CH18 Parallel Processing
- Multi-processor, Multi-computer
- Multiple Processor Organizations
- Symmetric Multiprocessors
- Cache Coherence and the MESI Protocol
- Clusters
- Non-Uniform Memory Access
- Vector Computation

Multiple Processor Organization
- Single instruction, single data stream - SISD
- Single instruction, multiple data stream - SIMD
- Multiple instruction, single data stream - MISD
- Multiple instruction, multiple data stream- MIMD

Single Instruction, Single Data Stream - SISD
- Single processor
- Single instruction stream
- Data stored in single memory
- Uni-processor

Parallel Organizations - SISD

Single Instruction, Multiple Data Stream - SIMD
- Single machine instruction
- Controls simultaneous execution
- Number of processing elements
- Lockstep basis
- Each processing element has associated data memory
- Each instruction executed on different set of data by different processors
- Vector and array processors

Parallel Organizations - SIMD
Multiple Instruction, Single Data Stream - MISD
- Sequence of data
- Transmitted to set of processors
- Each processor executes different instruction sequence
- Never been implemented

Multiple Instruction, Multiple Data Stream - MIMD
- Set of processors
- Simultaneously execute different instruction sequences
- Different sets of data
- SMPs, clusters, and NUMA systems

Parallel Organizations - MIMD Shared Memory

![Diagram of MIMD Shared Memory]

Parallel Organizations - MIMD Distributed Memory

![Diagram of MIMD Distributed Memory]

Taxonomy of Parallel Processor Architectures

![Taxonomy Diagram]

MIMD - Overview
- General purpose processors
- Each can process all instructions necessary
- Further classified by method of processor communication
Block Diagram of Tightly Coupled Multiprocessor

Tightly Coupled - SMP
- Processors share memory
- Communicate via that shared memory
- Symmetric Multiprocessor (SMP)
 - Share single memory or pool
 - Shared bus to access memory
 - Memory access time to given area of memory is approximately the same for each processor

Tightly Coupled - NUMA
- Non-uniform memory access
- Access times to different regions of memory may differ

Loosely Coupled - Clusters
- Collection of independent uni-processors or SMPs
- Interconnected to form a cluster
- Communication via fixed path or network connections

Symmetric Multiprocessors
- A stand alone computer with the following characteristics
 - Two or more similar processors of comparable capacity
 - Processors share same memory and I/O
 - Processors are connected by a bus or other internal connection
 - Memory access time is approximately the same for each processor
 - All processors share access to I/O
 - Either through same channels or different channels giving paths to same devices
 - All processors can perform the same functions (hence symmetric)
 - System controlled by integrated operating system
 - Providing interaction between processors
 - Interaction at job, task, file and data element levels

SMP Advantages
- Performance
 - If some work can be done in parallel
- Availability
 - Since all processors can perform the same functions, failure of a single processor does not halt the system
- Incremental growth
 - User can enhance performance by adding additional processors
- Scaling
 - Vendors can offer range of products based on number of processors
Organization Classification (network)
- Time shared or common bus
- Multiport memory
- Central control unit

Time Shared Bus
- Simplest form
- Structure and interface similar to single processor system
- Following features provided
 - Addressing - distinguish modules on bus
 - Arbitration - any module can be temporary master
 - Time sharing - if one module has the bus, others must wait and may have to suspend
- Now have multiple processors as well as multiple I/O modules

Time Share Bus - Advantages
- Simplicity
- Flexibility
- Reliability

Time Share Bus - Disadvantage
- Performance limited by bus cycle time
- Each processor should have local cache
 - Reduce number of bus accesses
- Leads to problems with cache coherence
 - Solved in hardware - see later

Multiport Memory - many access ports
- Direct independent access of memory modules by each processor
- Logic required to resolve conflicts
- Little or no modification to processors or modules required

Multiport Memory – Advantages and Disadvantages
- More complex
 - Extra login in memory system
- Better performance
 - Each processor has dedicated path to each module
- Can configure portions of memory as private to one or more processors
 - Increased security
- Write through cache policy
Central Control Unit
- Funnels separate data streams between independent modules (PE, Memory, I/O)
- Can buffer requests
- Performs arbitration and timing
- Pass status and control
- Perform cache update alerting
- Interfaces to modules remain the same
- e.g. IBM S/370

Operating System Issues
- Simultaneous concurrent processes
- Scheduling
- Synchronization
- Memory management
- Reliability and fault tolerance

Cache Coherence
- Problem - multiple copies of same data in different caches
- Can result in an inconsistent view of memory
- Write back policy can lead to inconsistency
- Write through can also give problems unless caches monitor memory traffic

Software Solutions
- Compiler and operating system deal with problem
- Overhead transferred to compile time
- Design complexity transferred from hardware to software
- However, software tends to make conservative decisions
 - Inefficient cache utilization
- Analyze code to determine safe periods for caching shared variables

Hardware Solution
- Cache coherence protocols
- Dynamic recognition of potential problems
- Run time
- More efficient use of cache
- Transparent to programmer
- Directory protocols
- Snoopy protocols

Directory Protocols
- Collect and maintain information about copies of data in cache
- Directory stored in main memory
- Requests are checked against directory
- Appropriate transfers are performed
- Creates central bottleneck
- Effective in large scale systems with complex interconnection schemes
Snoopy Protocols

- Distribute cache coherence responsibility among cache controllers
- Cache recognizes that a line is shared
- Updates announced to other caches
- Suited to bus based multiprocessor
- Increases bus traffic

Write Invalidate

- Multiple readers, one writer
- When a write is required, all other caches of the line are invalidated
- Writing processor then has exclusive (cheap) access until line required by another processor
- Used in Pentium II and PowerPC systems
- State of every line is marked as modified, exclusive, shared or invalid
- MESI

Write Update

- Multiple readers and writers
- Updated word is distributed to all other processors
- Some systems use an adaptive mixture of both solutions

MESI State Transition Diagram

Clusters

- Alternative to SMP
- High performance
- High availability
- Server applications
- A group of interconnected whole computers
- Working together as unified resource
- Illusion of being one machine
- Each computer called a node

Cluster Benefits

- Absolute scalability
- Incremental scalability
- High availability
- Superior price/performance
Cluster Configurations - Standby Server, No Shared Disk

- Passive standby
- Active secondary
- Separate servers
- Servers connected to disks
- Servers share disks

Cluster Configurations - Shared Disk

- Passive standby
- Active secondary
- Separate servers
- Servers connected to disks
- Servers share disks

Cluster Configurations

- Passive standby
- Active secondary
- Separate servers
- Servers connected to disks
- Servers share disks

Operating Systems Issues //

- Failure management
 - Highly available
 - Failover
 - Failback
 - Load balancing

Clusters v SMP

- Both use multiple processors for high demand applications
- SMP is easier to manage
- SMP takes less physical space and less power
- SMP established and stable technology
- Clusters are better for incremental and absolute scalability
- Clusters are better for availability

Non-Uniform Memory Access NUMA

- Uniform memory access
 - All processors have access to all parts of main memory
 - Access time to all regions of memory the same
 - Access time by all processors the same
- Non-uniform memory Access
 - All processors have access to all memory using load and store
 - Access time depends on region of memory being accessed
 - Different processors access different regions of memory at different speeds
- Cache-coherent NUMA
 - Cache coherence is maintained
CC-NUMA Organization

NUMA Pros and Cons
- Effective performance at higher level of parallelism than SMP
- Not transparently like SMP
 - Need software changes
- Availability

Required Reading
- Stallings Chapter 16