What is a Computer Algorithm?

A computer algorithm is a detailed step-by-step method for solving a problem by using a computer.

Example: Search in an unordered array

Problem:
Let E be an array containing n entries, E[0], …, E[n-1], in no particular order.
Find an index of a specified key K, if K is in the array; return –1 as the answer if K is not in the array.

Strategy:
Compare K to each entry in turn until a match is found or the array is exhausted.
If K is not in the array, the algorithm returns –1 as its answer.

Example: Sequential Search, Unordered

Algorithm (and data structure)
Input: E, n, K, where E is an array with n entries (indexed 0, …, n-1), and K is the item sought. For simplicity, we assume that K and the entries of E are integers, as is n.
Output: Returns ans, the location of K in E (-1 if K is not found.)
Algorithm: Step (Specification)
- int seqSearch(int[] E, int n, int K)
- 1. int ans, index;
- 2. ans = -1; // Assume failure.
- 3. for (index = 0; index < n; index++)
- 4. if (K == E[index])
- 5. ans = index; // Success!
- 6. break; // Done!
- 7. return ans;

Analysis of the Algorithm
- How shall we measure the amount of work done by an algorithm?
- Basic Operation:
 - Comparison of x with an array entry
- Worst-Case Analysis:
 - Let W(n) be a function. W(n) is the maximum number of basic operations performed by the algorithm on any input size n.
 - For our example, clearly W(n) = n.
 - The worst cases occur when K appears only in the last position in the array and when K is not in the array at all.

More Analysis of the Algorithm
- Average-Behavior Analysis:
 - Let q be the probability that K is in the array
 - A(n) = n(1 − ½ q) + ½ q
- Optimality:
 - The best possible solution?
 - Searching an Ordered Array
 - Using Binary Search
 - W(n) = Ceiling[lg(n+1)] = \lceil \lg (n + 1) \rceil
 - The Binary Search algorithm is optimal.
- Correctness: (Proving Correctness of Procedures s3.5)

What is CS 520?
- Class Syllabus

Algorithm Language (Specifying the Steps)
- Java as an algorithm language
- Syntax similar to C++
- Some steps within an algorithm may be specified in pseudocode (English phrases)
- Focus on the strategy and techniques of an algorithm, not on detail implementation

Analysis Tool: Mathematics: Set
- A set is a collection of distinct elements.
- The elements are of the same "type", common properties.
- "element e is a member of set S" is denoted as e ∈ S
- Read "e is in S"
- A particular set is defined by listing or describing its elements between a pair of curly braces:
 \[S_1 = \{a, b, c\}, \quad S_2 = \{x \mid x \text{ is an integer power of 2}\} \]
 read "the set of all elements x such that x is …"
- \(S_3 = \{\} = \mathcal{O} \), has no elements, called empty set
- A set has no inherent order.
Subset, Superset; Intersection, Union

- If all elements of one set, \(S_1 \), are also in another set, \(S_2 \), then \(S_1 \) is said to be a **subset** of \(S_2 \), \(S_1 \subseteq S_2 \), and \(S_2 \) is said to be a **superset** of \(S_1 \), \(S_2 \supseteq S_1 \).
- Empty set is a subset of every set, \(\emptyset \subseteq S \).

Intersection
- \(S \cap T = \{ x \mid x \in S \text{ and } x \in T \} \)

Union
- \(S \cup T = \{ x \mid x \in S \text{ or } x \in T \} \)

Cardinality

- **Cardinality**
 - A set, \(S \), is **finite** if there is an integer \(n \) such that the elements of \(S \) can be placed in a one-to-one correspondence with \(\{1, 2, 3, \ldots, n\} \).
 - In this case we write \(|S| = n \).
 - How many distinct subsets does a finite set on \(n \) elements have? There are \(2^n \) subsets.
 - How many distinct subsets of cardinality \(k \) does a finite set of \(n \) elements have? There are \(C(n, k) = \frac{n!}{(n-k)!k!} \), “\(n \) choose \(k \)”.

Sequence

- A group of elements in a specified order is called a sequence.
- A sequence can have repeated elements.
- Sequences are defined by listing or describing their elements in order, enclosed in parentheses.
- e.g. \(S_1 = (a, b, c) \), \(S_2 = (b, c, a) \), \(S_3 = (a, a, b, c) \).
- A sequence is **finite** if there is an integer \(n \) such that the elements of the sequence can be placed in a one-to-one correspondence with \(\{1, 2, 3, \ldots, n\} \).
- If all the elements of a finite sequence are distinct, that sequence is said to be a **permutation** of the finite set consisting of the same elements.
- One set of \(n \) elements has \(n! \) distinct permutations.

Tuples and Cross Product

- A tuple is a finite sequence.
 - Ordered pair \((x, y)\), triple \((x, y, z)\), quadruple, and quintuple
 - A \(k \)-tuple is a tuple of \(k \) elements.
- The **cross product** of two sets, say \(S \) and \(T \), is \(S \times T = \{(x, y) \mid x \in S, y \in T\} \).
- \(|S \times T| = |S| \cdot |T| \)
- It often happens that \(S \) and \(T \) are the same set, e.g. \(\mathbb{N} \times \mathbb{N} \) where \(\mathbb{N} \) denotes the set of natural numbers, \(\{0, 1, 2, \ldots\} \).

Relations and Functions

- A **relation** is some subset of a (possibly iterated) cross product.
- A binary relation is some subset of a cross product, e.g. \(R \subseteq S \times T \).
 - e.g. “less than” relation can be defined as \(\{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, x < y\} \)
 - Important properties of relations; let \(R \subseteq S \times S \)
 - reflexive: for all \(x \in S \), \((x, x) \in R \).
 - symmetric: if \((x, y) \in R \), then \((y, x) \in R \).
 - antisymmetric: if \((x, y) \in R \) and \((y, x) \in R \), then \(x = y \).
 - transitive: if \((x, y) \in R \) and \((y, z) \in R \), then \((x, z) \in R \).
 - A relation that is reflexive, symmetric, and transitive is called an **equivalence relation**, partition the underlying set \(S \) into equivalence classes \(\{x\} = \{ y \in S \mid x R y \}, x \in S \).
- A **function** is a relation in which no element of \(S \) (of \(S \times T \)) is repeated with the relation. (informal def.)

Analysis Tool: Logic

- Logic is a system for formalizing natural language statements so that we can reason more accurately.
- The simplest statements are called atomic formulas.
- More complex statements can be build up through the use of logical connectives: \(\land \) “and”, \(\lor \) “or”, \(\neg \) “not”, \(\Rightarrow \) “implies” \(A \Rightarrow B \) “A implies B” “if A then B”
- \(A \Rightarrow B \) is logically equivalent to \(\neg A \lor B \)
- \(\neg (A \land B) \) is logically equivalent to \(\neg A \lor \neg B \)
- \(\neg (A \lor B) \) is logically equivalent to \(\neg A \land \neg B \)
Quantifiers: all, some

- "for all x" $\forall x P(x)$ is true iff $P(x)$ is true for all x
- universal quantifier (universe of discourse)
- "there exist x" $\exists x P(x)$ is true iff $P(x)$ is true for some value of x
- existential quantifier

Prove: by counterexample, Contraposition, Contradiction

- Counterexample
to prove $\forall x (A(x) \Rightarrow B(x))$ is false, we show some object x for which $A(x)$ is true and $B(x)$ is false.
 \[\neg(\forall x (A(x) \Rightarrow B(x))) \iff \exists x (A(x) \land \neg B(x)) \]
- Contraposition
to prove $A \Rightarrow B$, we show $(\neg B) \Rightarrow (\neg A)$
 \[A \Rightarrow B \iff (A \land \neg B) \]
- Contradiction
to prove $A \Rightarrow B$, we assume $\neg B$ and then prove A
 \[A \Rightarrow B \iff (A \land \neg B) \]

Prove: by Contradiction, e.g.

- Prove $[B \land (B \Rightarrow C)] \Rightarrow C$
 by contradiction

Rules of Inference

- A rule of inference is a general pattern that allows us to draw some new conclusion from a set of given statements.
 \[\text{If we know [...] then we can conclude [...]} \]
- If $[B \land (B \Rightarrow C)]$ then $[C]$
 modus ponens
- If $[A \Rightarrow B \land B \Rightarrow C]$ then $[A \Rightarrow C]$
 syllogism
- If $[B \Rightarrow C \land \neg B \Rightarrow C]$ then $[C]$
 rule of cases

Two-valued Boolean (algebra) logic

1. There exists two elements in B, i.e. B=\{0,1\}
 \[\text{there are two binary operations} + \text{ “or, or”,} \cdot \text{ “and, and,”} \]
2. Closure: if $x, y \in B$ and $z = x + y$ then $z \in B$
3. Identity element: for $+\text{ designated by 0: } x + 0 = x$
4. Commutative: $x + y = y + x$
5. Distributive: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
6. Complement: for every element $x \in B$, there exists an element $x' \in B$
 \[x + x' = 1, \ x \cdot x' = 0 \]

True Table and Tautologically Implies e.g.

- Show $[B \land (B \Rightarrow C)] \Rightarrow C$ is a tautology:
 \[B \ C \ (B \Rightarrow C) \ [B \land (B \Rightarrow C)] \ [B \land (B \Rightarrow C)] \Rightarrow C \]
 \[\begin{array}{c|c|c|c}
 B & C & (B \Rightarrow C) & [B \land (B \Rightarrow C)] \Rightarrow C \\
 \hline
 0 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 \end{array} \]
- For every assignment for B and C,
 \[\text{the statement is True} \]
Prove: by Rule of inferences

• Prove \([B \land (B \Rightarrow C)] \Rightarrow C\)

 \[\rightarrow \text{ Proof:}\]
 \[\rightarrow [B \land (B \Rightarrow C)] \Rightarrow C\]
 \[\rightarrow \neg (B \land (B \Rightarrow C)) \lor C\]
 \[\rightarrow \neg (B \land B) \lor C\]
 \[\rightarrow B \lor C\]
 \[\rightarrow \text{ True (tautology)}\]

• Direct Proof:
 \[\rightarrow [B \land (B \Rightarrow C)] \Rightarrow [B \land C] \Rightarrow C\]

Analysis Tool: Probability

• Elementary events (outcomes)
 \[\rightarrow \text{ Suppose that in a given situation an event, or experiment, may have any one, and only one, of } k \text{ outcomes, } s_1, s_2, \ldots, s_k \text{ (mutually exclusive)}\]

• Universe
 The set of all elementary events is called the universe and is denoted \([U = \{s_1, s_2, \ldots, s_k\}].\]

• Probability of \(s_i\)
 \[\rightarrow \text{ associate a real number } Pr(s_i), \text{ such that}\]
 \[0 \leq Pr(s_i) \leq 1 \text{ for } 1 \leq i \leq k;\]
 \[Pr(s_1) + Pr(s_2) + \ldots + Pr(s_k) = 1\]

Event

• Let \(S \subseteq U\). Then \(S\) is called an event, and
• \[Pr(S) = \sum_{s_i \in S} Pr(s_i)\]

• Sure event \(U = \{s_1, s_2, \ldots, s_k\}\), \(Pr(U) = 1\)

• Impossible event, \(\emptyset\), \(Pr(\emptyset) = 0\)

• Complement event “not \(S\)” \(U - S\), \(Pr(\text{not } S) = 1 - Pr(S)\)

Conditional Probability

• The conditional probability of an event \(S\) given an event \(T\) is defined as
• \[Pr(S \mid T) = \frac{Pr(S \text{ and } T)}{Pr(T)}\]
 \[= \sum_{s_i \in S \cap T} Pr(s_i) / \sum_{s_j \in T} Pr(s_j)\]

• Independent
 Given two events \(S\) and \(T\), if
 \[Pr(S \text{ and } T) = Pr(S)Pr(T)\]
 then \(S\) and \(T\) are stochastically independent, or simply independent.

Random variable and their Expected value

• A random variable is a real valued variable that depends on which elementary event has occurred
 \[\rightarrow \text{ it is a function defined for elementary events.}\]
 \[\rightarrow \text{ e.g. } f(e) = \text{ the number of inversions in the permutation of } \{A, B, C\}; \text{ assume all input permutations are equally likely.}\]

• Expectation
 \[\rightarrow \text{ Let } f(e) \text{ be a random variable defined on a set of elementary events } e \in U. \text{ The expectation of } f, \text{ denoted as } E(f), \text{ is defined as}\]
 \[E(f) = \sum_{e \in U} f(e)Pr(e)\]
 \[\rightarrow \text{ This is often called the average values of } f.\]
 \[\rightarrow \text{ Expectations are often easier to manipulate then the random variables themselves.}\]

Conditional expectation and Laws of expectations

• The conditional expectation of \(f\) given an event \(S\), denoted as \(E(f \mid S)\), is defined as
 \[E(f \mid S) = \sum_{e \in S} f(e)Pr(e \mid S)\]

• Law of expectations
 For random variables \(f(e)\) and \(g(e)\) defined on a set of elementary events \(e \in U\), and any event \(S\):
 \[E(f + g) = E(f) + E(g)\]
 \[E(f) = Pr(S)E(f \mid S) + Pr(\text{not } S) E(f \mid \text{not } S)\]
Analysis Tool: Algebra
• Manipulating Inequalities

 • Transitivity: If \((A \leq B)\) and \((B \leq C)\) Then \((A \leq C)\)
 • Addition: If \((A \leq B)\) and \((C \leq D)\) Then \((A+C \leq B+D)\)
 • Positive Scaling: If \((A \leq B)\) and \((\alpha > 0)\) Then \((\alpha A \leq \alpha B)\)

Floor and Ceiling Functions
• \(\lfloor x \rfloor\) is the largest integer less than or equal to \(x\).
• \(\lceil x \rceil\) is the smallest integer greater than or equal to \(x\).

Logarithms
• For \(b>1\) and \(x>0\), \(\log_b x\) (read “log to the base \(b\) of \(x\)”) is that real number \(L\) such that \(b^L = x\)
• \(\log_b x\) is the power to which \(b\) must be raised to get \(x\).

 • Log properties: \(\lg x = \log_2 x; \; \ln x = \log_e x\)
 • Let \(x\) and \(y\) be arbitrary positive real numbers, let \(a, b\) any real number, and let \(b>1\) and \(c>1\) be real numbers.
 • \(\log_b\) is a strictly increasing function, if \(x > y\) then \(\log_b x > \log_b y\)
 • \(\log_b\) is a one-to-one function, if \(\log_b x = \log_b y\) then \(x = y\)
 • \(\log_b 1 = 0; \log_b b = 1; \log_b x^a = a \log_b x\)
 • \(\log_b(xy) = \log_b x + \log_b y\)
 • \(x \log y = y \log x\)
 • change base: \(\log_c x = \frac{\log_b x}{\log_b c}\)

Series
• A series is the sum of a sequence.
 • Arithmetic series
 • The sum of consecutive integers
 • Polynomial Series
 • The sum of squares
 • The general case is
 • Power of 2
 • Arithmetic-
 • Geometric Series

Summations Using Integration
• A function \(f(x)\) is said to be monotonic, or nondecreasing, if \(x \leq y\) always implies that \(f(x) \leq f(y)\).
• A function \(f(x)\) is antimonotonic, or nonincreasing, if \(-f(x)\) is monotonic.

 • If \(f(x)\) is nondecreasing then
 • If \(f(x)\) is nonincreasing then

Classifying functions by their Asymptotic Growth Rates
• asymptotic growth rate, asymptotic order, or order of functions
 • Comparing and classifying functions that ignores constant factors and small inputs.
 • The Sets \(O(g)\), \(\Theta(g)\), \(\Omega(g)\)

The Sets \(O(g)\), \(\Theta(g)\), \(\Omega(g)\)
• Let \(g\) and \(f\) be a functions from the nonnegative integers into the positive real numbers
 • For some real constant \(c > 0\) and some nonnegative integer constant \(n_0\)
 • \(O(g)\) is the set of functions \(f\), such that \(f(n) \leq c g(n)\) for all \(n \geq n_0\)
 • \(\Omega(g)\) is the set of functions \(f\), such that \(f(n) \geq c g(n)\) for all \(n \geq n_0\)
 • \(\Theta(g) = O(g) \cap \Omega(g)\)
• asymptotic order of \(g\)
• \(f \in \Theta(g)\) read as “\(f\) is asymptotic order \(g\)” or “\(f\) is order \(g\)”
Comparing asymptotic growth rates

- Comparing \(f(n) \) and \(g(n) \) as \(n \) approaches infinity,
 - IF \(\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \), including the case in which the limit is 0 then \(f \in O(g) \)
 - > 0, including the case in which the limit is \(\infty \) then \(f \in \Omega(g) \)
 - \(= c \) and \(0 < c < \infty \) then \(f \in \Theta(g) \)
 - \(= 0 \) then \(f \in o(g) \) /read as “little oh of \(g \)”
 - \(= \infty \) then \(f \in \omega(g) \) /read as “little omega of \(g \)”

Properties of \(O(g) \), \(\Theta(g) \), \(\Omega(g) \)

- Transitive: If \(f \in O(g) \) and \(g \in O(h) \), then \(f \in O(h) \)
 - \(O \) is transitive. Also \(\Omega \), \(\Theta \), \(o \), \(\omega \) are transitive.
- Reflexive: \(f \in \Theta(f) \)
- Symmetric: If \(f \in \Theta(g) \), then \(g \in \Theta(f) \)
- \(\Theta \) defines an equivalence relation on the functions.
 - Each set \(\Theta(f) \) is an equivalence class (complexity class).
 - \(f \in O(g) \Leftrightarrow g \in \Omega(f) \)
 - \(O(f + g) = O(\max(f, g)) \)
 - similar equations hold for \(\Omega \) and \(\Theta \)

Classification of functions, e.g.

- \(O(1) \) denotes the set of functions bounded by a constant (for large \(n \))
 - \(f \in \Theta(n) \), \(f \) is linear
 - \(f \in \Theta(n^2) \), \(f \) is quadratic; \(f \in \Theta(n^3) \), \(f \) is cubic
 - \(\lg n \in o(n^\alpha) \) for any \(\alpha > 0 \), including fractional powers
 - \(n^k \in o(c^n) \) for any \(k > 0 \) and any \(c > 1 \)
 - powers of \(n \) grow more slowly than any exponential function \(c^n \)
 - \(\sum_{i=1}^{n} i^\theta \in \Theta(n^{\theta+1}) \) \(\sum_{i=1}^{n} \log(i) \in \Theta(n \log(n)) \)
 - \(\sum_{i=1}^{n} r^i \in \Theta(r^n) \) for \(r > 0, r \neq 1, b \) may be some function of \(n \)

Correctness can be proved!

- An algorithm consists of sequences of steps (operations, instructions, statements) for transforming inputs (preconditions) to outputs (postconditions)
 - Proving
 - if the preconditions are satisfied,
 - then the postconditions will be true,
 - when the algorithm terminates.

Analyzing Algorithms and Problems

- We analyze algorithms with the intention of improving them, if possible, and for choosing among several available for a problem.
 - Correctness
 - Amount of work done, and space used
 - Optimality, Simplicity

Amount of work done

- We want a measure of work that tells us something about the efficiency of the method used by the algorithm
 - independent of computer, programming language, programmer, and other implementation details.
 - Usually depending on the size of the input
 - Counting passes through loops
 - Basic Operation
 - Identify a particular operation fundamental to the problem
 - the total number of operations performed is roughly proportional to the number of basic operations
 - Identifying the properties of the inputs that affect the behavior of the algorithm
Worst-case complexity

- Let \(D_n \) be the set of inputs of size \(n \) for the problem under consideration, and let \(I \) be an element of \(D_n \).
- Let \(t(I) \) be the number of basic operations performed by the algorithm on input \(I \).
- We define the function \(W \) by

\[
W(n) = \max\{t(I) \mid I \in D_n\}
\]

called the worst-case complexity of the algorithm.
- \(W(n) \) is the maximum number of basic operations performed by the algorithm on any input of size \(n \).
- The input, \(I \), for which an algorithm behaves worst depends on the particular algorithm.

Average Complexity

- Let \(Pr(I) \) be the probability that input \(I \) occurs.
- Then the average behavior of the algorithm is defined as

\[
A(n) = \sum_{I \in D_n} Pr(I) t(I).
\]

- We determine \(t(I) \) by analyzing the algorithm, but \(Pr(I) \) cannot be computed analytically.
- \(A(n) = Pr(succ)A_{succ}(n) + Pr(fail)A_{fail}(n) \)
- An element \(I \) in \(D_n \) may be thought as a set or equivalence class that affect the behavior of the algorithm. (see following e.g. \(n+1 \) cases)

Average-Behavior Analysis e.g.

\[
A(n) = Pr(succ)A_{succ}(n) + Pr(fail)A_{fail}(n)
\]

There are total of \(n+1 \) cases of \(I \) in \(D_n \)
- Let \(K \) is in the array as “succ” cases that have \(n \) cases.
- Assuming \(K \) is equally likely found in any of the \(n \) location, i.e. \(Pr(I \mid succ) = 1/n \)
- for \(0 \leq i < n, t(I) = i + 1 \)
- \(A_{succ}(n) = \sum_{i=0}^{n-1} \left[\frac{1}{n} \right] (i+1) = \frac{n+1}{2} \)
- Let \(K \) is not in the array as the “fail” case that has 1 cases, \(Pr(I \mid fail) = 1 \)
- Then \(A_{fail}(n) = Pr(I \mid fail) t(I) = 1 \ n \)
- Let \(q \) be the probability for the succ cases
- \(q \left[\frac{n+1}{2} \right] + (1-q) n \)

Space Usage

- If memory cells used by the algorithms depends on the particular input,
 - then worst-case and average-case analysis can be done.
- Time and Space Tradeoff.

Optimality “the best possible”

- Each problem has inherent complexity
 - There is some minimum amount of work required to solve it.
- To analyze the complexity of a problem,
 - we choose a class of algorithms, based on which
 - prove theorems that establish a lower bound on the number of operations needed to solve the problem.
- Lower bound (for the worst case)

Average Behavior Analysis e.g.

\[
A(n) = Pr(succ)A_{succ}(n) + Pr(fail)A_{fail}(n)
\]

There are total of \(n+1 \) cases of \(I \) in \(D_n \)
- Let \(K \) is in the array as “succ” cases that have \(n \) cases.
- Assuming \(K \) is equally likely found in any of the \(n \) location, i.e. \(Pr(I \mid succ) = 1/n \)
- for \(0 \leq i < n, t(I) = i + 1 \)
- \(A_{succ}(n) = \sum_{i=0}^{n-1} \left[\frac{1}{n} \right] (i+1) = \frac{n+1}{2} \)
- Let \(K \) is not in the array as the “fail” case that has 1 cases, \(Pr(I \mid fail) = 1 \)
- Then \(A_{fail}(n) = Pr(I \mid fail) t(I) = 1 \ n \)
- Let \(q \) be the probability for the succ cases
- \(q \left[\frac{n+1}{2} \right] + (1-q) n \)

Example

- \text{int seqSearch(int[] E, int n, int K)}
- 1. int ans, index;
- 2. ans = -1; // Assume failure.
- 3. for (index = 0; index < n; index++)
- 4. if (K == E[index])
- 5. ans = index; // Success!
- 6. break; // Done!
- 7. return ans;
Show whether an algorithm is optimal?

- Analyze the algorithm, call it A, and found the Worst-case complexity $W_A(n)$, for input of size n.
- Prove a theorem starting that,
 - for any algorithm in the same class of A
 - for any input of size n, there is some input for which the algorithm must perform
 - at least $W_A(n)$
 (lower bound in the worst-case)
- If $W_A(n) = W_{[A]}(n)$
 - then the algorithm A is optimal
 - else there may be a better algorithm
 - OR there may be a better lower bound.

Optimality e.g.

- Problem
 - Fining the largest entry in an (unsorted) array of n numbers
- Algorithm A
 - int findMax(int[] E, int n)
 - 1. int max;
 - 2. max = E[0]; // Assume the first is max.
 - 3. for (index = 1; index < n; index++)
 - 4. if (max < E[index])
 - 5. max = E[index];
 - 6. return max;

Analyze the algorithm, find $W_A(n)$

- Basic Operation
 - Comparison of an array entry with another array entry or a stored variable.
- Worst-Case Analysis
 - For any input of size n, there are exactly n-1 basic operations
 - $W_A(n) = n-1$

For the class of algorithm $[A]$, find $W_{[A]}(n)$

- Class of Algorithms
 - Algorithms that can compare and copy the numbers, but do no other operations on them.
- Finding (or proving) $W_{[A]}(n)$
 - Assuming the entries in the array are all distinct
 (permissible for finding lower bound on the worst-case)
 - In an array with n distinct entries, n – 1 entries are not the maximum.
 - To conclude that an entry is not the maximum, it must be smaller than at least one other entry. And, one comparison (basic operation) is needed for that.
 - So at least n-1 basic operations must be done.
 - $W_{[A]}(n) = n – 1$
- Since $W_A(n) = W_{[A]}(n)$, algorithm A is optimal.

Simplicity

- Simplicity in an algorithm is a virtue.

Designing Algorithms

- Problem solving using Computer
- Algorithm Design Techniques
 - divide-and-conquer
 - greedy methods
 - depth-first search (for graphs)
 - dynamic programming
Problem and Strategy A

- Problem: array search
 - Given an array E containing n and given a value K, find an index for which K = E[index] or, if K is not in the array, return –1 as the answer.
- Strategy A
 - Input data and Data structure: unsorted array
 - Algorithm A
 - int seqSearch(int[] E, int n, int k)
 - Analysis A
 - W(n) = n
 - A(n) = q [(n+1)/2] + (1-q) n

Better Algorithm and/or Better Input Data

- Optimality A
 - for searching an unsorted array
 - W_A(n) = n
 - Algorithm A is optimal.
- Strategy B
 - Input data and Data structure: array sorted in nondecreasing order
 - Algorithm B
 - int seqSearch(int[] E, int n, int k)
 - Analysis B
 - W(n) = n
 - A(n) = q [(n+1)/2] + (1-q) n

Better Algorithm

- Optimality B
 - It makes no use of the fact that the entries are ordered
 - Can we modify the algorithm so that it uses the added information and does less work?
- Strategy C
 - Input data and Data structure: array sorted in nondecreasing order
 - sequential search:
 - as soon as an entry larger than K is encountered, the algorithm can terminate with the answer –1.
- Algorithm C: modified sequential search
 - int seqSearchMod(int[] E, int n, int K)
 1. int ans, index;
 2. ans = -1; // Assume failure.
 3. for (index = 0; index < n; index++)
 4. if (K > E[index])
 5. continue;
 6. if (K < E[index])
 7. break; // Done!
 8. // K == E[index]
 9. ans = index; // Find it
 10. break;
 11. return ans;

Analysis C

- W(n) = n + 1 ≈ n
- Average-Behavior
 - n cases for success:
 - A_succ(n) = \sum_{i=0}^{n-1} Pr(I_i | succ) t(I_i)
 - \approx \frac{1}{n} \left(\frac{1}{n} (i+2) + \frac{n}{n+1} \right)
 - n+1 cases or (gaps) for fail: \langle E[0]E[1]...E[n-1]\rangle
 - A_fail(n) = Pr(I_i | fail) t(I_i) =
 - \sum_{i=0}^{n-1} (1/(n+1)) (i+2) + n/(n+1)
 - A(n) = q \left(\frac{3+n}{2} + (1-q) \left(\frac{n}{n+1} + \frac{3+n}{2} \right) \right)
 - \approx n/2

Let’s Try Again! Let’s divide-and-conquer!

- Strategy D
 - compare K first to the entry in the middle of the array
 - eliminates half of the entry with one comparison
 - apply the same strategy recursively
- Algorithm D: Binary Search
 - Input: E, first, last, and K, all integers, where E is an ordered array in the range first, ..., last, and K is the key sought.
 - Output: index such that E[index] = K if K is in E within the range first, ..., last, and index = -1 if K is not in this range of E
Binary Search

- int binarySearch(int[] E, int first, int last, int K)
 1. if (last < first)
 2. index = -1;
 3. else
 4. int mid = (first + last)/2
 5. if (K == E[mid])
 6. index = mid;
 7. else if (K < E[mid])
 8. index = binarySearch(E, first, mid-1, K)
 9. else
 10. index = binarySearch(E, mid+1, last, K);
 11. return index

Worst-Case Analysis of Binary Search

- Let the problem size be n = last – first + 1; n > 0
- Basic operation is a comparison of K to an array entry
- Assume one comparison is done with the three-way branch
- First comparison, assume K != E[mid], divides the array into two sections, each section has at most Floor[n/2] entries.
- estimate that the size of the range is divided by 2 with each recursive call
- How many times can we divide n by 2 without getting a result less than 1 (i.e. n/(2^d) >= 1) ?
 d <= lg(n), therefore we do Floor[lg(n)] comparison following recursive calls, and one before that.
- W(n) = Floor[lg(n)] + 1 = Ceiling[lg(n + 1)] ∈ Θ(log n)

Average-Behavior Analysis of Binary Search

- There are n+1 cases, n for success and 1 for fail
- Similar to worst-case analysis, Let n = 2^d – 1
 A_in = lg(n+1)
 Assuming Pr[Ii | succ] = 1/n for 1 <= i <= n
 divide the n entry into groups, S_t for 1 <= t <= d, such that S_t requires t comparisons
 (capital S for group, small s for cardinality of S)
 It is easy to see (?) that (members contained in the group)
 s_1 = 1 = 2^0, s_2 = 2 = 2^1, s_3 = 4 = 2^2, and in general, s_t = 2^t
 The probability that the algorithm does t comparisons is s_t/n
 A_in(n) = Σ_t (s_t/n) t = (d –1)2^d + 1)/n
 d = lg(n+1)
 A_in(n) = lg(n+1) – 1 + lg(n+1)/n
 A(n) = lg(n+1) – q, where q is probability of successful search

Optimality of Binary Search

- So far we improve from Θ(n) algorithm to Θ(log n)
- Can more improvements be possible?
- Class of algorithm: comparison as the basic operation
- Analysis by using decision tree, that
 for a given input size n is a binary tree whose nodes are labeled with numbers between 0 and n-1 as e.g.

Decision tree for analysis

- The number of comparisons performed in the worst case is the number of nodes on a longest path from the root to a leaf; call this number p.
- Suppose the decision tree has N nodes
 N <= 1 + 2 + 4 + … + 2^p-1
 N <= 2^p – 1
 2^p >= (N + 1)
 Claim N >= n if an algorithm A works correctly in all cases
 there is some node in the decision tree labeled i for each i from 0 through n - 1

Prove by contradiction that N >= n

- Suppose there is no node labeled i for some i in the range from 0 through n-1
 Make up two input arrays E1 and E2 such that
 E1[i] = K but E2[i] = K’ > K
 For all j < i, make E1[j] = E2[j] using some key values less than K
 For all j > i, make E1[j] = E2[j] using some key values greater than K’ in sorted order
 Since no node in the decision tree is labeled i, the algorithm A never compares K to E1[i] or E2[i], but it gives same output for both
 Such algorithm A gives wrong output for at least one of the array and it is not a correct algorithm
 Conclude that the decision has at least n nodes
Optimality result

- $2^p \geq (N+1) \geq (n+1)$
- $p \geq \lg(n+1)$

- Theorem: Any algorithm to find K in an array of n entries (by comparing K to array entries) must do at least $\lceil \lg(n+1) \rceil$ comparisons for some input.

- Corollary: Since Algorithm D does $\lceil \lg(n+1) \rceil$ comparisons in the worst case, it is optimal.