
Realizing Many-valued Logic for Computation 
 

Ben Choi, Rong Zheng, Kankana Shukla 

Computer Science 

Louisiana Tech University, USA 
pro@BenChoi.org 

 

 

Abstract— This paper proposes to use many-valued logic 

as new potentials for improving computation speeds. To 

facilitate the use of many-valued logic for computation, 

this paper describes a simple four-step process for 

designing many-valued circuits to implement any many-

valued functions. The aim is to design and implement 

digital circuits entirely within the domain of many-valued 

logic. In a four-valued logic circuit, each wire carries two 

bits at a time, each logic gate operates two bits at once, and 

each memory cell records two bits at one time. To be able 

to implement four-valued logic circuits in hardware, this 

paper also contributes new CMOS designs of all the 

necessary logic gates, including disjoint unary gates, n-

input AND gates, and n-input OR gates. The many-valued 

circuit design methodology and the many-valued logic 

gates provide the necessary and sufficient tools and 

components for exploiting the many-valued computational 

paradigm.  

 

Index Terms— Many-valued Logic, Fuzzy Control, Circuit 

Design, CMOS Design, Fuzzy System 

I. INTRODUCTION 

The performances of current computers are reaching 

their limits. Almost all present day computers are built 

based on two-valued logic. In two-valued logic, each 

wire can have two states. The performance of current 

computer depends mostly on how quickly the states can 

be changed, which determines the clock speed. During 

the past decades, the clock speed for CPU had doubled 

almost every year. In recent years, the clock speed 

doubled every 18 months. Now, it has become 

progressively difficult to increase the clock speed. The 

limit is approaching. Recently, CPU manufacturers are 

trying to circumvent the limitation of clock speed by 

packing more and more “cores” into a chip, which has 

resulted in dual-core or quad-core CPUs. However, this 

multi-core approach does not greatly improve the 

performance. This is due in part by the limit of the 

amount of data that can be transferred between the CPU 

and its connected components, which is determined by 

the number of pins on the CPU. Using two-value logic 

each pin on the CPU can have at most two states, and 

again the amount of data that can be transferred is 

determined by the clock speed. Thus, the multi-core 

approach does not circumvent the limitation. 

Thus, there is a need for an innovative approach in 

order to push the speed limit of computing. Now is the 

time to depart from the two-valued logic to venture into 

many-valued logic and even into infinite-valued (Fuzzy) 

logic. Advancing from two-valued to four-valued logic 

provides an progressive approach [1]. Four symbols {0, 

1, 2, 3} are needed to distinguish the four values, as 

shown in Table 1. The four values might represent 

anything, for example, the four bases {A, T, C, G} found 

in DNA, or probability {0, 1/3, 2/3, 1}. These four 

values can be converted to binary numbers {00, 01, 10, 

11}, or they can simply represent integers {0, 1, 2, 3}.  

It is also possible to start from the ground up by 

designing components needed for constructing four-

valued logic circuits. Each four-valued logic gates will 

operate two bits of data at a time, and each memory cell 

will record two bits at once. Now, each wire or CPU pin 

can have four states, which could double the amount of 

data that can be transferred between the CPU and its 

connected components without increasing the number 

of pins on the CPU. With eight-valued logic, each logic 

gate operates three bits of data and CPU pin carries three 

bits of data. The extreme case will be the infinite-valued 

or Fuzzy logic. Now, a different limit is being pushed. 

The approach for using many-valued logic is in fact 

currently being employed in building higher capacity 

flash memory. The industry is pushing to allow each 

memory cell to store not just one bit, but two bits, three 

bits, and even four bits [2][3][4]. Now, we are proposing 

to push these limits not just in memory technologies, but 

also in computation.  

To make the many-valued computation possible, this 

paper provides the necessary and sufficient tools and 

components for designing many-valued systems entirely 

within the domain of many-valued logic. We describe a 

simple four-step process for designing many-valued 

circuits to implement any many-valued functions. The 

design of a four-valued adder is provided as an example. 

By following the simple four-step process, it becomes 

very convenient to design many-valued circuits to 

implement any many-valued functions. We also provide 

new CMOS designs for many-valued disjoint unary 

gates, n-input AND gates, and n-input OR gates, for 

fully exploiting many-valued logic and fuzzy paradigm 

in hardware.  

The remaining of this paper is organized as follows. 

Section II outlines the related research and their 

limitations. Section III describes using Post Algebra as 

Table 1: Representations for a Four-valued Variable 

 

Symbol DNA Probability Bits Integer 

0 A 0 00 0 

1 T 1/3 01 1 

2 C 2/3 10 2 

3 G 1 11 3 

 



the mathematical foundation that facilitates the design 

process of many-valued circuits. Section IV outlines our 

simple four-step process for designing many-valued 

circuits to implement any many-valued functions. 

Section V shows our CMOS designs and 

implementations of the necessary and sufficient many-

valued logic gates, which serve as the building blocks 

for implementing the designed many-valued circuits in 

hardware. Section VI gives the conclusion and outlines 

the future research.  

II. RELATED RESEARCH 

To exploit the many-valued computation in hardware, 

we need the fundamental building blocks for many-

valued logic circuits: many-valued logic gates, memory 

cells, and flip-flops. However, even these essential logic 

gates and memory cells are not yet fully developed. 

Currently, many-valued and fuzzy systems 

[5],[6],[7],[8],[9],[10],[11] are usually simulated or 

implemented by using a fuzzifier to convert the inputs, 

using a set of fuzzy rules for processing and inferring, 

and using a defuzzifier to convert the results to outputs. 

To go a step further, researchers are now researching on 

many-valued and fuzzy logic circuits that can fully 

implement fuzzy systems.  

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to 

adapt CMOS [12],[13] technologies to implement the 

many-valued and Fuzzy logic gates. The design of the 

AND gate and the OR gate using CMOS technology was 

reported [1],[14],[15],[16]. Other technologies, 

including carbon nanotube and single electron 

transistors, have been attempted to build many-valued 

logic circuits [17][18][19]. Other researchers used 

analog circuits to implement the many-valued and fuzzy 

logic gates [20],[21],[22]. However, these analog 

circuits were more difficult to be fabricated.  

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in [11],[23],[24],[25],[26],[27], 

[28],[29],[30],[31]. Concept of fuzzy flip-flop was first 

mentioned by Hirota [23]. They used analog gates [32], 

[33],[34] for the design their JK-type flip-flop as 

discussed in [19]. Hirota [23] defined fuzzy JK flip-flop 

based on the binary JK flip-flop but using fuzzy 

operators. Their design was based on fuzzy operators 

such as t-norm, s-norm, and fuzzy negation [35]. Virant 

et al. [29] proposed a design of T-type fuzzy flip-flop. 

The researchers adapted a strategy similar to Hirota [23] 

in the design of the T fuzzy flip-flop. However, we 

found that the fuzzy memory cells or flip-flops reported 

previously, such as JK-type flip-flop [23][24][25] and 

T-type flip-flop [29], have their limitations and cannot 

fully be used as general fuzzy memory cells. The flip-

flops would not produce the correct results under certain 

input conditions [37].  

In this paper, we focused on the design methodologies 

of many-valued combinatorial circuits that does not 

require memory cells while that of many-valued 

sequential circuits (that require memory cells) will be 

reported elsewhere.  

III. USING POST ALGEBRA AS FOUNDATION FOR 

MANY-VALUED CIRCUIT DESIGN 

This section describes the mathematical foundation of 

many-valued logic that facilitates the design process of 

many-valued circuits. While Boolean algebra provides 

the mathematical foundation for designing two-valued 

digital circuits, Post algebra provides the mathematical 

foundation for designing many-valued circuits. We 

choose the disjoint system of Post algebras of order n ≥ 

2 for the reason that the disjoint system facilitates simple 

design processes (described in Section IV). The 

postulates for a disjoint system of Post algebras is 

provided in the following table (based on [36]).  

Table 3 defines a disjoin system of Post algebras of 

order n ≥ 2. Where, the A, B, and C are n-valued 

variables. The ei for 0 ≤ i ≤ n-1 are n constants. The Ci(x) 

for 0 ≤ i ≤ n-1 are n disjoint unary operations. The • is 

the binary operation that represents AND, while the + is 

the binary operation that represents OR.  

Boolean algebras are Post algebras of order 2 as 

highlighted in Table 4. There are two constants: e0 

denoted by 0, and e1 denoted by 1. The Boolean NOT(A) 

Table 3. Postulates for disjoint system of  

Post algebras of order n ≥ 2 

 

P1 A·B = B·A A+B = B+A 

(A·B)·C = A·(B·C) (A+B)+C = 

A+(B+C) 

A·A = A A+A = A 

(A+B)·A = A (A·B)+A = A 

A·(B+C) = (A·B)+(A·C) 

P2 en-1·A = A e0+A = A 

ei ·ei+1 = ei  for 0<i<n-2  

P3 Ci(A)·Cj(A) = e0 

for i ≠ j,   0 ≤ i, j ≤ n-1 

C0(A)+C1(A)+…+ 

Cn-2(A)+Cn-1(A) = 

en-1 

P4 Ci(A·B) = 

Ci(A)·[Ci(B)+Ci+1(B)+

…+Cn-1(B)] + 

Ci(B)·[Ci(A)+Ci+1(A)+

…+Cn-1(A)] 

for i = 0,1,…,n-1 

Cn-1(A+B) =  

Cn-1(A)+Cn-1(B) 

P5 Ci(ej) = e0   for i ≠ j,   0 ≤ i, j ≤ n-1 

Cn-1(e0) = e0 

Cn-1(en-2) = e0 

P6 e1·C1(A)+e2·C2(A)+…+en-1·Cn-1(A) = A 

 

 

Table 4. Boolean algebras are  

Post algebras of order 2 

 

 Input Output 

  NOT(A) = A = 

 A C0(A) C1(A) 

F = e0 0 1 0 

T = e1 1 0 1 

 



= C0(A), while C1(A) = A. The • is equivalent to the 

Boolean AND operation, while the + is equivalent to the 

Boolean OR operation. 

In the following, we choose, as an example, the 

disjoint system of Post algebras of order n = 4, and 

called the system a four-valued logic. As outlined in the 

following table, we use A as a 4-valued variable. The 4 

constants are denoted by 0, 1, 2, 3, are the 4 disjoint 

unary operations C0(A), C1(A), C2(A), and C3(A) are 

defined as shown in Table 5.  

The 4-valued AND, OR operations are defined as 

shown in Table 6, where the AND operation produce as 

output the minimum of (A, B), while the OR operation 

produce as output the Maximum of (A, B).  

 

IV. SIMPLE FOUR-STEP PROCESS FOR DESIGNING 

MULTI-VALUED CIRCUITS 

Based on the disjoint system of Post algebras of order 

n ≥ 2 defined in Section III, we outline a simple four-

step process for designing many-valued circuits to 

implement any many-valued functions [38]. The four 

steps are: (0) Creating a truth table to define the 

function; (1) Connecting each input x to n Ci(x) gates; 

(2) Creating an AND gate for each output instance 

having a value > 0; and (3) Connecting the outputs of all 

the AND gates to an OR gate, which produces the 

outputs of the required function. These 4 steps are 

described in more details in the following sections. By 

following this simple four-step process, implementation 

of any many-valued function becomes feasible.  

 

Step 0. Truth Table: Creating a truth table to define the 

many-valued functions 

 

As an example, we choose to design an adder that 

adds two 4-valued numbers A, B. We create a truth table 

to define the required functions.  

As shown in Table 7, all possible input combinations 

are shown in column A and B. The results of the addition 

is encoded by two outputs K and S, where K stands for 

carry and S stands for sum, and the total value is 4K+S. 

The column K defines the function required to produce 

K as output, and the column S defines the function 

required to produce S as output.  

 

Step 1. Ci(x) gates: Connecting each input x to n Ci(x) 

gates for 0 ≤ i ≤ n-1   

 

Continuing the above example of designing an adder, 

the adder have two inputs, A and B. Now, we connect 

input A to 4 Ci(A) gates:  

C0(A), C1(A), C2(A), C3(A) 

Similarly, we connect input B to 4 Ci(B) gates:  

C0(B), C1(B), C2(B), C3(B) 

The results of these connection is shown in Figure 1.  

 

Step 2. AND gates: Creating an AND gate for each 

output instance having a value > 0  

 

For each input instance A0,A1,…Am-1 = x0,x1,…xm-1 

that produce an output e > 0, create an AND gate 

connecting:  

 

Table 6. Four-valued AND (min), OR (Max) 

 

Input Output 

  AND(A,B) OR(A,B) 

A B A·B A+B 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

1 0 0 1 

1 1 1 1 

1 2 1 2 

1 3 1 3 

2 0 0 2 

2 1 1 2 

2 2 2 2 

2 3 2 3 

3 0 0 3 

3 1 1 3 

3 2 2 3 

3 3 3 3 

 

 

Table 5. Post algebras of order 4  

(Four-valued logic) 

 

 Input Output 

 A C0(A) C1(A) C2(A) C3(A) 

F=e0 0 3 0 0 0 

e1 1 0 3 0 0 

e2 2 0 0 3 0 

T=e3 3 0 0 0 3 

 

Table 7. Truth table defining a  

four-valued adder 

 

Input Output 

  41x 40x 

A B K S 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

1 0 0 1 

1 1 0 2 

1 2 0 3 

1 3 1 0 

2 0 0 2 

2 1 0 3 

2 2 1 0 

2 3 1 1 

3 0 0 3 

3 1 1 0 

3 2 1 1 

3 3 1 2 

 

 



Cx0(A0)·Cx1(A1)·…· Cxm-1(Am-1)·e  

 

For e = en-1, there is no need to connect the AND gate to 

e, which is the results of simplification based on the 

postulate P1 that is en-1·A = A.  

Continuing the example of designing an adder, for the 

function that produce S as output (in the S column of the 

truth table), there are 9 instances that produce output e 

> 0. For example, referring to the truth table, when 

inputs A=0, B=1, the output S=1, in this case we create 

an AND gate connecting: C0(A)·C1(B)·1, in which since 

A=0 so the AND gate connects to the output of C0(A) 

gate (from Step 1), since B=1 so the AND gate connects 

to the output of C1(B) gate (from Step 1), and since S=1 

so the AND gate connects to 1. When inputs A=0, B=2, 

the output S=2, in this case we create an AND gate 

connecting: C0(A)·C2(B)·2, in which since A=0 so the 

AND gate connects to the output of C0(A) gate, since 

B=2 so the AND gate connects to the output of C2(B) 

gate, and since S=2 so the AND gate connects to 2. And, 

when inputs A=0, B=3, the output S=3, in this case we 

create an AND gate connecting: C0(A)·C3(B)·3, which 

is simplified to C0(A)·C3(B). We create 9 AND gates for 

the 9 instances as shown in the below and the 

connections are shown in Figure 1.  

C0(A)·C1(B)·1,  C0(A)·C2(B)·2,  C0(A)·C3(B),  

C1(A)·C0(B)·1,  C1(A)·C1(B)·2,  C1(A)·C2(B),  

C2(A)·C0(B)·2,  C2(A)·C1(B),  C2(A)·C3(B)·1, 

C3(A)·C0(B),  C3(A)·C2(B)·1,  C3(A)·C3(B)·2 

 

Similarly, for the function that produce K as output 

(in the K column of the truth table), there are 6 instances 

that produce output e > 0. We create 6 AND gates as 

shown in the below and the connections are shown in 

Figure 1.  

C1(A)·C3(B)·1,  C2(A)·C2(B)·1,  C2(A)·C3(B)·1,  

C3(A)·C1(B)·1,  C3(A)·C2(B)·1,  C3(A)·C3(B)·1  

  

Step 3: OR gate: Connecting the outputs of all the AND 

gates to an OR gate, which produces the outputs of the 

required function.  

 

Finishing the example of designing an adder, for the 

function that produce S as output (in the S column of the 

truth table), we connect the outputs of all the 9 AND 

gates (from Step 2) to an OR gate, as defined below: 

 

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) +  

      C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) +  

      C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 + 

      C3(A)·C0(B) +  C3(A)·C2(B)·1 +  C3(A)·C3(B)·2 

 

Similarly, for the function that produce K as output 

(in the K column of the truth table), we connect the 

outputs of all the 6 AND gates (from Step 2) to an OR 

gate, as defined below: 

 

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 + 

       C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1  

 

The results all the connections are shown in Figure 1, 

which is the four-valued circuit that implements the 

four-valued addition of two four-valued numbers.  

V. DESIGNING MULTI-VALUED LOGIC GATES 

In order to realize the design of many-valued logic 

circuits in hardware, we need to design and implement 

the necessary components. Based on the design process 

described in the last section, we need six four-valued 

logic gates to implement any four-valued logic circuits. 

These gates are C0, C1, C2, and C3 gates (as defined in 

Table 5) and the AND gate and the OR gate (as defined 

in Table 6). Our design and implementation of these 

necessary and sufficient gates are provided in the 

following.  
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Figure. 1. Four-valued Adder Circuit 



Our designs of the six necessary four-valued logic 

gates use CMOS technologies for ready implementation 

in IC chips. Four logic values 0, 1, 2, and 3 are 

represented physically by 0V, 2V, 4V, and 6V 

respectively. There are only 2V between two values and 

thus the circuits are more subjective to noise. These 

voltages may be increased if noise causes problems. 

Figure 2 shows our designs of C0, C1, C2, and C3 gates 

and Figure 3 shows the test results, which verified that 

the designs meet the functions defined in Table 5. Figure 

4 shows our design of n-input four-valued AND gate 

and Figure 5 shows the test results of a 2-input AND 

gate, which verified that the design meets the function 

defined in Table 6. Figure 6 shows our design of n-input 

four-valued OR gate and Figure 7 shows the test results 

a 2-input OR gate, which verified that the design meets 

the function defined in Table 6, as well.  

After each of the logic gates has been designed and 

tested, we then use the logic gates for building circuits. 

One of our test circuits is the four-valued adder circuit 

(Figure 1). We implemented the adder circuit using our 

gates and tested the function. The test results (Figure 8) 

verified that the adder circuit functions as defined in 

Table 7. The glitches in the output S (SUM) and the 

output K (CARRY_OUT) are results of delays in the 

circuits. After it stables down, the results matched the 

required output and the circuit function as required. To 

further test the circuits, we then designed and built a 

circuit to add three four-valued numbers by using two of 

the adder circuits. The test results verified that we can 

combine circuits to build larger many-valued circuits.  
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C2 gate 

 

 
C3 gate 

 

Figure. 2. Designs of C0, C1, C2, and C3 gates 
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Figure. 3. Test results of C0, C1, C2, and C3 gates 

(the top graphs are inputs and the bottom ones are 

the outputs) 
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Figure. 4. Design of n-input four-valued AND gate 

 

 



VI. CONCLUSION AND FUTURE RESEARCH 

Now is the time to depart from the two-valued logic 

to venture into many-valued logic and even into infinite-

valued or Fuzzy logic. To make many-valued 

computation possible, this paper provides the necessary 

tools for designing many-valued systems entirely within 

the domain of many-valued logic. We describe a simple 

four-step process for feasible design of many-valued 

circuits to implement any many-valued function.  

We also provided CMOS designs of many-valued 

logic gates, including the Disjoin (Ci(x)) gates, n-input 

AND gates, and n-input OR gates. Thus, it would be 

feasible to implement the designed many-valued circuits 

in integrated circuits (IC chips).  

Using the simple four-step process to design many-

valued circuits do not necessary provide the most 

simplified circuits. In most case, the circuits can further 

be simplified, which can be done by algebraic 

manipulation based on the postulates for the disjoint 

system of Post algebras provided in Section III.  

The next stage for future research will be to use the 

many-valued circuit design methodology and memory 

cells [38] to design large-scale circuits for fully 

exploiting many-valued logics and fuzzy paradigms in 

hardware.  
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