
Designing the First Many-valued Logic Computer

Ben Choi
Computer Science

Louisiana Tech University, USA

Email: pro@BenChoi.org

 Abstract—This paper aims to design the first

microprocessor based on many-valued logic circuits. The

designed microprocessor will then form the basis for

building the first many-valued logic computer. The aim is to

design and build new computers entirely within the domain

of many-valued logic. In a four-valued logic computer, each

wire carries two bits at a time, each logic gate operates two

bits at a time, and each memory cell records two bits at a

time. This paper proposes a simple computational model by

providing a simple architecture and by defining a simple

instruction set. It then provides the design of the arithmetic

and logic processing unit, a register file, a new many-valued

memory cell, a new many-valued tri-state buffer, and a new

decoder. In addition, it proposes a new methodology for

designing any many-valued logic circuits. Having the design

of the microprocessor and all the needed components

provide the necessary and sufficient tools for exploiting the

many-valued computational paradigm. We are now ready

and are working to build the first many-valued

microprocessor and computer.

 Index

Terms—fuzzy computer, many-valued logic, fuzzy

control, circuit design, fuzzy system

I.

INTRODUCTION

The performances of current computers are reaching

their limits. Almost all present day computers are built

based on two-valued logic. In two-valued logic, each

wire can have two states. The performance of current

computer depends mostly on how quickly the states can

be changed, which determines the clock speed. During

the past decades, the clock speed for CPU had doubled

almost every year. In recent years, the clock speed

doubled every 18 months. Now, it has become
 progressively difficult to increase the clock speed. The

limit is approaching. Recently, CPU manufacturers are

trying to circumvent the limitation of clock speed by

packing more and more “cores” into a chip, which has

resulted in dual-core or quad-core CPUs. However, this

multi-core approach does not greatly improve the

performance. This is due in part by the limit of the

amount of data that can be transferred between the CPU

and its connected components, which is determined by

the number of pins on the CPU. Using two-value logic

each pin on the CPU can have at most two states, and

again the amount of data that can be transferred is

determined by the clock speed. Thus, the multi-core

approach does not circumvent the limitation.

Thus, there is a need for an innovative approach in

order to push the speed limit of computing. Now is the

time to depart from the two-valued logic to venture into

many-valued logic and even into infinite-valued (Fuzzy)

logic. Advancing from two-valued to four-valued logic

provides an progressive approach [1]. Four symbols {0, 1,

2, 3} are needed to distinguish the four values, as shown

in Table 1. The four values may represent anything, for

example, the four bases {A, T, C, G} found in DNA, or

the probability {0, 1/3, 2/3, 1}. These four values can be

converted to binary numbers {00, 01, 10, 11}, or they

can simply represent integers {0, 1, 2, 3}.

TABLE I.

REPRESENTATIONS OF A FOUR-VALUED VARIABLE

Symbol

DNA

Probability

Bits

Integer

 0

A

0

00

0

 1

T

1/3

01

1

 2

C

2/3

10

2

 3

G

1

11

3

 To fully exploiting the many-valued computational

paradigm, it is necessary to start from the ground up by

designing components needed for constructing many-

valued logic circuits. For example, each four-valued

logic gates will operate two bits of data at a time, and

each memory cell will record two bits at once. Now, each

wire or CPU pin can have four states, which could

double the amount of data that can be transferred

between the CPU and its connected components without

increasing the number of pins on the CPU.

 Figure 1. The High-level Architecture of the Many-valued
Microprocessor

The

Big

Picture

--

BCPU

.

.

.

ALU

DEC

G

REGISTERS

(part

of

the

preloadable

memory)

Data

In

(for

preload)

LOAD/

READ

Addr

(for

preload)

Micro

Program

Memory

(Preloadable)

C

(instruction

control)

F

(fetch)

A B

E

OUT

SIDE

CPU

DEC

JDEC

I

DEC

E

D

Addr

Data

out

DEC

K

DEC

L

DEC

L

Registers

(part

of

the

preloadable

memory)

Inputs

Outputs

R6

R0

R7

R1
.

.

.

R13

(Out0)

R14

(Out1)

R15

(

PC

)

.

.

.

D

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

417© 2017 Int. J. Mech. Eng. Rob. Res.
doi: 10.18178/ijmerr.6.5.417-424

Manuscript received June 14, 2017; revised August 1, 2017.

With eight-valued logic, each logic gate operates three

bits of data and each CPU pin carries three bits of data at

a time. The extreme case will be the infinite-valued or

Fuzzy logic. Now, a different limit is being pushed.

The approach for using many-valued logic is in fact

currently being employed in building higher capacity

flash memory. The industry is pushing to allow each

memory cell to store not just one bit, but two bits, three

bits, and even four bits[2][3][4]. Now, we are proposing

to push these limits not just in memory technologies, but

also in computation.

TABLE II. INSTRUCTION FORMATS AND DEFINITIONS

Op-Code Format Definition

0000 MOVE RD, RA RD RA

0001 NOT RD, RA RD bitwise NOT RA

0010 AND RD, RA, RB RDRA bitwise AND RB

0011 OR RD, RA, RB RD RA bitwise OR RB

0100 ADD RD, RA, RB RD RA + RB

0101 SUB RD, RA, RB RD RA – RB

0110 ADDI RD, RA, 4 bit data RD RA + 4 bit data

0111 SUBI RD, RA, 4 bit data RD RA – 4 bit data

1000 SET RD, 8 bit data RD 8 0’s follow by 8 bit data

1001 SETH RD, 8 bit data RD 8 bit data follow by RD7, RD6 … RD0

1010 INCIZ RD, 4 bit data, RB RD RD + 4 bit data, IF RB == 0 (zero)

1011 DECIN RD, 4 bit data, RB RD RD – 4 bit data, IF RB15 == 1 (neg)

1100 MOVEZ RD, RA, RB RD RA IF RB == 0 (zero)

1101 MOVEX RD, RA, RB RD RA IF RB != 0 (not zero)

1110 MOVEP RD, RA, RB RD RA IF RB15 == 0 (positive)

1111 MOVEN RD, RA, RB RD RA IF RB15 == 1 (negative)

To make the many-valued computation possible, this

paper provides the necessary and sufficient tools and

components for designing many-valued systems entirely

within the domain of many-valued logic. The aim is to

design the first microprocessor based on many-valued

logic circuits and then to use the microprocessors to build

many-valued logic computers. For serving as a prototype,

the design will be kept simple. The author first proposes

a simple computational model by providing a simple

architecture and by defining a simple instruction set. Fig.

1 shows the high-level architecture of the many-valued

microprocessor. At this high-level, the architecture looks

similar to that of conventional digital computer. The use

of many-valued logic is more explicit when the

arithmetic and logic processing unit (ALU) is being

designed and implemented. The author then proposes a

design of a many-valued memory cells that are then used

to design and implement the registers. The designs of

many-valued tri-state buffers and decoders are also

provided in this paper, which are then used to design and

implement the control circuits. The design of the pre-

loadable micro program memory is similar to that used

for design multi-bit flash memory cells [2][3][4]. In

addition, the author also proposes a methodology for

designing any many-valued circuits. Equipped with the

design details and methodology, we are now ready to

venture into the domain of many-valued logic

computation.

The remaining of this paper is organized as follows.

Section II outlines the related research and their

limitations. Section III provides the high-level design of

the many-valued microprocessor, highlights the overall

architecture, and defines the instruction set. Section IV

proceeds on the design of the arithmetic and logic

processing units. It also outlines a methodology for

designing any many-valued circuits and provides the

design of a four-valued adder circuit as an example.

Section V describes the design of a many-valued

memory cell that is used in the design of many-valued

registers. It also provides the design of a four-valued tri-

state buffer and decoder that are used for the design of

the control units. Section VI discusses the

implementation and programming aspects of the

microprocessor. Section VII gives the conclusion and

outlines the future research.

II. RELATED RESEARCH

To exploit the many-valued computation in hardware,

we need the fundamental building blocks for many-

valued logic circuits: many-valued logic gates, memory

cells, and flip-flops. However, even these essential logic

gates and memory cells are not yet fully developed.

Currently, many-valued and fuzzy systems

[5],[6],[7],[8],[9],[10],[11] are usually simulated or

implemented by using a fuzzifier to convert the inputs

into binary, using a set of fuzzy rulesfor processing and

inferring, and using a defuzzifier to convert the binary

results to outputs. To go a step further, researchers are

now researching on many-valued and fuzzy logic circuits

that can fully implement fuzzy systems.

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to

adapt CMOS [12],[13] technologies to implement the

many-valued and Fuzzy logic gates. The design of the

AND gate and the OR gate using CMOS technology was

reported [1],[14],[15],[16]. Other technologies, including

carbon nanotube and single electron transistors, have

been attempted to build many-valued logic circuits

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

418© 2017 Int. J. Mech. Eng. Rob. Res.

[17][18][19]. Other researchers used analog circuits to

implement the many-valued and fuzzy logic gates

[20],[21],[22]. However, these analog circuits were more

difficult to be fabricated.

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in

[11],[23],[24],[25],[26],[27],[28],[29],[30],[31]. Concept

of fuzzy flip-flop was first mentioned by Hirota [23].

They used analog gates [32],[33],[34]for the design their

JK-type flip-flop as discussed in [19]. Hirota[23]defined

fuzzy JK flip-flop based on the binary JK flip-flop but

using fuzzy operators. Their design was based on fuzzy

operators such as t-norm, s-norm, and fuzzy negation[35].

Virant et al.[29]proposed a design of T-type fuzzy flip-

flop. The researchers adapted a strategy similar to Hirota

[23] in the design of the T fuzzy flip-flop. However, we

found that the fuzzy memory cells or flip-flops reported

previously, such as JK-type flip-flop [23][24][25] and T-

type flip-flop [29], have their limitations and cannot fully

be used as general fuzzy memory cells. The flip-flops

would not produce the correct results under certain input

conditions[37].

In this paper, we focus on the design methodologies to

utilize the proposed many-valued logic gates and

memory cells to design many-valued logic computing

systems[38][39], in particularly to design a many-valued

microprocessor.

III. DESIGNING THE FIRST MANY-VALUED

MICROPROCESSOR

This section describes the top-level design of a simple

many-valued microprocessor. At the top-level, the design

process of a many-valued microprocessor is similar to

that of a conventional digital microprocessor. The

process begins by designing the computational model

and defining the instruction set.

The high-level architecture of the microprocessor is

shown in Fig. 1 (called as BCPU), which highlights the

major components of the computational model. The

processor consists of 16 registers (R0, R1, R15) for

storing data. Within these 16 registers, there are 4 special

purpose registers: R6 is the input register; R13 and R14

are the output registers; R15 is the program counter (PC).

The processor consists of an ALU (arithmetic and logic

unit) for preforming computations. It consists of a micro

program memory for storing instructions. The micro

program memory is a type of nonvolatile memory (like

flash memory) that allows the instructions to be pre-

loaded. The 16 registers is part of the address (0, 1, 2, …

15) space of the program memory, such allowing the

contents of the registers to be re-loaded as well.

The process of preforming one computation specified

by one instruction is outlined as follows. The program

counter (PC) contains the address of the instruction to be

executed. This address is passed to program memory

through the F bus (as shown in Fig. 1). The program

memory retrieves the instruction and outputs it on C bus.

The wires of the C bus act as the control signals and pass

to various decoders (DEC), that decode the instruction to

select which registers and which processing unit (inside

ALU) to be used to perform the instruction. The ALU

receives the data of the selected registers through A, B,

and D buses, performs the computation, and sends the

result through D bus to be stored in the destination

register. The ALU also sends enable signals through E

bus to determine whether to write the result into the

registers or not, which is used to implement conditional

(if) statements. The final step is to update the contents of

the program counter (PC), which will increase by one if

it is not updated by the instruction. Any instructions

writes into the program counter (PC) will function as

Jump statement.

The microprocessor can perform 16 instructions that

are defined as shown in Table 2. The first instruction is

the MOVE operation that implements RD = RA, where RD

is one of the 16 registers (except the input register) for

storing the result of the operation, and RA is anyone of

the 16 registers. For example, MOVE R2, R1 will results

in R2 = R1 (contents of register R2 is replaced by

contents of R1);SET R1, 100 will results in R1 = 100;

and ADD R3, R2, R1 will results in R3 = R2 + R1.

One unique feature of this microprocessor is that

anyone of these 16 instructions can write into the

program counter PC (that is R15) and such can function

as a Jump statement. For example, MOVE PC, R1 will

jump to the address specified by R1, while MOVEZ PC,

R1, R2 will jump only if R2 is zero (a conditional jump),

and ADDI PC, PC, 8 will function as a relative jump for

jumping forward.

Each instruction is specified by a 16-bit binary number.

For example, ADD R3, R2, R1 is specified by a 4-bit op-

code 0100 (as show in Table 2), R3 is coded by 0011, R2

by 0010, and R1 by 0001. Each of the 16 registers can

store a 16-bit binary number. For serving

as a prototype, the design is a simple 16-bit

microprocessor.

Figure 2. Arithmetic and Logic Processing Units (ALU)

NOT

G1

AND

G2

OR

G3

MOVE

G0

SUB

G5

ADDI

G6

SUBI

G7

ADD

G4

SETH

G9

INCIZ

G10

DECIN

G11

SET

G8

MOVEX

G13

MOVEP

G14

MOVEN

G15

MOVEZ

G12

D (out)

D (in)

C

B

A

N P X Z IN IZ

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

419© 2017 Int. J. Mech. Eng. Rob. Res.

Figure 3. Implementation of a 16-bit AND Operation Using 4-valued

Logic Circuits

The computational model and the instructions of this

simple 16-bit microprocessor will serve as a prototype

for design and implementation using many-valued logic

circuits. One major advantage of using many-valued

logic circuits to implement a microprocessor (or a

computer) is to reduce the number of wires and

components, as will be described in the remaining

sections.

IV. DESIGNING MANY-VALUED PROCESSING UNITS

This section begins to realize the design of the

microprocessor by using many-valued logic circuits. It

begins by implementing the processing units. The

arithmetic and logic unit (ALU) of the processor consists

of 16 processing units, each of which implements the

operation of one instruction, as shown in Fig. 2. The

processing units take input data from A, B, C, D buses,

execute the specified operations, and pass the results to D

output bus through tri-state buffers. There are 16 control

signals (G0, G1, … G15) used to select which result

should be available on the D output bus based on which

instruction is being executed.

For this first design of a many-valued microprocessor,

the implementation of the processing units will be done

by using four-valued logic circuits, although sixteen-

valued logic circuits would also be well suited. Each of

the processing units will be implemented by using four-

valued logic circuits: each wire can carry 2 bits of data at

any state and each logic gate can operate 2 bits of data at

a time. For example, the design of the AND processing

unit is shown in Fig. 3. The AND operation takes 8 wires

(realizing 16 bits) as input A and 8 wires as input B;

performs the bit-wise AND operation using 8 four-valued

AND gates; and outputs the results using 8 wires as D

(realizing 16 bits outputs). The number of wires and

gates reduces by 50%in comparing conventional digital

microprocessors.

The OR and NOT processing units can be

implemented using the same method as outlined for

AND processing unit. The MOVE, SET, and SETH

processing units only requires wires within for setting

specific bits. The MOVEN, MOVEP, MOVEX, and

MOVEZ also contains logic gates for checking the

conditions.

The remaining processing units, ADD, SUB, ADDI,

SUBI, INCIZ, and DECIN, all require the function of

adding two numbers, where the SUB (A - B) is

implemented as A + (-B).

A general design methodology will be outlined in the

following, instead of providing the detailed design of the

adding function. The methodology can be used to design

any many-valued logic circuits, although the design of a

four-valued adder is provided as an example.

The following outlines a simple four-step process for

designing many-valued circuits to implement any many-

valued functions[38]. The four steps are: (0) Creating a

truth table to define the function; (1) Connecting each

input x to n Ci(x) gates; (2) Creating an AND gate for

each output instance having a value > 0; and (3)

Connecting the outputs of all the AND gates to an OR

gate, which produces the outputs of the required function.

These 4 steps are described in more details in the

following:

Step 0.Truth Table: Creating a truth table to define the

many-valued functions

As an example, we choose to design an adder that adds

2 four-valued numbers A, B. We create atruth tableto

define the required functions,as shown in Table 3.All

possible input combinations are shown in column A and

B. The results of the addition is encoded by two outputs

K and S, where K stands for carry and S stands for sum,

and the total value is 4K+S. The column K defines the

function required to produce K as output, and the column

S defines the function required to produce S as output.

Step 1.Ci(x) gates: Connecting each input x to n Ci(x)

gates for 0 ≤ i ≤ n-1

TABLE III. TRUTH TABLE DEFINING A FOUR-VALUED

ADDER

Input Output

 41x 40x

A B K S

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 0 2

1 2 0 3

1 3 1 0

2 0 0 2

2 1 0 3

2 2 1 0

2 3 1 1

3 0 0 3

3 1 1 0

3 2 1 1

3 3 1 2

Continuing the above example of designing an adder,

the adder have two inputs, A and B. Now, we connect

input A to 4 Ci(A) gates:

C0(A), C1(A), C2(A), C3(A)

A1,0 B1,0

D1,0

A3,2 B3,2

D3,2

A5,4 B5,4

D5,4

A7,6 B7,6

D7,6

A9,8 B9,8

D9,8

A11,10B11,10

D11,10

A13,12 B13,12

D13,12

A15,14 B15,14

D15,14

AND

8

8 8
A B

D

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

420© 2017 Int. J. Mech. Eng. Rob. Res.

Similarly, we connect input B to 4 Ci(B) gates:

C0(B), C1(B), C2(B), C3(B)

The results of these connection is shown in Fig. 4.

0

1

2

3

0

1

2

3

1BA 2

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

S

KM

M

Figure 4. A Four-valued Adder Circuit for Building Arithmetic
Operations

Step 2. AND gates: Creating an AND gate for each

output instance having a value > 0

For eachinput instanceA0,A1,…Am-1 =x0,x1,…xm-1 that

produce an output e> 0, create an AND gate connecting:

Cx0(A0)·Cx1(A1)·…·Cxm-1(Am-1)·e

For e = en-1, there is no need to connect the AND gate to

e, which is the results of simplification based on the

postulate P1 that is en-1·A = A.

Continuing the example of designing an adder, for the

function that produce S as output (in the S column of the

truth table), there are 9 instances that produce output e >

0. For example, referring to the truth table, when inputs

A=0, B=1, the output S=1, in this case we create an AND

gate connecting: C0(A)·C1(B)·1, in which since A=0 so

the AND gate connects to the output of C0(A) gate (from

Step 1), since B=1 so the AND gate connects to the

output of C1(B) gate (from Step 1), and since S=1 so the

AND gate connects to 1. When inputs A=0, B=2, the

output S=2, in this case we create an AND gate

connecting: C0(A)·C2(B)·2,in which since A=0 so the

AND gate connects to the output of C0(A) gate, since

B=2 so the AND gate connects to the output of C2(B)

gate, and since S=2 so the AND gate connects to 2. And,

when inputs A=0, B=3, the output S=3, in this case we

create an AND gate connecting: C0(A)·C3(B)·3, which is

simplified to C0(A)·C3(B). We create 9 AND gates for

the 9 instances as shown in the below and the

connections are shown in Fig. 4.

C0(A)·C1(B)·1, C0(A)·C2(B)·2, C0(A)·C3(B),

C1(A)·C0(B)·1, C1(A)·C1(B)·2, C1(A)·C2(B),

C2(A)·C0(B)·2, C2(A)·C1(B), C2(A)·C3(B)·1,

C3(A)·C0(B), C3(A)·C2(B)·1, C3(A)·C3(B)·2

Similarly, for the function that produce K as output (in

the K column of the truth table), there are 6 instances that

produce output e > 0. We create 6 AND gates as shown

in the below and the connections are shown in Fig. 4.

C1(A)·C3(B)·1, C2(A)·C2(B)·1, C2(A)·C3(B)·1,

C3(A)·C1(B)·1, C3(A)·C2(B)·1, C3(A)·C3(B)·1

Step 3: OR gate:Connecting the outputs of all the AND

gates to an OR gate, which produces the outputs of the

required function.

Finishing the example of designing an adder,for the

function that produce S as output (in the S column of the

truth table), we connect the outputs of all the 9 AND

gates (from Step 2) to an OR gate, as defined below:

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) +

C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) +

C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 +

C3(A)·C0(B) + C3(A)·C2(B)·1 + C3(A)·C3(B)·2

Similarly, for the function that produceK as output (in

the K column of the truth table), we connect the outputs

of all the 6 AND gates (from Step 2) to an OR gate, as

defined below:

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 +

C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1

Figure 5. Register File and Data Buses

D (from ALU)

D (to ALU)

C

B

A

R0

I0

J0

K0

L0

E0

R1

I1

J1

K1

L1

E1

R6 (IN)

I6

J6

K6

L6

 IN

E6

R13 (Out0)

I13

J13

K13

L13

E13

R14 (Out1)

I14

J14

K14

L14

E14

R15 (PC)

I15

J15

K15

L15

E15

Out0Out1

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

421© 2017 Int. J. Mech. Eng. Rob. Res.

Figure 6. A Many-valued Memory Cell for Building Registers

The results all the connections are shown in Fig. 4,

which is the four-valued circuit that implements the four-

valued addition of two four-valued numbers.

To reduce the number of logic gates for a circuit, an

additional step for minimization would be added into the

steps outlined above. To further optimize the circuits for

performance, specially designed transistor-level circuits

would be used to implement the arithmetic processing

units.

V. DESIGNING MANY-VALUED REGISTERS AND

CONTROL UNITS

To continue the design of the many-valued

microprocessor, this section describes the design of the

registers and the control units. The high-level design of

the register file is shown in Fig. 5. There are 16 registers,

all of which (except R6) take inputs from ALU through

the D bus. The input register R6 takes input from outside

of the processor. Each register receives an enable signal

that determine whether to write into the register, for

implementing the conditional instructions. The registers

store the results of the current step of computation and

provide the data for later steps. Each register can provide

its data on A, B, C, and D data buses. As shown in Fig. 5,

the control signals, I, J, K, and L controlling the tri-state

buffers, determine whether or not to provide the data on

the buses. These data are available to the ALU for

processing. Registers R13 and R14 also provide the data

as outputs to the outside of the processor. Register R15

serves as the program counter (PC). Any instruction can

write into the program counter to function as a Jump

statement. If no instruction write into the PC, then it will

increase by one after executing the current instruction.

Figure 7. The Design of a Four-valued Tri-State Buffer

Figure 8. A Decoder from 2 Four-valued Wires to 16 Control Signals

To implement many-valued registers requires many-

valued memory cells. The author has designed a memory

cell that can store any many-valued data as shown in Fig.

6 [1]. The memory cell can be used for building the

required registers. The memory cell is general purpose

and the design used many-valued logic gates. To be

specific in implementing the registers using four-valued

logic, special transistor-level design would be possible

for improving the performance.

Besides the many-valued memory cell, another key

component needed is the many-valued tri-state buffer.

The tri-state buffers are used in the register file (Fig. 5)

for connecting the registers to the data buses, and are

used in the ALU (Fig. 2) for connecting the processing

units to the bus. The author provides a simple design

concept of a four-valued tri-state buffer as shown in Fig.

7. If the enable signal (ENB) is False, there is no

connection as all the 4 transistors (acting like switches)

turn off. When ENB is True resulting in one of the

switch turned on, the input value will be passed to the

output.

The control units consist of many decoders, shown in

Fig. 1 as DEC G, E, I, J, K, and L (located inside ALU,

register file, and program memory). These decoders

decode the instruction and produce many control signals.

The design of the decoder DEC G is shown in Fig. 8. The

decoder takes 2 four-valued wires and produces 16

control signals. The design of the remaining decoders are

similar to this one.

VI. IMPLMENTATIONS AND PROGRAMMING

After completingthe design of the four-valued logic

microprocessor, the next stage is the implementationfor

building of the microprocessor and the computer. Before

implementing the design in hardware, the author first

created a simulator to test the processing and the

instruction set. The simulator can execute assemble

language programs written using the instruction set

(defined in Table 2). An example program is shown in

Fig. 9, that multiplies two numbers using a bitwise

method. The testing results show that the instruction set

is quite versatile despite the simplicity of the instructions

and the overall architecture of the microprocessor.

M

M

m

m

T
-

Q

D

Q’

0 1 2 3

0 1 2 3

ENB

ENB

Tri-State Buffer
(Symbol)

0 1 2 3 0 1 2 3

G15

. . .

C11,10 C9,8

G14

G2

G1

G0

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

422© 2017 Int. J. Mech. Eng. Rob. Res.

Figure 9. A Program for Multiplication

To be able to realize the design of the microprocessor

in hardware, all the needed many-valued logic

components have been created and tested. These includes

all the needed logic gates: AND, OR, NOT, and disjoint

unary Ci(x) gates; the needed memory cells, and the

needed tri-state buffers. In additional, a methodology for

designing any many-valued logic circuits have been

developed. The design of adder circuits, the key

component for implementing arithmetic operations, have

been developed and tested. Now we are ready and are

working to realize the design of many-valued

microprocessor and the computer.

VII. CONCLUSION AND FUTURE RESEARCH

Now is the time to depart from the two-valued logic to

venture into many-valued logic and even into infinite-

valued or Fuzzy logic. To make many-valued

computation possible, this paper provides the necessary

tools for designing many-valued systems entirely within

the domain of many-valued logic. It outlines the design

of the first many-valued microprocessor, by providing

design examples of the processing units, the registers,

and the control units. To be able to implement these

designs in hardware, the design of many-valued memory

cell, tri-state buffer, and decoder are also provided. In

addition, it describes a simple methodology for designing

any many-valued circuits to implement any many-valued

functions. Although not every pieces of details are

provided in this paper, the overall design of the

microprocessor, all the key components for

implementation, and the design methodology should

provide sufficient information for future developments.

The next stage for future research will be to build the

first many-valued microprocessor and computer.

REFERENCES

[1] B. Choi, “Advancing from two to four valued logic circuits,”
IEEE International Conference on Industrial Technology (ICIT

2013), February 2013.

[2] K. Kimura and T, Kobayashi, “Trends in high-density flash

memory technologies,” in Proc. 2003 IEEE Conference on

Electron Devices and Solid-State Circuits, Dec. 2003, pp. 45-50.
[3] R. Jigour, “A tour of the basic of embedded NAND flash

options,” EE Times, Aug. 2013.
[4] Y. Choi, “NAND flash – The new era of 4 bit per cell and

beyond,” EE Times, May, 2009.

[5] P. Marinos, “Fuzzy logic and its application to switching
systems,” IEEE Transactions on Computing, vol. C-18, no. 4, p

343-348, Apr 1969.

[6] L. A. Zadeh, “Fuzzy Logic = Computing with words,” IEEE
Transactions on Fuzzy Systems, vol. 4, pp. 103-11, 1996.

[7] L. A. Zadeh, “The concept of linguistic variables and its

application approximate reasoning,” Information Sciences, pp.
43-80, 1975.

[8] J. M. Mendel, “Fuzzy logic systems for engineering: A tutorial,”

in Proc. IEEE, vol. 83, no. 3, March 1995.
[9] C. Isik, “Fuzzy logic: Principles, applications and perspectives,”

SAE (Society of Automotive Engineers) Transactions, vol. 100, n

Sect 1 pt 1, 1991, 911148, pp. 393-396
[10] J. W. Fattaruso, S. S. Mahant Shetti, J. B. Barton, “A fuzzy logic

inference processor,” IEEE Journal of Solid State Circuits, vol.

29, no. 4, April 1994, pp. 397-402.
[11] G. Leslaw and J. Kluska, “Family of fuzzy J-K flip-flops based

on bounded product, bounded sum and complementation,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 28, no, 6, Dec. 1998, pp. 861-868.

[12] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI

Design, Addison-Wesley Publishing Company, 1994, pp. 61-69.
[13] Baker, R. Jacob, CMOScircuitdesign, Layout, and Simulation,

2nd ed. Baker, R. Jacob, 1964.

[14] V. Catania, A. Puliafito, M. Russo, and L. Vita, “A VLSI fuzzy
inference processor based on a discrete analog approach,” IEEE

Transactions on Fuzzy Systems, vol. 2, no. 2, May 1994, pp. 93-

106.
[15] G. Ascia, V. Catania, and M. Russo, M. “VLSI hardware

architecture for complex fuzzy systems,” IEEE Transaction on

Fuzzy Systems, vol. 7, no. 5, Oct 1999, pp. 553-570.
[16] G. Ascia and V. Catania, “A high performance processor for

application based on fuzzy logic,” in Proc. IEEE International

on Fuzzy Systems Conference, vol. 3, Aug. 22-25, 1999, pp.
1685-1690.

[17] A. Raychowdhury and K. Roy, “Carbon-Nanotube-Based

Voltage-Mode Multiple-Valued Logic Design,” IEEE Trans.
Nanotechnol., vol. 4, no. 2, pp. 168–179, Mar. 2005.

[18] A. N. Sakhare and M. L. Keote, “Application of Galois field in
VLSI using multi-valued logic,” Comput. Sci., vol. 2, no. 1, 2013.

[19] G. Wu, L. Cai, and Q. Li, “Ternary logic circuit design based on

single electron transistors,” Journal of Semiconductors, vol. 30,
no. 2, February 2009.

[20] K. Hirota, “Fuzzy logic and its Hardware implementation,” in

Proc. 2nd New Zealand Two-stream international conference on
Artificial Neural Networks and Expert systems (ANNES ’95),

annes, p. 102, 1995.

[21] J. L. Perez, M. A. Banuloes, “Electronic model on fuzzy gates,”
Journal of the Mexican society of instrumentation, vol. 3, NR 5,

1995, pp. 43-46.

[22] V. Catania and M. Russo, “Analog gates for a VLSI fuzzy
processor” 8th International Conference of VLSI Design, Jan

1995.

[23] K. Ozawa, K. Hirota, L. T. Koczy, W. Pedrycz, N. Ikoma,
“Summary of fuzzy flip-flop,” in International Joint Conference

of the 4th IEEE International Conference on Fuzzy Systems and

the 2nd International Fuzzy Engineering Symposium, vol. 3,
1995, pp. 1641-1648

[24] K. Hirota and K. Ozawa, “The concept of fuzzy flip-flop,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,
Sep-Oct, 1989, pp. 980-997.

[25] K. Hirota and W. Pedrycz, “Designing sequential systems with

fuzzy J-K flip-flops,” Fuzzy Sets and Systems, vol. 39, no. 3, Feb.
15, 1991, p. 261.

[26] D. McLeod, W. Pedrycz, J. Diamond, “Fuzzy JK flip-flops as

computational structures: Design and implementation,” IEEE
Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 41, no. 3, Mar, 1994, pp. 215-226.

[27] K. Ozawa, K. Hirota, L. T. Koczy, K. Omori, “Algebraic fuzzy
flip-flop circuits,” Fuzzy Sets and Systems, vol. 39, no. 2, Jan. 25,

p. 215, 1991.

[28] K. Hirota and W. Pedrycz, “Design of fuzzy systems with fuzzy
flip-flops,” IEEE Transactions on Systems, Man and Cybernetics,

vol. 25, no. 1, pp. 169-176, Jan. 1995.

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

423© 2017 Int. J. Mech. Eng. Rob. Res.

[29] J. Virant, N. Zimic, and M. Mraz, “T-type fuzzy memory cells,”
Fuzzy Sets and Systems, vol. 102, no. 2, pp. 175-183, Mar 1,

1999,.

[30] S. M. Kia and S. Parmeswaran, “Designs for self checking flip-
flops,” IEE Proceedings: Computers and Digital Techniques, vol.

145, no, 2, Mar, 1998, pp. 81-88.

[31] T. Miki, T. Yamakawa, “Fuzzy inference on an analog fuzzy
chip,” IEEE Micro, pp. 8-18, 1995.

[32] T. Kettner, C, Heite, and K. Schumacher, “Analog CMOS

realization of fuzzy logic membership functions,” IEEE Journal
of Solid State Circuits, vol. 28, no. 7, pp. 857-886, July 1993.

[33] H. Watanabe, W. D. Dettloff, and K. E. Yount, “A VLSI fuzzy

logic controller with reconfigurable, cascadable architecture,”
IEEE Journal Of Solid-State Circuits., vol. 25, pp. 376-382, Apr.

1990.

[34] De Venuto, M. J. Ohletz, and B. Ricco, “Testing of analogue
circuits via (standard) digital gates,” in Proc. International

Symposium on Quality Electronic Design, March 2002, pp. 112 –

119.
[35] I. Baturone, A. Barriga, S. Sanchez-Solano, and D. R. Lopez,

“Microelectronic design of fuzzy logic-based systems,” CRC

Press, 2000.
[36] G. Epstein, Multiple-Valued Logic Design: An Introduction,

Institute of Physics Publishing, 1993.

[37] B. Choi and K. Tipnis, “New components for building fuzzy
logic circuits,” Fourth International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD 2007), vol. 2, pp.

586-590, 2007.

[38] B. Choi and K. Shukla, "Multi-valued logic circuit design and
implementation," International Journal of Electronics and

Electrical Engineering, vol. 3, no. 4, pp. 256-262, August 2015.

[39] B. Choi, R. Zheng, and K. Shukla, “Realizing many-valued logic
for computation,” International Journal of Electronics and

Electrical Engineering, vol. 4, no. 4, pp. 227-283, August 2016.

Dr. Ben Choi has a Ph.D. degree in

Electrical and Computer Engineering and

also has a Pilot certificate for flying

airplanes and helicopters. He is an

Associate Professor in Computer Science

at Louisiana Tech University. He received

his Ph.D., M.S., and B.S. degrees from The

Ohio State University, studied Computer

Science, Computer Engineering, and Electrical Engineering.

His areas of research include Humanoid Robots, Artificial

Intelligence, Machine Learning, Intelligent Agents, Semantic

Web, Data Mining, Fuzzy Systems, and Parallel Computing.

His future research includes developing advanced software and

hardware methods for building intelligent machines and

theorizing the Universe as a Computer.

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

424© 2017 Int. J. Mech. Eng. Rob. Res.

