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 Abstract—This paper aims to design the first 

microprocessor based on many-valued logic circuits. The 

designed microprocessor will then form the basis for 

building the first many-valued logic computer. The aim is to 

design and build new computers entirely within the domain 

of many-valued logic. In a four-valued logic computer, each 

wire carries two bits at a time, each logic gate operates two 

bits at a time, and each memory cell records two bits at a 

time. This paper proposes a simple computational model by 

providing a simple architecture and by defining a simple 

instruction set. It then provides the design of the arithmetic 

and logic processing unit, a register file, a new many-valued 

memory cell, a new many-valued tri-state buffer, and a new 

decoder. In addition, it proposes a new methodology for 

designing any many-valued logic circuits. Having the design 

of the microprocessor and all the needed components 

provide the necessary and sufficient tools for exploiting the 

many-valued computational paradigm. We are now ready 

and are working to build the first many-valued 

microprocessor and computer.  

 Index
 

Terms—fuzzy computer, many-valued logic, fuzzy 

control, circuit design, fuzzy system 

I.
 

INTRODUCTION

 
The performances of current computers are reaching 

their limits. Almost all present day computers are built 

based on two-valued logic. In two-valued logic, each 

wire can have two states. The performance of current 

computer depends mostly on how quickly the states can 

be changed, which determines the clock speed. During 

the past decades, the clock speed for CPU had doubled 

almost every year. In recent years, the clock speed 

doubled every 18 months. Now, it has become
 progressively difficult to increase the clock speed. The 

limit is approaching. Recently, CPU manufacturers are 

trying to circumvent the limitation of clock speed by 

packing more and more “cores” into a chip, which has 

resulted in dual-core or quad-core CPUs. However, this 

multi-core approach does not greatly improve the 

performance. This is due in part by the limit of the 

amount of data that can be transferred between the CPU 

and its connected components, which is determined by 

the number of pins on the CPU. Using two-value logic 

each pin on the CPU can have at most two states, and 

again the amount of data that can be transferred is 

determined by the clock speed. Thus, the multi-core 

approach does not circumvent the limitation. 

Thus, there is a need for an innovative approach in 

order to push the speed limit of computing. Now is the 

time to depart from the two-valued logic to venture into 

many-valued logic and even into infinite-valued (Fuzzy) 

logic. Advancing from two-valued to four-valued logic 

provides an progressive approach [1]. Four symbols {0, 1, 

2, 3} are needed to distinguish the four values, as shown 

in Table 1. The four values may represent anything, for 

example, the four bases {A, T, C, G} found in DNA, or 

the probability {0, 1/3, 2/3, 1}. These four values can be 

converted to binary numbers {00, 01, 10, 11}, or they 

can simply represent integers {0, 1, 2, 3}.   

TABLE I.

 

REPRESENTATIONS OF A FOUR-VALUED VARIABLE
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 To fully exploiting the many-valued computational 

paradigm, it is necessary to start from the ground up by 

designing components needed for constructing many-

valued logic circuits. For example, each four-valued 

logic gates will operate two bits of data at a time, and 

each memory cell will record two bits at once. Now, each 

wire or CPU pin can have four states, which could 

double the amount of data that can be transferred 

between the CPU and its connected components without 

increasing the number of pins on the CPU. 

 Figure 1. The High-level Architecture of the Many-valued 
Microprocessor 
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With eight-valued logic, each logic gate operates three 

bits of data and each CPU pin carries three bits of data at 

a time. The extreme case will be the infinite-valued or 

Fuzzy logic. Now, a different limit is being pushed. 

The approach for using many-valued logic is in fact 

currently being employed in building higher capacity 

flash memory. The industry is pushing to allow each 

memory cell to store not just one bit, but two bits, three 

bits, and even four bits[2][3][4]. Now, we are proposing 

to push these limits not just in memory technologies, but 

also in computation.  

TABLE II. INSTRUCTION FORMATS AND DEFINITIONS 

Op-Code Format Definition 

0000 MOVE  RD, RA RD RA 

0001 NOT  RD, RA RD bitwise NOT RA 

0010 AND RD, RA, RB RDRA bitwise AND RB 

0011 OR  RD, RA, RB RD RA bitwise OR RB 

0100 ADD RD, RA, RB RD RA + RB 

0101 SUB RD, RA, RB RD RA – RB 

0110 ADDI RD, RA, 4 bit data RD RA + 4 bit data 

0111 SUBI RD, RA, 4 bit data RD RA – 4 bit data 

1000 SET RD, 8 bit data RD 8 0’s follow by 8 bit data 

1001 SETH RD, 8 bit data RD 8 bit data follow by RD7, RD6 … RD0 

1010 INCIZ RD, 4 bit data, RB RD RD + 4 bit data, IF RB == 0 (zero) 

1011 DECIN RD, 4 bit data, RB RD RD – 4 bit data, IF RB15 == 1 (neg)  

1100 MOVEZ RD, RA, RB RD RA IF RB == 0  (zero) 

1101 MOVEX RD, RA, RB RD RA IF RB != 0   (not zero) 

1110 MOVEP RD, RA, RB RD RA IF RB15 == 0  (positive)  

1111 MOVEN RD, RA, RB RD RA IF RB15 == 1  (negative)  

 
To make the many-valued computation possible, this 

paper provides the necessary and sufficient tools and 

components for designing many-valued systems entirely 

within the domain of many-valued logic. The aim is to 

design the first microprocessor based on many-valued 

logic circuits and then to use the microprocessors to build 

many-valued logic computers. For serving as a prototype, 

the design will be kept simple. The author first proposes 

a simple computational model by providing a simple 

architecture and by defining a simple instruction set. Fig. 

1 shows the high-level architecture of the many-valued 

microprocessor. At this high-level, the architecture looks 

similar to that of conventional digital computer. The use 

of many-valued logic is more explicit when the 

arithmetic and logic processing unit (ALU) is being 

designed and implemented. The author then proposes a 

design of a many-valued memory cells that are then used 

to design and implement the registers. The designs of 

many-valued tri-state buffers and decoders are also 

provided in this paper, which are then used to design and 

implement the control circuits. The design of the pre-

loadable micro program memory is similar to that used 

for design multi-bit flash memory cells [2][3][4]. In 

addition, the author also proposes a methodology for 

designing any many-valued circuits. Equipped with the 

design details and methodology, we are now ready to 

venture into the domain of many-valued logic 

computation.  

The remaining of this paper is organized as follows. 

Section II outlines the related research and their 

limitations. Section III provides the high-level design of 

the many-valued microprocessor, highlights the overall 

architecture, and defines the instruction set. Section IV 

proceeds on the design of the arithmetic and logic 

processing units. It also outlines a methodology for 

designing any many-valued circuits and provides the 

design of a four-valued adder circuit as an example. 

Section V describes the design of a many-valued 

memory cell that is used in the design of many-valued 

registers. It also provides the design of a four-valued tri-

state buffer and decoder that are used for the design of 

the control units. Section VI discusses the 

implementation and programming aspects of the 

microprocessor. Section VII gives the conclusion and 

outlines the future research.  

II. RELATED RESEARCH  

To exploit the many-valued computation in hardware, 

we need the fundamental building blocks for many-

valued logic circuits: many-valued logic gates, memory 

cells, and flip-flops. However, even these essential logic 

gates and memory cells are not yet fully developed. 

Currently, many-valued and fuzzy systems 

[5],[6],[7],[8],[9],[10],[11] are usually simulated or 

implemented by using a fuzzifier to convert the inputs 

into binary, using a set of fuzzy rulesfor processing and 

inferring, and using a defuzzifier to convert the binary 

results to outputs. To go a step further, researchers are 

now researching on many-valued and fuzzy logic circuits 

that can fully implement fuzzy systems.  

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to 

adapt CMOS [12],[13] technologies to implement the 

many-valued and Fuzzy logic gates. The design of the 

AND gate and the OR gate using CMOS technology was 

reported [1],[14],[15],[16]. Other technologies, including 

carbon nanotube and single electron transistors, have 

been attempted to build many-valued logic circuits 
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[17][18][19]. Other researchers used analog circuits to 

implement the many-valued and fuzzy logic gates 

[20],[21],[22]. However, these analog circuits were more 

difficult to be fabricated.  

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in 

[11],[23],[24],[25],[26],[27],[28],[29],[30],[31]. Concept 

of fuzzy flip-flop was first mentioned by Hirota [23]. 

They used analog gates [32],[33],[34]for the design their 

JK-type flip-flop as discussed in [19]. Hirota[23]defined 

fuzzy JK flip-flop based on the binary JK flip-flop but 

using fuzzy operators. Their design was based on fuzzy 

operators such as t-norm, s-norm, and fuzzy negation[35]. 

Virant et al.[29]proposed a design of T-type fuzzy flip-

flop. The researchers adapted a strategy similar to Hirota 

[23] in the design of the T fuzzy flip-flop. However, we 

found that the fuzzy memory cells or flip-flops reported 

previously, such as JK-type flip-flop [23][24][25] and T-

type flip-flop [29], have their limitations and cannot fully 

be used as general fuzzy memory cells. The flip-flops 

would not produce the correct results under certain input 

conditions[37].  

In this paper, we focus on the design methodologies to 

utilize the proposed many-valued logic gates and 

memory cells to design many-valued logic computing 

systems[38][39], in particularly to design a many-valued 

microprocessor.  

III. DESIGNING THE FIRST MANY-VALUED 

MICROPROCESSOR 

This section describes the top-level design of a simple 

many-valued microprocessor. At the top-level, the design 

process of a many-valued microprocessor is similar to 

that of a conventional digital microprocessor. The 

process begins by designing the computational model 

and defining the instruction set.  

The high-level architecture of the microprocessor is 

shown in Fig. 1 (called as BCPU), which highlights the 

major components of the computational model. The 

processor consists of 16 registers (R0, R1, .... R15) for 

storing data. Within these 16 registers, there are 4 special 

purpose registers: R6 is the input register; R13 and R14 

are the output registers; R15 is the program counter (PC).  

The processor consists of an ALU (arithmetic and logic 

unit) for preforming computations. It consists of a micro 

program memory for storing instructions. The micro 

program memory is a type of nonvolatile memory (like 

flash memory) that allows the instructions to be pre-

loaded. The 16 registers is part of the address (0, 1, 2, … 

15) space of the program memory, such allowing the 

contents of the registers to be re-loaded as well.  

The process of preforming one computation specified 

by one instruction is outlined as follows. The program 

counter (PC) contains the address of the instruction to be 

executed. This address is passed to program memory 

through the F bus (as shown in Fig. 1). The program 

memory retrieves the instruction and outputs it on C bus. 

The wires of the C bus act as the control signals and pass 

to various decoders (DEC), that decode the instruction to 

select which registers and which processing unit (inside 

ALU) to be used to perform the instruction. The ALU 

receives the data of the selected registers through A, B, 

and D buses, performs the computation, and sends the 

result through D bus to be stored in the destination 

register. The ALU also sends enable signals through E 

bus to determine whether to write the result into the 

registers or not, which is used to implement conditional 

(if) statements. The final step is to update the contents of 

the program counter (PC), which will increase by one if 

it is not updated by the instruction. Any instructions 

writes into the program counter (PC) will function as 

Jump statement.  

The microprocessor can perform 16 instructions that 

are defined as shown in Table 2. The first instruction is 

the MOVE operation that implements RD = RA, where RD 

is one of the 16 registers (except the input register) for 

storing the result of the operation, and RA is anyone of 

the 16 registers. For example, MOVE R2, R1 will results 

in R2 = R1 (contents of register R2 is replaced by 

contents of R1);SET R1, 100 will results in R1 = 100; 

and ADD R3, R2, R1 will results in R3 = R2 + R1.  

One unique feature of this microprocessor is that 

anyone of these 16 instructions can write into the 

program counter PC (that is R15) and such can function 

as a Jump statement. For example, MOVE PC, R1 will 

jump to the address specified by R1, while MOVEZ PC, 

R1, R2 will jump only if R2 is zero (a conditional jump), 

and ADDI PC, PC, 8 will function as a relative jump for 

jumping forward.  

Each instruction is specified by a 16-bit binary number. 

For example, ADD R3, R2, R1 is specified by a 4-bit op-

code 0100 (as show in Table 2), R3 is coded by 0011, R2 

by 0010, and R1 by 0001. Each of the 16 registers can 

store a 16-bit binary number. For serving  

as a prototype, the design is a simple 16-bit 

microprocessor.  

 

Figure 2. Arithmetic and Logic Processing Units (ALU) 
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Figure 3. Implementation of a 16-bit AND Operation Using 4-valued 

Logic Circuits 

 

The computational model and the instructions of this 

simple 16-bit microprocessor will serve as a prototype 

for design and implementation using many-valued logic 

circuits. One major advantage of using many-valued 

logic circuits to implement a microprocessor (or a 

computer) is to reduce the number of wires and 

components, as will be described in the remaining 

sections.  

IV. DESIGNING MANY-VALUED PROCESSING UNITS 

This section begins to realize the design of the 

microprocessor by using many-valued logic circuits. It 

begins by implementing the processing units. The 

arithmetic and logic unit (ALU) of the processor consists 

of 16 processing units, each of which implements the 

operation of one instruction, as shown in Fig. 2. The 

processing units take input data from A, B, C, D buses, 

execute the specified operations, and pass the results to D 

output bus through tri-state buffers. There are 16 control 

signals (G0, G1, … G15) used to select which result 

should be available on the D output bus based on which 

instruction is being executed.  

For this first design of a many-valued microprocessor, 

the implementation of the processing units will be done 

by using four-valued logic circuits, although sixteen-

valued logic circuits would also be well suited. Each of 

the processing units will be implemented by using four-

valued logic circuits: each wire can carry 2 bits of data at 

any state and each logic gate can operate 2 bits of data at 

a time. For example, the design of the AND processing 

unit is shown in Fig. 3. The AND operation takes 8 wires 

(realizing 16 bits) as input A and 8 wires as input B; 

performs the bit-wise AND operation using 8 four-valued 

AND gates; and outputs the results using 8 wires as D 

(realizing 16 bits outputs). The number of wires and 

gates reduces by 50%in comparing conventional digital 

microprocessors.  

The OR and NOT processing units can be 

implemented using the same method as outlined for 

AND processing unit. The MOVE, SET, and SETH 

processing units only requires wires within for setting 

specific bits. The MOVEN, MOVEP, MOVEX, and 

MOVEZ also contains logic gates for checking the 

conditions.  

The remaining processing units, ADD, SUB, ADDI, 

SUBI, INCIZ, and DECIN, all require the function of 

adding two numbers, where the SUB (A - B) is 

implemented as A + (-B). 

A general design methodology will be outlined in the 

following, instead of providing the detailed design of the 

adding function. The methodology can be used to design 

any many-valued logic circuits, although the design of a 

four-valued adder is provided as an example.  

The following outlines a simple four-step process for 

designing many-valued circuits to implement any many-

valued functions[38]. The four steps are: (0) Creating a 

truth table to define the function; (1) Connecting each 

input x to n Ci(x) gates; (2) Creating an AND gate for 

each output instance having a value > 0; and (3) 

Connecting the outputs of all the AND gates to an OR 

gate, which produces the outputs of the required function. 

These 4 steps are described in more details in the 

following: 

Step 0.Truth Table: Creating a truth table to define the 

many-valued functions 

As an example, we choose to design an adder that adds 

2 four-valued numbers A, B. We create atruth tableto 

define the required functions,as shown in Table 3.All 

possible input combinations are shown in column A and 

B. The results of the addition is encoded by two outputs 

K and S, where K stands for carry and S stands for sum, 

and the total value is 4K+S. The column K defines the 

function required to produce K as output, and the column 

S defines the function required to produce S as output.  

Step 1.Ci(x) gates: Connecting each input x to n Ci(x) 

gates for 0 ≤ i ≤ n-1 

TABLE III. TRUTH TABLE DEFINING A FOUR-VALUED 

ADDER 

Input Output 

  41x 40x 

A B K S 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

1 0 0 1 

1 1 0 2 

1 2 0 3 

1 3 1 0 

2 0 0 2 

2 1 0 3 

2 2 1 0 

2 3 1 1 

3 0 0 3 

3 1 1 0 

3 2 1 1 

3 3 1 2 

 

Continuing the above example of designing an adder, 

the adder have two inputs, A and B. Now, we connect 

input A to 4 Ci(A) gates:  

C0(A), C1(A), C2(A), C3(A) 
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Similarly, we connect input B to 4 Ci(B) gates:  

C0(B), C1(B), C2(B), C3(B) 

The results of these connection is shown in Fig. 4.  
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Figure 4. A Four-valued Adder Circuit for Building Arithmetic 
Operations 

 

Step 2. AND gates: Creating an AND gate for each 

output instance having a value > 0  

For eachinput instanceA0,A1,…Am-1 =x0,x1,…xm-1 that 

produce an output e> 0, create an AND gate connecting: 

Cx0(A0)·Cx1(A1)·…·Cxm-1(Am-1)·e 

For e = en-1, there is no need to connect the AND gate to 

e, which is the results of simplification based on the 

postulate P1 that is en-1·A = A.  

Continuing the example of designing an adder, for the 

function that produce S as output (in the S column of the 

truth table), there are 9 instances that produce output e > 

0. For example, referring to the truth table, when inputs 

A=0, B=1, the output S=1, in this case we create an AND 

gate connecting: C0(A)·C1(B)·1, in which since A=0 so 

the AND gate connects to the output of C0(A) gate (from 

Step 1), since B=1 so the AND gate connects to the 

output of C1(B) gate (from Step 1), and since S=1 so the 

AND gate connects to 1. When inputs A=0, B=2, the 

output S=2, in this case we create an AND gate 

connecting: C0(A)·C2(B)·2,in which since A=0 so the 

AND gate connects to the output of C0(A) gate, since 

B=2 so the AND gate connects to the output of C2(B) 

gate, and since S=2 so the AND gate connects to 2. And, 

when inputs A=0, B=3, the output S=3, in this case we 

create an AND gate connecting: C0(A)·C3(B)·3, which is 

simplified to C0(A)·C3(B). We create 9 AND gates for 

the 9 instances as shown in the below and the 

connections are shown in Fig. 4.  

C0(A)·C1(B)·1,  C0(A)·C2(B)·2,  C0(A)·C3(B),  

C1(A)·C0(B)·1,  C1(A)·C1(B)·2,  C1(A)·C2(B),  

C2(A)·C0(B)·2,  C2(A)·C1(B),  C2(A)·C3(B)·1, 

C3(A)·C0(B),  C3(A)·C2(B)·1,  C3(A)·C3(B)·2 

 

Similarly, for the function that produce K as output (in 

the K column of the truth table), there are 6 instances that 

produce output e > 0. We create 6 AND gates as shown 

in the below and the connections are shown in Fig. 4.  

C1(A)·C3(B)·1,  C2(A)·C2(B)·1,  C2(A)·C3(B)·1,  

C3(A)·C1(B)·1,  C3(A)·C2(B)·1,  C3(A)·C3(B)·1  

Step 3: OR gate:Connecting the outputs of all the AND 

gates to an OR gate, which produces the outputs of the 

required function.  

Finishing the example of designing an adder,for the 

function that produce S as output (in the S column of the 

truth table), we connect the outputs of all the 9 AND 

gates (from Step 2) to an OR gate, as defined below: 

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) +  

C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) +  

C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 + 

C3(A)·C0(B) +  C3(A)·C2(B)·1 +  C3(A)·C3(B)·2 

Similarly, for the function that produceK as output (in 

the K column of the truth table), we connect the outputs 

of all the 6 AND gates (from Step 2) to an OR gate, as 

defined below: 

 

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 + 

C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1  

 

Figure 5. Register File and Data Buses 
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Figure 6. A Many-valued Memory Cell for Building Registers 

 

The results all the connections are shown in Fig. 4, 

which is the four-valued circuit that implements the four-

valued addition of two four-valued numbers.  

To reduce the number of logic gates for a circuit, an 

additional step for minimization would be added into the 

steps outlined above. To further optimize the circuits for 

performance, specially designed transistor-level circuits 

would be used to implement the arithmetic processing 

units.  

V. DESIGNING MANY-VALUED REGISTERS AND 

CONTROL UNITS 

To continue the design of the many-valued 

microprocessor, this section describes the design of the 

registers and the control units. The high-level design of 

the register file is shown in Fig. 5. There are 16 registers, 

all of which (except R6) take inputs from ALU through 

the D bus. The input register R6 takes input from outside 

of the processor. Each register receives an enable signal 

that determine whether to write into the register, for 

implementing the conditional instructions. The registers 

store the results of the current step of computation and 

provide the data for later steps. Each register can provide 

its data on A, B, C, and D data buses. As shown in Fig. 5, 

the control signals, I, J, K, and L controlling the tri-state 

buffers, determine whether or not to provide the data on 

the buses. These data are available to the ALU for 

processing. Registers R13 and R14 also provide the data 

as outputs to the outside of the processor. Register R15 

serves as the program counter (PC). Any instruction can 

write into the program counter to function as a Jump 

statement. If no instruction write into the PC, then it will 

increase by one after executing the current instruction. 

 

Figure 7. The Design of a Four-valued Tri-State Buffer 

 

Figure 8. A Decoder from 2 Four-valued Wires to 16 Control Signals 

 

To implement many-valued registers requires many-

valued memory cells. The author has designed a memory 

cell that can store any many-valued data as shown in Fig. 

6 [1]. The memory cell can be used for building the 

required registers. The memory cell is general purpose 

and the design used many-valued logic gates. To be 

specific in implementing the registers using four-valued 

logic, special transistor-level design would be possible 

for improving the performance.  

Besides the many-valued memory cell, another key 

component needed is the many-valued tri-state buffer. 

The tri-state buffers are used in the register file (Fig. 5) 

for connecting the registers to the data buses, and are 

used in the ALU (Fig. 2) for connecting the processing 

units to the bus. The author provides a simple design 

concept of a four-valued tri-state buffer as shown in Fig. 

7. If the enable signal (ENB) is False, there is no 

connection as all the 4 transistors (acting like switches) 

turn off. When ENB is True resulting in one of the 

switch turned on, the input value will be passed to the 

output.  

The control units consist of many decoders, shown in 

Fig. 1 as DEC G, E, I, J, K, and L (located inside ALU, 

register file, and program memory). These decoders 

decode the instruction and produce many control signals. 

The design of the decoder DEC G is shown in Fig. 8. The 

decoder takes 2 four-valued wires and produces 16 

control signals. The design of the remaining decoders are 

similar to this one.  

VI. IMPLMENTATIONS AND PROGRAMMING 

After completingthe design of the four-valued logic 

microprocessor, the next stage is the implementationfor 

building of the microprocessor and the computer. Before 

implementing the design in hardware, the author first 

created a simulator to test the processing and the 

instruction set. The simulator can execute assemble 

language programs written using the instruction set 

(defined in Table 2). An example program is shown in 

Fig. 9, that multiplies two numbers using a bitwise 

method. The testing results show that the instruction set 

is quite versatile despite the simplicity of the instructions 

and the overall architecture of the microprocessor.  

M

M

m

m

T
-

Q

D

Q’

0 1 2 3

0 1 2 3

ENB

ENB

Tri-State Buffer
(Symbol)

0 1 2 3 0 1 2 3

G15

. . .

C11,10 C9,8

G14

G2

G1

G0

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 5, September 2017

422© 2017 Int. J. Mech. Eng. Rob. Res.



 

Figure 9. A Program for Multiplication 

 

To be able to realize the design of the microprocessor 

in hardware, all the needed many-valued logic 

components have been created and tested. These includes 

all the needed logic gates: AND, OR, NOT, and disjoint 

unary Ci(x) gates; the needed memory cells, and the 

needed tri-state buffers. In additional, a methodology for 

designing any many-valued logic circuits have been 

developed. The design of adder circuits, the key 

component for implementing arithmetic operations, have 

been developed and tested. Now we are ready and are 

working to realize the design of many-valued 

microprocessor and the computer.  

VII. CONCLUSION AND FUTURE RESEARCH 

Now is the time to depart from the two-valued logic to 

venture into many-valued logic and even into infinite-

valued or Fuzzy logic. To make many-valued 

computation possible, this paper provides the necessary 

tools for designing many-valued systems entirely within 

the domain of many-valued logic. It outlines the design 

of the first many-valued microprocessor, by providing 

design examples of the processing units, the registers, 

and the control units. To be able to implement these 

designs in hardware, the design of many-valued memory 

cell, tri-state buffer, and decoder are also provided. In 

addition, it describes a simple methodology for designing 

any many-valued circuits to implement any many-valued 

functions. Although not every pieces of details are 

provided in this paper, the overall design of the 

microprocessor, all the key components for 

implementation, and the design methodology should 

provide sufficient information for future developments. 

The next stage for future research will be to build the 

first many-valued microprocessor and computer.  
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