
Realizing Many-valued Logic for Computation

Ben Choi, Rong Zheng, Kankana Shukla

Computer Science

Louisiana Tech University, USA
pro@BenChoi.org

Abstract— This paper proposes to use many-valued logic

as new potentials for improving computation speeds. To

facilitate the use of many-valued logic for computation,

this paper describes a simple four-step process for

designing many-valued circuits to implement any many-

valued functions. The aim is to design and implement

digital circuits entirely within the domain of many-valued

logic. In a four-valued logic circuit, each wire carries two

bits at a time, each logic gate operates two bits at once, and

each memory cell records two bits at one time. To be able

to implement four-valued logic circuits in hardware, this

paper also contributes new CMOS designs of all the

necessary logic gates, including disjoint unary gates, n-

input AND gates, and n-input OR gates. The many-valued

circuit design methodology and the many-valued logic

gates provide the necessary and sufficient tools and

components for exploiting the many-valued computational

paradigm.

Index Terms— Many-valued Logic, Fuzzy Control, Circuit

Design, CMOS Design, Fuzzy System

I. INTRODUCTION

The performances of current computers are reaching

their limits. Almost all present day computers are built

based on two-valued logic. In two-valued logic, each

wire can have two states. The performance of current

computer depends mostly on how quickly the states can

be changed, which determines the clock speed. During

the past decades, the clock speed for CPU had doubled

almost every year. In recent years, the clock speed

doubled every 18 months. Now, it has become

progressively difficult to increase the clock speed. The

limit is approaching. Recently, CPU manufacturers are

trying to circumvent the limitation of clock speed by

packing more and more “cores” into a chip, which has

resulted in dual-core or quad-core CPUs. However, this

multi-core approach does not greatly improve the

performance. This is due in part by the limit of the

amount of data that can be transferred between the CPU

and its connected components, which is determined by

the number of pins on the CPU. Using two-value logic

each pin on the CPU can have at most two states, and

again the amount of data that can be transferred is

determined by the clock speed. Thus, the multi-core

approach does not circumvent the limitation.

Thus, there is a need for an innovative approach in

order to push the speed limit of computing. Now is the

time to depart from the two-valued logic to venture into

many-valued logic and even into infinite-valued (Fuzzy)

logic. Advancing from two-valued to four-valued logic

provides an progressive approach [1]. Four symbols {0,

1, 2, 3} are needed to distinguish the four values, as

shown in Table 1. The four values might represent

anything, for example, the four bases {A, T, C, G} found

in DNA, or probability {0, 1/3, 2/3, 1}. These four

values can be converted to binary numbers {00, 01, 10,

11}, or they can simply represent integers {0, 1, 2, 3}.

It is also possible to start from the ground up by

designing components needed for constructing four-

valued logic circuits. Each four-valued logic gates will

operate two bits of data at a time, and each memory cell

will record two bits at once. Now, each wire or CPU pin

can have four states, which could double the amount of

data that can be transferred between the CPU and its

connected components without increasing the number

of pins on the CPU. With eight-valued logic, each logic

gate operates three bits of data and CPU pin carries three

bits of data. The extreme case will be the infinite-valued

or Fuzzy logic. Now, a different limit is being pushed.

The approach for using many-valued logic is in fact

currently being employed in building higher capacity

flash memory. The industry is pushing to allow each

memory cell to store not just one bit, but two bits, three

bits, and even four bits [2][3][4]. Now, we are proposing

to push these limits not just in memory technologies, but

also in computation.

To make the many-valued computation possible, this

paper provides the necessary and sufficient tools and

components for designing many-valued systems entirely

within the domain of many-valued logic. We describe a

simple four-step process for designing many-valued

circuits to implement any many-valued functions. The

design of a four-valued adder is provided as an example.

By following the simple four-step process, it becomes

very convenient to design many-valued circuits to

implement any many-valued functions. We also provide

new CMOS designs for many-valued disjoint unary

gates, n-input AND gates, and n-input OR gates, for

fully exploiting many-valued logic and fuzzy paradigm

in hardware.

The remaining of this paper is organized as follows.

Section II outlines the related research and their

limitations. Section III describes using Post Algebra as

Table 1: Representations for a Four-valued Variable

Symbol DNA Probability Bits Integer

0 A 0 00 0

1 T 1/3 01 1

2 C 2/3 10 2

3 G 1 11 3

the mathematical foundation that facilitates the design

process of many-valued circuits. Section IV outlines our

simple four-step process for designing many-valued

circuits to implement any many-valued functions.

Section V shows our CMOS designs and

implementations of the necessary and sufficient many-

valued logic gates, which serve as the building blocks

for implementing the designed many-valued circuits in

hardware. Section VI gives the conclusion and outlines

the future research.

II. RELATED RESEARCH

To exploit the many-valued computation in hardware,

we need the fundamental building blocks for many-

valued logic circuits: many-valued logic gates, memory

cells, and flip-flops. However, even these essential logic

gates and memory cells are not yet fully developed.

Currently, many-valued and fuzzy systems

[5],[6],[7],[8],[9],[10],[11] are usually simulated or

implemented by using a fuzzifier to convert the inputs,

using a set of fuzzy rules for processing and inferring,

and using a defuzzifier to convert the results to outputs.

To go a step further, researchers are now researching on

many-valued and fuzzy logic circuits that can fully

implement fuzzy systems.

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to

adapt CMOS [12],[13] technologies to implement the

many-valued and Fuzzy logic gates. The design of the

AND gate and the OR gate using CMOS technology was

reported [1],[14],[15],[16]. Other technologies,

including carbon nanotube and single electron

transistors, have been attempted to build many-valued

logic circuits [17][18][19]. Other researchers used

analog circuits to implement the many-valued and fuzzy

logic gates [20],[21],[22]. However, these analog

circuits were more difficult to be fabricated.

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in [11],[23],[24],[25],[26],[27],

[28],[29],[30],[31]. Concept of fuzzy flip-flop was first

mentioned by Hirota [23]. They used analog gates [32],

[33],[34] for the design their JK-type flip-flop as

discussed in [19]. Hirota [23] defined fuzzy JK flip-flop

based on the binary JK flip-flop but using fuzzy

operators. Their design was based on fuzzy operators

such as t-norm, s-norm, and fuzzy negation [35]. Virant

et al. [29] proposed a design of T-type fuzzy flip-flop.

The researchers adapted a strategy similar to Hirota [23]

in the design of the T fuzzy flip-flop. However, we

found that the fuzzy memory cells or flip-flops reported

previously, such as JK-type flip-flop [23][24][25] and

T-type flip-flop [29], have their limitations and cannot

fully be used as general fuzzy memory cells. The flip-

flops would not produce the correct results under certain

input conditions [37].

In this paper, we focused on the design methodologies

of many-valued combinatorial circuits that does not

require memory cells while that of many-valued

sequential circuits (that require memory cells) will be

reported elsewhere.

III. USING POST ALGEBRA AS FOUNDATION FOR

MANY-VALUED CIRCUIT DESIGN

This section describes the mathematical foundation of

many-valued logic that facilitates the design process of

many-valued circuits. While Boolean algebra provides

the mathematical foundation for designing two-valued

digital circuits, Post algebra provides the mathematical

foundation for designing many-valued circuits. We

choose the disjoint system of Post algebras of order n ≥

2 for the reason that the disjoint system facilitates simple

design processes (described in Section IV). The

postulates for a disjoint system of Post algebras is

provided in the following table (based on [36]).

Table 3 defines a disjoin system of Post algebras of

order n ≥ 2. Where, the A, B, and C are n-valued

variables. The ei for 0 ≤ i ≤ n-1 are n constants. The Ci(x)

for 0 ≤ i ≤ n-1 are n disjoint unary operations. The • is

the binary operation that represents AND, while the + is

the binary operation that represents OR.

Boolean algebras are Post algebras of order 2 as

highlighted in Table 4. There are two constants: e0

denoted by 0, and e1 denoted by 1. The Boolean NOT(A)

Table 3. Postulates for disjoint system of

Post algebras of order n ≥ 2

P1 A·B = B·A A+B = B+A

(A·B)·C = A·(B·C) (A+B)+C =

A+(B+C)

A·A = A A+A = A

(A+B)·A = A (A·B)+A = A

A·(B+C) = (A·B)+(A·C)

P2 en-1·A = A e0+A = A

ei ·ei+1 = ei for 0<i<n-2

P3 Ci(A)·Cj(A) = e0

for i ≠ j, 0 ≤ i, j ≤ n-1

C0(A)+C1(A)+…+

Cn-2(A)+Cn-1(A) =

en-1

P4 Ci(A·B) =

Ci(A)·[Ci(B)+Ci+1(B)+

…+Cn-1(B)] +

Ci(B)·[Ci(A)+Ci+1(A)+

…+Cn-1(A)]

for i = 0,1,…,n-1

Cn-1(A+B) =

Cn-1(A)+Cn-1(B)

P5 Ci(ej) = e0 for i ≠ j, 0 ≤ i, j ≤ n-1

Cn-1(e0) = e0

Cn-1(en-2) = e0

P6 e1·C1(A)+e2·C2(A)+…+en-1·Cn-1(A) = A

Table 4. Boolean algebras are

Post algebras of order 2

 Input Output

 NOT(A) = A =

 A C0(A) C1(A)

F = e0 0 1 0

T = e1 1 0 1

= C0(A), while C1(A) = A. The • is equivalent to the

Boolean AND operation, while the + is equivalent to the

Boolean OR operation.

In the following, we choose, as an example, the

disjoint system of Post algebras of order n = 4, and

called the system a four-valued logic. As outlined in the

following table, we use A as a 4-valued variable. The 4

constants are denoted by 0, 1, 2, 3, are the 4 disjoint

unary operations C0(A), C1(A), C2(A), and C3(A) are

defined as shown in Table 5.

The 4-valued AND, OR operations are defined as

shown in Table 6, where the AND operation produce as

output the minimum of (A, B), while the OR operation

produce as output the Maximum of (A, B).

IV. SIMPLE FOUR-STEP PROCESS FOR DESIGNING

MULTI-VALUED CIRCUITS

Based on the disjoint system of Post algebras of order

n ≥ 2 defined in Section III, we outline a simple four-

step process for designing many-valued circuits to

implement any many-valued functions [38]. The four

steps are: (0) Creating a truth table to define the

function; (1) Connecting each input x to n Ci(x) gates;

(2) Creating an AND gate for each output instance

having a value > 0; and (3) Connecting the outputs of all

the AND gates to an OR gate, which produces the

outputs of the required function. These 4 steps are

described in more details in the following sections. By

following this simple four-step process, implementation

of any many-valued function becomes feasible.

Step 0. Truth Table: Creating a truth table to define the

many-valued functions

As an example, we choose to design an adder that

adds two 4-valued numbers A, B. We create a truth table

to define the required functions.

As shown in Table 7, all possible input combinations

are shown in column A and B. The results of the addition

is encoded by two outputs K and S, where K stands for

carry and S stands for sum, and the total value is 4K+S.

The column K defines the function required to produce

K as output, and the column S defines the function

required to produce S as output.

Step 1. Ci(x) gates: Connecting each input x to n Ci(x)

gates for 0 ≤ i ≤ n-1

Continuing the above example of designing an adder,

the adder have two inputs, A and B. Now, we connect

input A to 4 Ci(A) gates:

C0(A), C1(A), C2(A), C3(A)

Similarly, we connect input B to 4 Ci(B) gates:

C0(B), C1(B), C2(B), C3(B)

The results of these connection is shown in Figure 1.

Step 2. AND gates: Creating an AND gate for each

output instance having a value > 0

For each input instance A0,A1,…Am-1 = x0,x1,…xm-1

that produce an output e > 0, create an AND gate

connecting:

Table 6. Four-valued AND (min), OR (Max)

Input Output

 AND(A,B) OR(A,B)

A B A·B A+B

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 1 1

1 2 1 2

1 3 1 3

2 0 0 2

2 1 1 2

2 2 2 2

2 3 2 3

3 0 0 3

3 1 1 3

3 2 2 3

3 3 3 3

Table 5. Post algebras of order 4

(Four-valued logic)

 Input Output

 A C0(A) C1(A) C2(A) C3(A)

F=e0 0 3 0 0 0

e1 1 0 3 0 0

e2 2 0 0 3 0

T=e3 3 0 0 0 3

Table 7. Truth table defining a

four-valued adder

Input Output

 41x 40x

A B K S

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 0 2

1 2 0 3

1 3 1 0

2 0 0 2

2 1 0 3

2 2 1 0

2 3 1 1

3 0 0 3

3 1 1 0

3 2 1 1

3 3 1 2

Cx0(A0)·Cx1(A1)·…· Cxm-1(Am-1)·e

For e = en-1, there is no need to connect the AND gate to

e, which is the results of simplification based on the

postulate P1 that is en-1·A = A.

Continuing the example of designing an adder, for the

function that produce S as output (in the S column of the

truth table), there are 9 instances that produce output e

> 0. For example, referring to the truth table, when

inputs A=0, B=1, the output S=1, in this case we create

an AND gate connecting: C0(A)·C1(B)·1, in which since

A=0 so the AND gate connects to the output of C0(A)

gate (from Step 1), since B=1 so the AND gate connects

to the output of C1(B) gate (from Step 1), and since S=1

so the AND gate connects to 1. When inputs A=0, B=2,

the output S=2, in this case we create an AND gate

connecting: C0(A)·C2(B)·2, in which since A=0 so the

AND gate connects to the output of C0(A) gate, since

B=2 so the AND gate connects to the output of C2(B)

gate, and since S=2 so the AND gate connects to 2. And,

when inputs A=0, B=3, the output S=3, in this case we

create an AND gate connecting: C0(A)·C3(B)·3, which

is simplified to C0(A)·C3(B). We create 9 AND gates for

the 9 instances as shown in the below and the

connections are shown in Figure 1.

C0(A)·C1(B)·1, C0(A)·C2(B)·2, C0(A)·C3(B),

C1(A)·C0(B)·1, C1(A)·C1(B)·2, C1(A)·C2(B),

C2(A)·C0(B)·2, C2(A)·C1(B), C2(A)·C3(B)·1,

C3(A)·C0(B), C3(A)·C2(B)·1, C3(A)·C3(B)·2

Similarly, for the function that produce K as output

(in the K column of the truth table), there are 6 instances

that produce output e > 0. We create 6 AND gates as

shown in the below and the connections are shown in

Figure 1.

C1(A)·C3(B)·1, C2(A)·C2(B)·1, C2(A)·C3(B)·1,

C3(A)·C1(B)·1, C3(A)·C2(B)·1, C3(A)·C3(B)·1

Step 3: OR gate: Connecting the outputs of all the AND

gates to an OR gate, which produces the outputs of the

required function.

Finishing the example of designing an adder, for the

function that produce S as output (in the S column of the

truth table), we connect the outputs of all the 9 AND

gates (from Step 2) to an OR gate, as defined below:

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) +

 C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) +

 C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 +

 C3(A)·C0(B) + C3(A)·C2(B)·1 + C3(A)·C3(B)·2

Similarly, for the function that produce K as output

(in the K column of the truth table), we connect the

outputs of all the 6 AND gates (from Step 2) to an OR

gate, as defined below:

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 +

 C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1

The results all the connections are shown in Figure 1,

which is the four-valued circuit that implements the

four-valued addition of two four-valued numbers.

V. DESIGNING MULTI-VALUED LOGIC GATES

In order to realize the design of many-valued logic

circuits in hardware, we need to design and implement

the necessary components. Based on the design process

described in the last section, we need six four-valued

logic gates to implement any four-valued logic circuits.

These gates are C0, C1, C2, and C3 gates (as defined in

Table 5) and the AND gate and the OR gate (as defined

in Table 6). Our design and implementation of these

necessary and sufficient gates are provided in the

following.

0

1

2

3

0

1

2

3

1BA 2

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

S

KM

M

Figure. 1. Four-valued Adder Circuit

Our designs of the six necessary four-valued logic

gates use CMOS technologies for ready implementation

in IC chips. Four logic values 0, 1, 2, and 3 are

represented physically by 0V, 2V, 4V, and 6V

respectively. There are only 2V between two values and

thus the circuits are more subjective to noise. These

voltages may be increased if noise causes problems.

Figure 2 shows our designs of C0, C1, C2, and C3 gates

and Figure 3 shows the test results, which verified that

the designs meet the functions defined in Table 5. Figure

4 shows our design of n-input four-valued AND gate

and Figure 5 shows the test results of a 2-input AND

gate, which verified that the design meets the function

defined in Table 6. Figure 6 shows our design of n-input

four-valued OR gate and Figure 7 shows the test results

a 2-input OR gate, which verified that the design meets

the function defined in Table 6, as well.

After each of the logic gates has been designed and

tested, we then use the logic gates for building circuits.

One of our test circuits is the four-valued adder circuit

(Figure 1). We implemented the adder circuit using our

gates and tested the function. The test results (Figure 8)

verified that the adder circuit functions as defined in

Table 7. The glitches in the output S (SUM) and the

output K (CARRY_OUT) are results of delays in the

circuits. After it stables down, the results matched the

required output and the circuit function as required. To

further test the circuits, we then designed and built a

circuit to add three four-valued numbers by using two of

the adder circuits. The test results verified that we can

combine circuits to build larger many-valued circuits.

C0 gate

C1 gate

C2 gate

C3 gate

Figure. 2. Designs of C0, C1, C2, and C3 gates

IN OUT

3V 4V 5V 6V 6V

IN

3V 4V

OUT

4V

1V 2V

4V

2V

1V

5V 6V

1V

IN OUT

5V

1V

6V 6V

6V

3V

6V

2V

6V

1V

IN OUT

6V 6V6V

3V

6V

2V 1V

 C0 gate C1 gate

 C2 gate C3 gate

Figure. 3. Test results of C0, C1, C2, and C3 gates

(the top graphs are inputs and the bottom ones are

the outputs)

OUT

6V

6V5V

1V

3V

6V

6V 3V

4V

6V

2V

6V

3V3V 2V

6V 6V

2V 1V

`

IN_1

IN_2...

IN_N

5V

2V

...

...

IN_1

IN_2...

IN_N

6V

3V

...

...

IN_1

IN_2...

IN_N

3V

...

...

Figure. 4. Design of n-input four-valued AND gate

VI. CONCLUSION AND FUTURE RESEARCH

Now is the time to depart from the two-valued logic

to venture into many-valued logic and even into infinite-

valued or Fuzzy logic. To make many-valued

computation possible, this paper provides the necessary

tools for designing many-valued systems entirely within

the domain of many-valued logic. We describe a simple

four-step process for feasible design of many-valued

circuits to implement any many-valued function.

We also provided CMOS designs of many-valued

logic gates, including the Disjoin (Ci(x)) gates, n-input

AND gates, and n-input OR gates. Thus, it would be

feasible to implement the designed many-valued circuits

in integrated circuits (IC chips).

Using the simple four-step process to design many-

valued circuits do not necessary provide the most

simplified circuits. In most case, the circuits can further

be simplified, which can be done by algebraic

manipulation based on the postulates for the disjoint

system of Post algebras provided in Section III.

The next stage for future research will be to use the

many-valued circuit design methodology and memory

cells [38] to design large-scale circuits for fully

exploiting many-valued logics and fuzzy paradigms in

hardware.

REFERENCES

[1] Choi, B.; “Advancing from Two to Four Valued Logic Circuits,”

IEEE International Conference on Industrial Technology (ICIT

2013), February 2013.

[2] Kimura K and Kobayashi T, “Trends in high-density

flash memory technologies”, 2003 IEEE Conference on

Electron Devices and Solid-State Circuits, pp. 45-50, Dec. 2003.
[3] Jigour R., “A tour of the basic of embedded NAND flash

options”, EE Times, Aug. 2013.
[4] Choi Y., “NAND flash – The new era of 4 bit per cell and

beyond”, EE Times, May, 2009.
[5] Marinos, P; “Fuzzy logic and its application to switching

systems” IEEE Transactions on Computing, vol. C-18, no.4, p

343-348, Apr 1969.
[6] Zadeh, L.A.; “Fuzzy Logic = Computing with words” IEEE

Transactions on Fuzzy Systems, vol.4, p 103-11, 1996.

[7] Zadeh, L.A.; “The Concept of Linguistic Variables and its
Application Approximate Reasoning,” Information Sciences, p

43-80, 1975.

[8] Mendel, J.M.; “Fuzzy Logic Systems for Engineering: A
Tutorial” Proceedings of IEEE, vol. 83, No.3, March 1995.

[9] Isik, C.; “Fuzzy logic: principles, applications and perspectives”

SAE (Society of Automotive Engineers) Transactions, vol. 100,

n Sect 1 pt 1, 1991, 911148, p 393-396

OUT

6V6V

2V 1V

6V5V

1V

4V3V 3V

3V

6V

6V 4V 4V

6V

3V
2V

6V

3V

...

...

IN_1

IN_2...

IN_N

`

5V

2V

...

...

IN_1

IN_2...

IN_N

3V

...

...

IN_1

IN_2...

IN_N

Figure. 6. Design of n-input four-valued OR gate

Figure. 5. Test results of a 2-input four-valued AND

gate (the output, bottom graph, is the minimum of

the 2 inputs, top 2 graphs)

Figure. 7. Test results of a 2-input four-valued OR

gate (the output, bottom graph, is the maximum of

the 2 inputs, top 2 graphs)

Figure. 8. Test results for the four-valued adder

circuit (Figure 1).

[10] Fattaruso, J.W.; Mahant Shetti, S.S.; Barton, J.B.; “ A Fuzzy

logic inference processor,” IEEE Journal of solid state circuits,
vol. 29, issue 4, April 1994, p 397-402.

[11] Leslaw, G.; Kluska, J.; “Family of fuzzy J-K flip-flops based on

bounded product, bounded sum and complementation” IEEE
Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 28, n 6, Dec, 1998, p 861-868.

[12] Weste, N.H.E; Eshraghian, K; “Principles of CMOS VLSI
Design”, Addison- Wesley Publishing Company, ISBN 0-201-

53376-6, 1994, p 61-69.

[13] Baker, R. Jacob; “CMOS circuit design, layout, and simulation”,
2nd ed. Baker, R. Jacob, 1964.

[14] Catania, V.; Puliafito, A.; Russo, M.; Vita, L.; “A VLSI fuzzy
inference processor based on a discrete analog approach,” IEEE

Transactions on Fuzzy Systems, vol. 2, Issue 2, May 1994, p 93-

106.
[15] Ascia, G.; Catania, V.; Russo, M.; “VLSI hardware architecture

for complex fuzzy systems” IEEE Transaction on Fuzzy

systems”, vol. 7, issue 5, Oct 1999, p 553-570.
[16] Ascia, G.; Catania, V.; “A high performance processor for

application based on fuzzy logic” Fuzzy systems conference

proceedings, 1999. FUZZ-IEEE ’99. 1999 IEEE international
vol. 3, 22-25 Aug. 1999, p1685-1690.

[17] Raychowdhury A. and Roy K., “Carbon-Nanotube-Based

Voltage-Mode Multiple-Valued Logic Design,” IEEE Trans.
Nanotechnol., vol. 4, no. 2, pp. 168–179, Mar. 2005.

[18] Sakhare A. N. and Keote M. L., “Application of Galois Field in

VLSI Using Multi-Valued Logic,” Comput. Sci., vol. 2, no. 1,
2013.

[19] Wu, G., Cai, L., and Li, Q.; “Ternary logic circuit design based

on single electron transistors,” Journal of Semiconductors,
Vol.30, No.2, February 2009.

[20] Hirota, K; “Fuzzy logic and its Hardware implementation” 2nd

New Zealand Two-stream international conference on Artificial
Neural Networks and Expert systems (ANNES ’95), annes, p

102, 1995.

[21] Perez, J.L.; Banuloes, M.A.; “Electronic model on fuzzy gates”
Journal of the Mexican society of instrumentation, vol. 3, NR 5,

1995, p 43-46.

[22] Catania, V.; Russo, M.; “Analog gates for a VLSI fuzzy
processor” 8th International Conference of VLSI Design, Jan

1995.

[23] Ozawa, K.; Hirota, K.; Koczy, L.T.; Pedrycz, W.; Ikoma, N.;
“Summary of fuzzy flip-flop” IEEE International Conference on

Fuzzy Systems, vol. 3, International Joint Conference of the 4th

IEEE International Conference on Fuzzy Systems and the 2nd
International Fuzzy Engineering Symposium, 1995, p 1641-

1648

[24] Hirota, K.; Ozawa, K.; “The concept of fuzzy flip-flop” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, n 5,

Sep-Oct, 1989, p 980-997.

[25] Hirota, K.; Pedrycz, W.; “Designing sequential systems with
fuzzy J-K flip-flops” Fuzzy Sets and Systems, vol. 39, n 3, Feb

15, 1991, p 261.

[26] McLeod, D.; Pedrycz, W.; Diamond, J.; “Fuzzy JK flip-flops as
computational structures: design and implementation” IEEE

Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 41, n 3, Mar, 1994, p 215-226.
[27] Ozawa, K.; Hirota, K.; Koczy, L.T.; Omori, K.; “Algebraic fuzzy

flip-flop circuits” Fuzzy Sets and Systems, vol. 39, n 2, Jan 25,

1991, p 215.
[28] Hirota, K.; Pedrycz, W.; “Design of fuzzy systems with fuzzy

flip-flops” IEEE Transactions on Systems, Man and

Cybernetics, vol. 25, n 1, Jan, 1995, p 169-176.
[29] Virant, J.; Zimic, N.; Mraz, M.; “T-type fuzzy memory cells”

Fuzzy Sets and Systems, vol. 102, n 2, Mar 1, 1999, p 175-183.
[30] Kia, S.M.; Parmeswaran, S.; “Designs for self checking flip-

flops” IEE Proceedings: Computers and Digital Techniques,

vol. 145, n 2, Mar, 1998, p 81-88.
[31] Miki, T; Yamakawa, T; “Fuzzy Inference on an Analog Fuzzy

Chip,” IEEE Micro, pp. 8-18, 1995.

[32] Kettner, T,; Heite, C.; Schumacher, K.; “ Analog CMOS
realization of fuzzy logic membership functions,” IEEE Journal

of solid state circuits, vol. 28, Issue 7, July 1993, p 857-86.

[33] Watanabe, H; W. D. Dettloff, and K.E. Yount, “A VLSI fuzzy

logic controller with reconfigurable, cascadable architecture,”
IEEE Journal Of Solid-State Circuits., vol. 25, p 376-382, Apr.

1990.

[34] De Venuto, D.; Ohletz, M.J.; Ricco, B.; “Testing of analogue
circuits via (standard) digital gates”; Proceedings. International

Symposium on Quality Electronic Design, 2002.18-21 March

2002, p 112 – 119.
[35] Baturone, I; Barriga, A; Sanchez-Solano, S; Lopez, D.R;

“Microelectronic Design of Fuzzy Logic-Based Systems”, CRC

Press, ISBN 0-8493-0091-6, 2000.
[36] Epstein, G.; Multiple-Valued Logic Design: An Introduction,

Institute of Physics Publishing, 1993.
[37] Choi, B.; Tipnis, K.; “New Components for Building Fuzzy

Logic Circuits,” Fourth International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD 2007), Vol.2, pp.
586-590, 2007.

[38] Choi B. and Shukla K., "Multi-Valued Logic Circuit Design and

Implementation," International Journal of Electronics and
Electrical Engineering, Vol. 3, No. 4, pp. 256-262, August 2015.

Dr. Ben Choi has a Ph.D. degree in

Electrical and Computer Engineering and

also has a Pilot certificate for flying airplanes

and helicopters. He is an Associate Professor

in Computer Science at Louisiana Tech

University. He received his Ph.D., M.S., and

B.S. degrees from The Ohio State

University, studied Computer Science, Computer

Engineering, and Electrical Engineering. His areas of research

include Humanoid Robots, Artificial Intelligence, Machine

Learning, Intelligent Agents, Semantic Web, Data Mining,

Fuzzy Systems, and Parallel Computing. His future research

includes developing advanced software and hardware methods

for building intelligent machines and theorizing the Universe

as a Computer.

Kankana Shukla works as a Data Scientist

at FedEx Services. She holds two Master

degrees in Computer Science and in

Biomedical Engineering from Louisiana

Tech University. She completed her

Bachelors in Electronics and

Instrumentation. Her research interest

includes Data Mining, Big Data Analysis, Machine Learning,

Wireless Sensor Networks, Bioinformatics, Robotics and

Artificial Intelligence.

 Rong Zheng is a Master student in

Computer Science at Louisiana Tech

University. He completed his Bachelors in

Electronic & Information Engineering in

Shenzhen University in China. His research

interest includes Fuzzy Computing,

Machine Learning, Artificial Intelligence,

Data Mining and Network Security. His future work includes

pursuing a Ph.D. degree in Computer Science.

