig. 9. Simulated Result of D fuzzy flip-flop 

 
Fig. 8. Simulation Setup of D fuzzy flip-flop 

using Simulink 



discrete components, the test results do not produce 

ideal outputs.  

 

Future research may focus on the improvement on 

the realization of many-valued and fuzzy logic gates. 

The next stage for future research will be to use these 

many-valued and fuzzy logic gates and flip-flops to 

design large-scale circuits for fully exploiting many-

valued logics and fuzzy paradigms in hardware.  
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