
Building a Knowledge Based Summarization
System for Text Data Mining

Andrey Timofeyev(&) and Ben Choi

Computer Science, Louisiana Tech University, Ruston, USA
andtimo@latech.edu, pro@benchoi.org

Abstract. This paper provides details on building a knowledge based auto-
matic summarization system for mining text data. The knowledge based system
mines text data on documents and webpages to create abstractive summaries by
generalizing new concepts, deriving main topics, and creating new sentences.
The knowledge based system makes use of the domain knowledge provided by
Cyc development platform that consists of the world’s largest knowledge base
and one of the most powerful inference engines. The system extracts syntactic
structures and semantic features by employing natural language processing
techniques and Cyc knowledge base and reasoning engine. The system creates a
summary of the given documents in three stages: knowledge acquisition,
knowledge discovery, and knowledge representation for human readers. The
knowledge acquisition derives syntactic structure of each sentence in the doc-
uments and maps their words and their syntactic relationships into Cyc
knowledge base. The knowledge discovery abstracts novel concepts and derives
main topics of the documents by exploring the ontology of the mapped concepts
and by clustering the concepts. The knowledge representation creates new
English sentences to summarize the documents. This system has been imple-
mented and integrated with Cyc knowledge based system. The implementation
encodes a process consisting seven stages: syntactic analysis, mapping words to
Cyc, concept propagation, concept weights and relations accumulation, topic
derivation, subject identification, and new sentence generation. The imple-
mentation has been tested on various documents and webpages. The test per-
formance data suggests that such a system could benefit from running on parallel
and distributed computing platforms. The test results showed that the system is
capable of creating new sentences that include abstracted concepts not explicitly
mentioned in the original documents and that contain information synthesized
from different parts of the documents to compose a summary.

Keywords: Data mining � Text summarization � Artificial intelligence
Knowledge extraction � Knowledge-based systems

1 Introduction

In this paper, we describe the implementation details of the automatic summarization
system reported in [1]. The system mines text data on documents and webpages and
uses knowledge base and inference engine to produce an abstractive summary. It
generates summaries by composing new sentences based on the semantics derived from
the text. The system combines syntactic structures and semantic features to provide

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
A. Holzinger et al. (Eds.): CD-MAKE 2018, LNCS 11015, pp. 118–133, 2018.
https://doi.org/10.1007/978-3-319-99740-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99740-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99740-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99740-7_8&domain=pdf

summaries that contains information synthesized from various parts of the document. It
is built on Cyc development platform that consists of the world’s largest knowledge
ontology and one of the most powerful inference engines that allow information
comprehension and generalization [2]. In addition, the Cyc knowledge ontology pro-
vides the domain knowledge for the subject matter discussed in the documents.

Abstractive document summarization is a task that is still considered complex for a
human and especially for a machine. When human experts perform document summa-
rization they tend to use their domain expertise about subject matter to merge information
from various parts of the document and synthesize novel information, which was not
explicitlymentioned in the text [3]. Our proposed system aims to follow similar approach.
It generalizes new abstract concepts based on the knowledge derived from the text. It
automatically detects main topics described in the text. Moreover, it composes new
English sentences for some of the most significant concepts. The created sentences form
an abstractive summary, combining concepts from different parts of the input text.

Our text data mining system is domain independent and unsupervised, being
limited only by the common sense ontology provided by the Cyc development plat-
form. The system conducts summarization process in three steps: knowledge acquisi-
tion, knowledge discovery, and knowledge representation.

The knowledge acquisition step derives syntactic structure of each sentence of the
input document and maps words and their relations into Cyc knowledge base. Next, the
knowledge discovery step generalizes concepts upward in the Cyc ontology and detects
main topics covered in the text. Finally, the knowledge representation step composes
new sentences for some of the most significant concepts defined in main topics. The
syntactic structure of the newly created sentences follows an enhanced subject-
predicate-object model, where adjective and adverb modifiers are used to produce more
complex and informative sentences.

The system was implemented as a pipelined and modular data mining framework.
Such system design allows comprehensible data flow, convenient maintenance and
implementation of additional functionality as needed. The system was tested on various
documents and webpages. The test results show that the system is capable of identifying
key concepts and discovering main topics comprised in the original text, generalizing
new concept not explicitly mentioned in the text and creating new sentences that contain
information synthesized from various parts of the text. The newly created sentences
have complex syntactic structures that enhance subject-predicate-object triplets with
adjective and adverb modifiers. For example, the sentence “Colored grapefruit being
sweet edible fruit” was automatically generated by the system analyzing encyclopedia
articles describing grapefruits. Here, the subject concept “grapefruit” is modified by the
adjective concept “colored” that was not explicitly mentioned in the text and the object
concept “edible fruit” is modified by the adjective concept “sweet”. The modifiers are
chosen based on the weight of the syntactic relation.

The rest of the paper is organized as follows. Section 2 outlines related work
undertaken in automatic text summarization area. Section 3 gives a brief overview of
the summarization process steps performed by the system. Section 4 covers system
implementation details. Section 5 provides thorough description of the system mod-
ules. Section 6 presents testing results. Section 7 discusses conclusions and directions
of future work.

Building a Knowledge Based Summarization System for Text Data Mining 119

2 Related Work

Automatic text summarization seeks to compose a concise and coherent version of the
original text preserving the most important information. Computational community has
studied automatic text summarization problem since late 1950s [4]. Studies in this area
are generally divided into two main approaches – extractive and abstractive. Extractive
text summarization aims to select the most important sentences from original text to
form a summary. Such methods vary by different intermediate representations of the
candidate sentences and different sentence scoring schemes [5]. Summaries created by
extractive approach are highly relevant to the original text, but do not convey any new
information. Most prominent methods in extractive text summarization use term fre-
quency versus inverse document frequency (TF-IDF) metric [6, 7] and lexical chains
for sentence representation [8, 9]. Statistical methods based on Latent Semantic
Analysis (LSA), Bayesian topic modelling, Hidden Markov Model (HMM) and
Conditional random field (CRF) derive underlying topics and use them as features for
sentence selection [10, 11]. Despite significant advancements in the extractive text
summarization, such approaches are not capable of semantic understanding and limited
to the shallow knowledge contained in the text.

In contrast, abstractive text summarization aims to incorporate the meaning of the
words and phrases and generalize knowledge not explicitly mentioned in the original
text to form a summary. Phrase selection and merging methods in abstractive sum-
marization aim to solve the problem of combining information from multiple sentences.
Such methods construct clusters of phrases and then merge only informative ones to
form summary sentences [12]. Graph transformation approaches convert original text
into a form of sematic graph representation and then combine or reduce such repre-
sentation with an aim of creating an abstractive summary [13, 14]. Summaries con-
structed by described methods consist of sentences not used in the original text,
combining information from different parts, but such sentences do not convey new
knowledge.

Several approaches attempt to incorporate semantic knowledge base into automatic
text summarization by using WordNet lexical database [8, 15, 16]. Major drawback of
WordNet system is the lack of domain-specific and common sense knowledge. Unlike
Cyc, WordNet does not have reasoning engine and natural language generation
capabilities.

Recent rapid development of deep learning contributes to the automatic text
summarization, improving state-of-the-art performance. Deep learning methods applied
to both extractive [17] and abstractive [18] summarization show promising results, but
such approaches require vast amount of training data and powerful computational
resources.

Our system is similar to the one proposed in [19]. In this work, the structure of
created sentences has simple subject-predicate-object pattern and new sentences are
only created for clusters of compatible sentences found in the original text.

120 A. Timofeyev and B. Choi

3 Overview of the Summarization Process

Our system conducts summarization process in three steps: knowledge acquisition,
knowledge discovery, and knowledge representation. Summarization process workflow
is illustrated in Fig. 1.

The knowledge acquisition step consists of two parts. It first takes text documents
as an input and derives their syntactic structures. Then it maps each word in the text to
its corresponding Cyc concept and assigns word’s weight and derived syntactic rela-
tions to that concept. The knowledge discovery step is responsible for abstracting new
concepts that are not explicitly mentioned in the text. During this process, system
derives ancestor concept for each mapped Cyc concept, assigns ancestor-descendant
relation and adds scaled descendant concept weight and descendant concept associa-
tions to the ancestor concept. In addition, the system identifies main topics comprised
in the text by clustering mapped Cyc concepts. During the knowledge representation
step, the system first identifies most informative subject concepts in each of the dis-
covered main topics and then composes English sentences for each identified subject.
This process ensures that the summary sentences are composed using information
synthesized from different parts of the text while preserving coherence to the main
topics.

Knowledge Based System

Input:
document(s)

Cyc KB

Output:
summary

KNOWLEDGE
DISCOVERY

Abstract new concepts.
Identify main topics.

KNOWLEDGE
ACQUISITION

Extract syntactic structure.
Map words to Cyc concepts.

KNOWLEDGE
REPRESENTATION

Identify main subjects.
Create new sentences.

Fig. 1. System’s workflow diagram.

Building a Knowledge Based Summarization System for Text Data Mining 121

4 Details of the System’s Implementation

We chose Python as the implementation language to develop our system because of the
advanced Natural Language Processing tools and libraries it supplies. Our system uses
Cyc knowledge base and inference engine as a backbone for the semantic analysis. Cyc
development platform supports communications with the knowledge base and uti-
lization of the inference engine through the application programming interfaces (APIs)
implemented in Java. We utilize Java-Python wrapper supported by JPype library to
allow our system using Cyc Java API packages. JPype library is essentially an interface
at a basic level of virtual machines [20]. It requires starting Java Virtual Machine with a
path to the appropriate jar files before Java methods and classes can be accessible
within Python code. Communication between our system and Cyc development plat-
form is illustrated in Fig. 2. To the best of our knowledge, our developed system is the
first Python-based system that allows communication with Cyc development platform.

We have designed our system as a modular and pipelined data mining framework.
Modularity provides the ability to conveniently maintain parts of the system and to add
new functionality as needed. Pipelined design allows comprehensible data flow
between different modules.

The system consists of seven modules:

1. Syntactic analysis;
2. Mapping words to Cyc KB;
3. Concepts propagation;

Summarization
system

Cyc
development

platfrom

Python code

JPype library
Cyc Java APIs

Fig. 2. Communication between summarization system and Cyc development platform.

122 A. Timofeyev and B. Choi

4. Concepts’ weights and relations accumulation;
5. Topics derivation;
6. Subjects identification;
7. New sentences generation.

Modules 1 and 2 together constitute the knowledge acquisition step of the sum-
marization process. Modules 3, 4 and 5 together make up the knowledge discovery step
of the summarization process. Modules 6 and 7 together form knowledge representa-
tion step of the summarization process. System modules are illustrated in Fig. 3.

Fig. 3. Modular design of the system.

Building a Knowledge Based Summarization System for Text Data Mining 123

5 Description of the System’s Modules

5.1 “Syntactic Analysis” Module

The first module in the system is the “Syntactic analysis” module. The role of this
module is essentially a data preprocessing. The module takes documents as an input
and transforms them into syntactic representations. It first performs text normalization
by lemmatizing each word in each sentence. Then it derives part of speech tags, parses
syntactic dependencies and counts word’s weights. The syntactic dependencies are
recorded in the following format: (“word” “type” “head”), where “word” is the
dependent element, “type” is the type of the dependency, and “head” is the leading
element. For example, applying syntactic parser on the following sentence: “John
usually drinks strong coffee” produces the following syntactic dependencies between
words: (“John” “nsubj” “drinks”), (“coffee” “dobj” “drinks”), (“usually” “advmod”
“drinks”), (“strong” “amod” “coffee”). Syntactic dependencies of the example sentence
are illustrated in Fig. 4.

The “Syntactic analysis” module is implemented using SpaCy – Python library for
advanced natural language processing. SpaCy library is the fastest in the world with the
accuracy within one percent of the current state of the art systems for part of speech
tagging and syntactic dependencies analysis [21]. The “Syntactic analysis” module
operates outside of the Cyc development platform. The output of the module is a
dictionary that contains words, their part of speech tags, weights and syntactic
dependencies. This dictionary serves as an input for “Mapping words to Cyc KB”
module.

5.2 “Mapping Words to Cyc KB” Module

The “Mapping words to Cyc KB” module takes dictionary of words, derived by the
“Syntactic analysis” module, as an input. This module finds an appropriate Cyc concept
for each word in the dictionary, and assigns word’s weight and syntactic dependency
associations to Cyc concept. It starts by mapping each word to the corresponding Cyc
concept (1). Next, it assigns word’s weight to Cyc concept (2). Then it maps the
syntactic dependency head to the appropriate Cyc concept. Finally, it assigns the
syntactic dependency association and its weight to the Cyc concept (3). Table 1 pro-
vides the description of Cyc commands used to implement each step.

Fig. 4. Illustration of the syntactic dependencies of a sample sentence.

124 A. Timofeyev and B. Choi

This module communicates with Cyc development platform and updates weight
and syntactic dependency relations of Cyc concepts. The output of the module are
mapped Cyc concepts with assigned weights and syntactic dependency relations. The
mapped Cyc concepts serve as an input for “Concepts propagation” module. “Syntactic
analysis” and “Mapping words to Cyc KB” modules together constitute the knowledge
acquisition step of the summarization process.

5.3 “Concepts Propagation” Module

The “Concepts propagation” module takes Cyc concepts, mapped by “Mapping words
to Cyc KB” module, as an input and finds their closest ancestor concepts. This module
performs generalization and abstraction of new concepts that have not been mentioned
in the text explicitly. It starts by querying Cyc knowledge base for all the concepts that
have assigned weight (1). Then it finds an ancestor concept for each concept derived by
the query (2). Next, it records the number of ancestor’s descendant concepts and their
weight (3). Finally, it assigns ancestor-descendant relation between ancestor and
descendant concepts (4). Table 2 provides the description of Cyc commands used to
implement each step.

This module communicates with Cyc development platform to derive all mapped
Cyc concepts, find closest ancestor concepts and update ancestor concepts’ relations.
The output of the module are ancestor Cyc concepts with assigned descendant con-
cepts’ weights and counts and ancestor-descendant relations. The ancestor Cyc con-
cepts are used by “Concepts’ weights and relations accumulation” module.

Table 1. Description of Cyc commands used by “Mapping words to Cyc KB” module.

Step Cyc command Description

1 (#$and (#$denotation ?Word
?POS ?Num ?Concept)
(#$wordForms ?Word ?
WordForm “word”) (#$genls
?POS ?POSTag))

Command uses built-in “#$denotation” Cyc
predicate to relate a “word”, its part of speech
tag (?POS), and a sense number
(?Num) to concept (?Concept). It also uses
“#$wordForms” and “#$genls” predicates to
accommodate for all variations of word’s lexical
forms

2 (#$conceptWeight ?Concept
?Weight)

Command uses user-defined
“#$conceptWeight” Cyc predicate that assigns
the weight (?Weight) to the concept (?Concept)

3 (#$conceptAssociation ?Concept
?Type ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate that
assigns a specific type (?Type) of a syntactic
dependency association, the leading element
(?HeadConcept) and the weight (?Weight) to the
concept (?Concept)

Building a Knowledge Based Summarization System for Text Data Mining 125

5.4 “Concepts’ Weights and Relations Accumulation” Module

The “Concepts’ weights and relations accumulation” module takes ancestor Cyc
concepts as an input and adds descendants’ accumulated weight and relations to
ancestor concepts if the calculated descendant-ratio is higher than the threshold. The
descendant-ratio is the number of mapped descendant concepts divided by the number
of all descendant concepts of an ancestor concept. This module starts by querying Cyc
knowledge base for all ancestor concepts (1). Then it calculates the descendant ratio for
each ancestor concept (2.1, 2.2). Next, it adds propagated descendants’ weight (3) and
descendants’ associations with their propagated weights (4) to ancestor concepts if the
descendant-ratio is higher than the defined threshold. Table 3 provides the description
of Cyc commands used to implement each step.

Thismodule communicateswithCyc development platform to derive all ancestor Cyc
concepts, find the number of ancestor’s mapped descendants, find the number of all
ancestor’s descendants and update ancestor’s weight and relations. The output of the
module are the Cyc concepts with updated weights and syntactic dependency associa-
tions. Updated Cyc concepts are used by the “Topics derivation” and the “Subjects
identification” modules.

5.5 “Topics Derivation” Module

The “Topics derivation” module takes updated Cyc concepts as an input and derives
defining micro theory for each concept. Micro theories with the highest weights rep-
resent the main topics of the document. This module first derives defining micro theory
for each Cyc concept that have assigned weight (1). Then it counts the weights of
derived micro theories based on their frequencies and picks up top-n with the highest
weights. Table 4 provides the description of Cyc command used to implement defining
micro theory derivation.

Table 2. Description of Cyc commands used by “Concepts propagation” module.

Step Cyc command Description

1 (#$conceptWeight ?Concept
?Weight)

Command uses user-defined “#$conceptWeight” Cyc
predicate to retrieve concepts (?Concept) that have
assigned weights (?Weight)

2 (#$min-genls ?Concept) Command uses built-in “min-genls” Cyc predicate to
retrieve the closest ancestor concept for the given
concept (?Concept)

3 (#$conceptDescendants
?Concept ?Weight ?Count)

Command uses user-defined
“#$conceptDescendants” Cyc predicate to record the
number of descendants (?Count) and their weight
(?Weight) to the ancestor concept (?Concept)

4 (#$conceptAncestorOf
?Concept ?Descendant)

Command uses user-defined
“#$conceptAncestorOf” predicate to assign ancestor-
descendant relation between the ancestor concept
(?Concept) and the descendant concept
(?Descendant)

126 A. Timofeyev and B. Choi

This module communicates with Cyc development platform to derive defining
micro theory for each mapped Cyc concept. Calculation of the derived micro theories’
weights is handled outside of the Cyc development platform. The output of the module
is the micro theories dictionary that contains top-n micro theories with highest weights.
This dictionary serves as an input for the “Subjects identification” module. The
“Concepts propagation”, the “Concepts’ weights and relations accumulation” and the
“Topics derivation” modules together constitute knowledge discovery step of the
summarization process.

Table 3. Description of Cyc commands used by “Concepts’ weights and relations accumula-
tion” module.

Step Cyc command Description

1 (#$conceptDescendants
?Concept ?Weight ?Count)

Command uses user-defined
“#$conceptDescendants” Cyc predicate to retrieve
all concepts (?Concept) that have descendants

2.1 (#$conceptAncestorOf
?AncConcept ?MappedDesc)

Command uses user-defined
“#$conceptAncestorOf” predicate to retrieve
mapped descendant concepts (?MappedDesc) of the
given ancestor concept (?AncConcept)

2.2 (#$genls ?AncConcept
?DescConcept)

Command uses built-in “#$genls” Cyc predicate to
retrieve all descendant concepts
(?DescConcept) of the given ancestor concept
(?AncConcept)

3 (#$conceptWeight
?AncConcept
?DescWeight)

Command uses user-defined “#$conceptWeight”
Cyc predicate to assigns the descendant concepts’
propagated weight
(?DescWeight) to the ancestor concept

4 (and (#$conceptAncestorOf
?AncConcept ?DescConcept)
(#$conceptAssociation
?DescConcept ?Type
?HeadConcept ?Weight))

Command uses user-defined
“#$conceptAncestorOf” and
“#$conceptAssociation” Cyc predicates to assign
descendant’s association (?DescConcept) and its
propagated weight (?Weight) to the ancestor
concept (?AncConcept)

Table 4. Description of Cyc command used by “Topics derivation” module

Step Cyc command Description

1 (#$and (#$conceptWeight
?Concept ?Weight) (#$definingMt
?Concept ?MicroTheory))

Command uses user-defined
“#$conceptWeight” Cyc predicate and built-in
“definingMt” Cyc predicate to derive defining
micro theory (?MicroTheory) for each concept
(?Concept) that have assigned weight (?Weight)

Building a Knowledge Based Summarization System for Text Data Mining 127

5.6 “Subjects Identification” Module

The “Subjects identification” module uses updated Cyc concepts and the dictionary of
top-n micro theories as an input to derive most informative subject concepts based on a
subjectivity rank. Subjectivity ranks is the product of the concept’s weight and the
concept’s subjectivity ratio. Subjectivity ratio is the number of concept’s syntactic
dependency associations labelled as “subject” relations divided by the total number of
concept’s syntactic dependency associations. Subjectivity rank allows identifying
concepts with the strongest subject roles in the documents. The module start by
querying Cyc knowledge base for all mapped Cyc concepts for each micro theory in
top-n micro theories dictionary (1). Then it calculates subjectivity ratio and subjectivity
rank for each derived Cyc concept (2.1, 2.2). Finally, it picks top-n subject concepts
with the highest subjectivity rank. Table 5 provides the description of Cyc commands
used to implement each step.

This module communicates with Cyc development platform to derive mapped Cyc
concepts for each defining micro theory in the input dictionary and to find the number
of the concept’s syntactic dependency associations labelled as “subject” relation and
the number of all syntactic dependency associations of the concept. Calculations of the
subjectivity ratio and the subjectivity rank are handled outside of the Cyc development
platform. The output of the module is the dictionary that contains top-n subjects with
the highest subjectivity rank. This dictionary serves as an input for the “New sentence
generation” module.

Table 5. Description of Cyc commands used by “Subjects identification” module.

Step Cyc command Description

1 (#$and (#$definingMt ?Concept
?MicroTheory) (#$conceptWeight
?Concept ?Weight))

Command uses built-in “#$definingMt” Cyc
predicate and user-defined “conceptWeight”
Cyc predicate to derive concepts (?Concept)
that have assigned weight (?Weight) for each
micro theory (?MicroTheory) in micro theories
dictionary

2.1 (#$conceptAssociation ?Concept
“nsubj” ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“nsubj” parameter to derive the concept’s
(?Concept) syntactic dependency associations
labelled as “subject” relations

2.2 (#$conceptAssociation ?Concept
?Type ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with no
parameter specified (?Type) to derive all
concept’s (?Concept) syntactic dependency
associations

128 A. Timofeyev and B. Choi

5.7 “New Sentences Generation” Module

The “New sentences generation” module takes the dictionary of top-n most informative
subjects as an input and produces new sentences for each of the subject to form a
summary of the input documents. The module starts by deriving a natural language
representation of each subject Cyc concept in the dictionary (1). Then it picks the
adjective Cyc concept modifier with the highest subject-adjective syntactic dependency
association weight (2) and derives its natural language representation. Next, it picks
top-n predicate Cyc concepts with the highest subject-predicate syntactic dependency
association weights (3) and derives their natural language representations. Then it picks
the adverb Cyc concept modifier with the highest predicate-adverb syntactic depen-
dency association weight (4) and derives its natural language representation. Next, it
picks top-n object Cyc concepts with the highest product of subject-object and
predicate-object syntactic dependency association weights (5.1, 5.2) and derives their

Table 6. Description of Cyc commands used by “New sentence generation” module.

Step Cyc command Description

1 (#$generate-phrase ?Concept) Command uses built-in “#$generate-phrase”
Cyc predicate to retrieve corresponding natural
language representation for a Cyc concept
(?Concept)

2 (#$conceptAssociation ?Concept
“amod” ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“amod” parameter to derive Cyc concept
(?Concept) associations labelled as adjective
modifier syntactic dependency relation

3 (#$conceptAssociation ?Concept
“pred” ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“pred” parameter to derive Cyc concept
(?Concept) associations labelled as predicate
syntactic dependency relation

4 (#$conceptAssociation ?Concept
“advmod” ?HeadConcept ?
Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“advmod” parameter to derive Cyc concept
(?Concept) associations labelled as adverb
modifier syntactic dependency relation

5.1 (#$conceptAssociation ?Concept
“obj” ?HeadConcept ?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“obj” parameter to derive Cyc concept
(?Concept) associations labelled as object
syntactic dependency relation

5.2 (#$conceptAssociation ?Concept
“subj-obj” ?HeadConcept
?Weight)

Command uses user-defined
“#$conceptAssociation” Cyc predicate with
“subj-obj” parameter to derive Cyc concept
(?Concept) associations labelled as subject-
object syntactic dependency relation

Building a Knowledge Based Summarization System for Text Data Mining 129

natural language representations. Then, it picks the adjective Cyc concept modifier with
the highest object-adjective syntactic dependency association weight and derives its
natural language representation. Finally, it composes the new sentence using subject,
subject-adjective, predicate, predicate-adverb, object and object-adjective natural lan-
guage representations. Table 6 provides the description of Cyc commands used to
implement each step.

This module communicates with Cyc development platform to derive appropriate
Cyc concepts for each sentence element based on the weights of their syntactic
dependency associations and derive their natural language representation. New sen-
tences are composed outside of the Cyc development platform and serve as an output
for the module and the whole summarization system. The “Subjects identification” and
the “New sentences generation” modules together constitute the knowledge represen-
tation step of the summarization process.

6 Testing and Results

We have tested our system on various encyclopedia articles describing concepts from
different domain. First, we conducted an experiment using multiple articles about
grapefruits. In this experiment, we increased the number of analyzed articles on each
run of the system, starting with a single article. Figure 5 illustrates new sentences
created by the system. These results show the progression of sentence structure from
simple subject-predicate-object triplet to more complex structure enhanced by the
adjective and adverb modifiers when more articles were processed by the system.

Next, we applied our system on five encyclopedia articles describing different types
of felines, including cats, tigers, cougars, jaguars and lions. Figure 6 shows main topics
and concepts extracted from the text and newly created sentences.

These results show that the system is able to abstract new concepts and create new
sentences that contain information synthesized from different parts of the documents.
Concepts like “canis”, “mammal meat” and “felis” were derived by the generalization
process and were not explicitly mentioned in the original documents. Our system yields
better results compared to the reported in [19]. New sentences created by the system
have structure that is more complex and contain information fused from various parts
of the text. More testing results are reported in [1].

Fig. 5. Test results of new sentences created for multiple articles about grapefruit; (a) – single
article, (b) – two articles, (c) – three articles.

130 A. Timofeyev and B. Choi

7 Conclusions and Future Work

In this paper, we described an implementation of the knowledge based automatic
summarization system that creates an abstractive summary of the text. This task is still
challenging for machines, because in order to create such summary, the information
from the input text has to be aggregated and synthesized, drawing knowledge that is
more general. This is not feasible without using the semantics and having domain
knowledge. To have such capabilities, our implemented system uses Cyc knowledge
base and its reasoning engine. Utilizing semantic features and syntactic structure of the
text shows great potential in creating abstractive summaries. We have implemented and
tested our proposed system. The results show that the system is able to abstract new
concepts not mentioned in the text, identify main topics and create new sentences using
information from different parts of the text.

We outline several directions for the future improvements of the system. The first
direction is to improve the domain knowledge representation, since the semantic
knowledge and reasoning are only limited by Cyc knowledge base. Ideally, the system
would be able to use the whole World Wide Web as a domain knowledge, but this
possesses challenges like information inconsistency and sense disambiguation. The
second direction is to improve the structure of the created sentences. We use subject-
predicate-object triplets extended by adjective and adverb modifiers. Such structure can
be improved by using more advanced syntactic representation of the sentence, e.g.
graph representation. Finally, some of the created sentences are not conceptually
connected to each other. Analyzing the relations between concepts on the document
level will help in creating sentences that will be linked to each other conceptually.

Fig. 6. Test results of new sentences, concepts and main topics for encyclopedia articles about
felines.

Building a Knowledge Based Summarization System for Text Data Mining 131

References

1. Timofeyev, A., Choi, B.: Knowledge based automatic summarization. In: Proceedings of the
9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3 K 2017), pp. 350–356. SCITEPRESS (2017). https://doi.org/
10.5220/0006580303500356

2. Cycorp: Cycorp Making Solutions Better. http://www.cyc.com
3. Cheung, J., Penn, G.: Towards robust abstractive multi-document summarization: a

caseframe analysis of centrality and domain. In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, pp. 1233–1242. Association for Computa-
tional Linguistics (2013)

4. Luhn, H.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2, 159–165
(1958). https://doi.org/10.1147/rd.22.0159

5. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Charu, A.,
Zhai, C. (ed.) Mining Text Data, pp. 43–76. Springer, Boston (2012). https://doi.org/10.
1007/978-1-4614-3223-4_3

6. Hovy, E., Chin-Yew, L.: Automated text summarization and the SUMMARIST system. In:
Proceedings of a workshop held at Baltimore, Maryland, October 13–15, 1998, pp. 197–214.
Association for Computational Linguistics (1998). https://doi.org/10.3115/1119089.1119121

7. Radev, D., Jing, H., Styś, M., Tam, D.: Centroid-based summarization of multiple
documents. Inf. Process. Manag. 40, 919–938 (2004). https://doi.org/10.3115/1117575.
1117578

8. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. Adv. Autom. Text
summ. 111–121 (1999). https://doi.org/10.7916/d85b09vz

9. Ye, S., Chua, T., Kan, M., Qiu, L.: Document concept lattice for text understanding and
summarization. Inf. Process. Manag. 43, 1643–1662 (2007). https://doi.org/10.1016/j.ipm.
2007.03.010

10. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent semantic
analysis. In: Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 19–25. ACM (2001). https://doi.
org/10.1145/383952.383955

11. Shen, D., Sun, J., Li, H., Yang, Q., Chen, Z.: Document summarization using conditional
random fields. In: Proceedings of International Joint Conference on Artificial Intelligence,
pp. 2862–2867. IJCAI (2007)

12. Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., Passonneau, R.: Abstractive multi-document
summarization via phrase selection and merging. In: Proceedings of the ACL-IJCNLP,
pp. 1587–1597. Association for Computational Linguistics (2015)

13. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive
summarization of highly redundant opinions. In: Proceedings of the 23rd International
Conference on Computational Linguistics, pp. 340–348. Association for Computational
Linguistics (2010)

14. Moawad, I., Aref, M.: Semantic graph reduction approach for abstractive text summariza-
tion. In: Seventh International Conference Computer Engineering & Systems (ICCES),
pp. 132–138. IEEE (2012). https://doi.org/10.1109/icces.2012.6408498

15. Bellare, K., Das Sharma, A., Loiwal, N., Mehta, V., Ramakrishnan, G., Bhattacharyya, P.:
Generic text summarization using WordNet. In: Language Resources and Evaluation
Conference LREC, pp. 691–694 (2004)

132 A. Timofeyev and B. Choi

http://dx.doi.org/10.5220/0006580303500356
http://dx.doi.org/10.5220/0006580303500356
http://www.cyc.com
http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.1007/978-1-4614-3223-4_3
http://dx.doi.org/10.1007/978-1-4614-3223-4_3
http://dx.doi.org/10.3115/1119089.1119121
http://dx.doi.org/10.3115/1117575.1117578
http://dx.doi.org/10.3115/1117575.1117578
http://dx.doi.org/10.7916/d85b09vz
http://dx.doi.org/10.1016/j.ipm.2007.03.010
http://dx.doi.org/10.1016/j.ipm.2007.03.010
http://dx.doi.org/10.1145/383952.383955
http://dx.doi.org/10.1145/383952.383955
http://dx.doi.org/10.1109/icces.2012.6408498

16. Pal, A., Saha, D.: An approach to automatic text summarization using WordNet. In: IEEE
International Advance Computing Conference (IACC), pp. 1169–1173. IEEE (2014). https://
doi.org/10.1109/iadcc.2014.6779492

17. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based sequence
model for extractive summarization of documents. In: Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI 2017), pp. 3075–3081. AAAI (2017)

18. Rush, A.M., Chopra, S., Wetson, J.: A neural attention model for abstractive sentence
summarization. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing EMNLP, pp. 379–389 (2015). https://doi.org/10.18653/v1/d15-1044

19. Choi, B., Huang, X.: Creating new sentences to summarize documents. In: The 10th
IASTED International Conference on Artificial Intelligence and Application (AIA 2010),
pp. 458–463. IASTED (2010)

20. JPype: Java to Python integration. http://jpype.sourceforge.net
21. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for dependency

parsing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing EMNLP, pp. 1373–1378 (2015). https://doi.org/10.18653/v1/d15-1162

Building a Knowledge Based Summarization System for Text Data Mining 133

http://dx.doi.org/10.1109/iadcc.2014.6779492
http://dx.doi.org/10.1109/iadcc.2014.6779492
http://dx.doi.org/10.18653/v1/d15-1044
http://jpype.sourceforge.net
http://dx.doi.org/10.18653/v1/d15-1162

	Building a Knowledge Based Summarization System for Text Data Mining
	Abstract
	1 Introduction
	2 Related Work
	3 Overview of the Summarization Process
	4 Details of the System’s Implementation
	5 Description of the System’s Modules
	5.1 “Syntactic Analysis” Module
	5.2 “Mapping Words to Cyc KB” Module
	5.3 “Concepts Propagation” Module
	5.4 “Concepts’ Weights and Relations Accumulation” Module
	5.5 “Topics Derivation” Module
	5.6 “Subjects Identification” Module
	5.7 “New Sentences Generation” Module

	6 Testing and Results
	7 Conclusions and Future Work
	References

