CH06 External Memory

- Magnetic Disk
- RAID
- · Optical Memory
- Magnetic Tape

Types of External Memory

- · Magnetic Disk
 - → RAID
 - **→** Removable
- Optical
 - → CD-ROM
 - → CD-Writable (WORM)
 - → CD-R/W
 - → DVD
- · Magnetic Tape

Magnetic Disk

- Metal or plastic disk coated with magnetizable material (iron oxide...rust)
- · Range of packaging
 - → Floppy
 - → Winchester hard disk
 - > Removable hard disk

Data Organization and Formatting

- · Concentric rings or tracks
 - → Gaps between tracks
 - → Reduce gap to increase capacity
 - Same number of bits per track (variable packing density)
 - → Constant angular velocity
- · Tracks divided into sectors
- Minimum block size is one sector
- May have more than one sector per block

Fixed/Movable Head Disk

- Fixed head
 - → One read write head per track
 - → Heads mounted on fixed ridged arm
- · Movable head
 - → One read write head per side
 - → Mounted on a movable arm

Fixed and Movable Heads

Removable or Not //

- · Removable disk
 - → Can be removed from drive and replaced with another disk
 - → Provides unlimited storage capacity
 - → Easy data transfer between systems
- · Nonremovable disk
 - → Permanently mounted in the drive

Floppy Disk

- 8", 5.25", 3.5"
- · Small capacity
 - → Up to 1.44Mbyte (2.88M never popular)
- Slow (disk rotate at 300 and 600 rpm, average delay 100/2 and 200/2 ms.)
- Universal
- Cheap

Winchester Hard Disk (1)

- Developed by IBM in Winchester (USA)
- · Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins (crash into disk!)
- · Very small head to disk gap
- · Getting more robust

Winchester Hard Disk (2)

- Universal
- Cheap
- Fastest external storage (typically rotate 3600 rpm, newer faster, average rotational delay 8.3 ms.)
- · Getting larger all the time
 - → Multiple Gigabyte now usual

Removable Hard Disk

- ZIP
 - → Cheap
 - → Very common
 - **→** Only 100M
- JAZ
 - → Not cheap
 - **→**1G
- L-120 (a: drive)
 - → Also reads 3.5" floppy
 - → Becoming more popular?

Finding Sectors

- Must be able to identify start of track and sector
- · Format disk
 - → Additional information not available to user
 - → Marks tracks and sectors

ST506 format (old!) Gap1 Id Gap2 Data Gap3 Gap1 Id Gap2 Data Gap3 Sync Track Head Sector CRC Sync Byte Data CRC • Foreground reading • Find others

Characteristics

- Fixed (rare) or movable head
- · Removable or fixed
- · Single or double (usually) sided
- Single or multiple platter
- · Head mechanism
 - → Contact (Floppy)
 - → Fixed gap
 - → Flying (Winchester)

Multiple Platter

- · One head per side
- · Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - → reduces head movement
 - → Increases speed (transfer rate)

Speed

- Seek time
 - → Moving head to correct track
- · (Rotational) latency
 - → Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate T = (number of bytes to be transferred)/(rotation speed)/(number of bytes on a track) = b/(rN)
- total access time $T_a = T_s + 1/(2r) + b/(rN)$

Sequential organization vs. random access e.g.

- → e.g. a hard disk has average seek time of 20 ms, a transfer rate of 1 M byte/s, and 512 byte sectors with 32 sectors per track. Need to read a file consisting 256 sectors for a total of 128 K bytes. What is the total time for the transfer?
- Case 1: Sequential Organization (256 sectors on 8 tracks x 32 sectors/tracks)
 - → Average seek time = 20.0 ms
 - → Rotational delay = 8.3 ms
 - → Read 32 sections (one track) = 16.7 ms
 - total time to read first track = 45 ms
 - \rightarrow Total time = 45 ms + 7*(8.3 + 16.7) ms = 0.22 s

Time required for random access on highly fragmented organization

- Case 2: random access rather than sequential access
 - → Average seek time = 20.0 ms
 - → Rotational delay = 8.3 ms
 - \rightarrow Read 1 sector = 16.7/32 = 0.5 ms
 - + time to read one sector = 28.8 ms
 - → Total time = 256 * 28.8 ms = 7.37 s
- · De-fragment you hard disk!

Optical Storage CD-ROM //

- Originally for audio
- 650Mbytes giving over 70 minutes audio
- Polycarbonate coated with highly reflective coat, usually aluminum
- Data stored as pits
- · Read by reflecting laser
- · Constant packing density
- Constant linear velocity

Constant Angular Velocity vs. Constant Linear Velocity

ngular velocity

(b) Constant linear velocity

CD-ROM Drive Speeds

- · Audio is single speed
 - → Constant linear velocity
 - +1.2 ms⁻¹
 - → Track (spiral) is 5.27km long
 - → Gives 4391 seconds = 73.2 minutes
 - → Date 176.4 K bytes/s total capacity 774.57 M Bytes
- Other speeds are quoted as multiples
- e.g. $24x \sim = 4$ M Bytes/s (data transfer rate)
- The quoted figure is the maximum the drive can achieve

CD-ROM Format

00	FF x 10	00	Min	Sec	Sector	Mode	Data	Layered ECC
	12 byte Sync			4 byte Id			2048 byte	288 byte
						- 2	352 byte	

- Mode 0=blank data field
- Mode 1=2048 byte data+error correction
- Mode 2=2336 byte data

Random Access on CD-ROM

- Difficult
- Move head to rough position
- · Set correct speed
- · Read address
- Adjust to required location
- (Yawn!)

CD-ROM for & against

- Large capacity (?)
- · Easy to mass produce
- Removable
- Robust
- Expensive for small runs
- Slow
- · Read only

Other Optical Storage

- CD-Writable
 - → WORM
 - → Now affordable
 - → Compatible with CD-ROM drives
- · CD-RW
 - **→** Erasable
 - → Getting cheaper
 - → Mostly CD-ROM drive compatible

DVD - what's in a name?

- · Digital Video Disk
 - → Used to indicate a player for movies
 - ➤ Only plays video disks
- Digital Versatile Disk
 - → Used to indicate a computer drive
 - ➤ Will read computer disks and play video disks
- · Dogs Veritable Dinner
- · Officially nothing!!!

DVD - technology

- Multi-layer
- Very high capacity (4.7G per layer)
- dual-layer (single-sided ?) hold 8.5 Gbytes ~> 4hr movie
- Full length movie on single disk
 - → Using MPEG compression
- Finally standardized (honest!)
- · Movies carry regional coding
- Players only play correct region films

DVD - Writable

- · Loads of trouble with standards
- First generation DVD drives may not read first generation DVD-W disks
- First generation DVD drives may not read CD-RW disks
- · Wait for it to settle down before buying!

Foreground Reading

- Check out optical disk storage options
- · Check out Mini Disk

Magnetic Tape

- · Serial access
- Slow
- Very cheap
- · Backup and archive

Digital Audio Tape (DAT)

- Uses rotating head (like video)
- · High capacity on small tape
 - → 4Gbyte uncompressed
 - →8Gbyte compressed
- Backup of PC/network servers

RAID

- · Redundant Array of Independent Disks
- · Redundant Array of Inexpensive Disks
- 6 levels in common use
- Not a hierarchy
- Set of physical disks viewed as single logical drive by O/S
- · Data distributed across physical drives
- Can use redundant capacity to store parity information

RAID 0

- No redundancy
- · Data striped across all disks
- · Round Robin striping
- · Increase speed
 - → Multiple data requests probably not on same disk
 - → Disks seek in parallel
 - → A set of data is likely to be striped across multiple disks

RAID 1

- · Mirrored Disks
- · Data is striped across disks
- 2 copies of each stripe on separate disks
- Read from either
- · Write to both
- Recovery is simple
 - → Swap faulty disk & re-mirror
 - → No down time
- Expensive

RAID 2

- · Disks are synchronized
- · Very small stripes
- → Often single byte/word
- Error correction calculated across corresponding bits on disks
- Multiple parity disks store Hamming code error correction in corresponding positions
- Lots of redundancy
 - **→** Expensive
 - → Not used

RAID 3

- Similar to RAID 2
- Only one redundant disk, no matter how large the array
- Simple parity bit for each set of corresponding bits
- Data on failed drive can be reconstructed from surviving data and parity info
- · Very high transfer rates

RAID 4

- · Each disk operates independently
- Good for high I/O request rate
- Large stripes
- Bit by bit parity calculated across stripes on each disk
- Parity stored on parity disk

RAID 5

- Like RAID 4
- · Parity striped across all disks
- Round robin allocation for parity stripe
- Avoids RAID 4 bottleneck at parity disk
- Commonly used in network servers