Recursion and Induction

- For advanced algorithm development, recursion is an essential design technique
 - Recursive Procedures
 - What is a Proof?
 - Induction Proofs
 - Proving Correctness of Procedures
 - Recurrence Equations
 - Recursion Trees

Recurrence Equations vs. Recursive Procedures

- Recurrence Equations:
 - defines a function over the natural numbers, say \(T(n) \), in terms of its own value at one or more integers smaller than \(n \).
 - \(T(n) \) is defined inductively.
 - There are base cases to be defined separately.
 - Recurrence equation applies for \(n \) larger than the base cases
- Recursive Procedures:
 - a procedure calls a unique copy of itself
 - converging to a base case (stopping the recursion)

e.g. Fibonacci Function

- Recurrence Equation: e.g. Fibonacci Function
 - \(\text{fib}(0) = 0; \text{fib}(1) = 1; \) // base cases
 - \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \) // all \(n > 2 \)
- Recursive Procedure:
 - int fib(int n)
 1. if (n < 2)
 2. \(f = n; \) // base cases
 3. else
 4. \(f1 = \text{fib}(n-1); \)
 5. \(f2 = \text{fib}(n-2); \)
 6. \(f = f1 + f2; \)
 7. return f;

The working of recursive procedure

- a unique copy for each call to itself
 - individual procedure invocation at run time
 - i.e. activation frame
- e.g. The working of fib(n)
 - main ()
 1. int x = fib(3);

Activation Tree

- Each node corresponds to a different procedure invocation, just at the point when it is about to return.
- A preorder traversal visits each activation frame in order of its creation

Analysis for algorithm without loops

- In a computation without loops, but possible with recursive procedure calls:
 - The time that any particular activation frame is on the top of the frame stack is \(O(L) \),
 - where \(L \) is the number of lines in the procedure that contain either a simple statement or a procedure call.
- The total computation time is \(\Theta(C) \),
 - where \(C \) is the total number of procedure calls that occur during the computation.
Designing Recursive Procedures

- **// Think Inductively**
 - converging to a base case (stopping the recursion)
 - identify some unit of measure (running variable)
 - identify base cases
- assume \(p \) solves all sizes 0 through 100
- assume \(p_{99} \) solve sub-problem all sizes 0 through 99
- if \(p \) detect a case that is not base case it calls \(p_{99} \)
- \(p_{99} \) satisfies:
 1. The sub-problem size is less than \(p \)'s problem size
 2. The sub-problem size is not below the base case
 3. The sub-problem satisfies all other preconditions of \(p_{99} \) (which are the same as the preconditions of \(p \))

Recursive Procedure design e.g.

- **Problem:**
 - write a delete\((L, x)\) procedure for a list \(L \).
 - which is supposed to delete the first occurrence of \(x \).
 - Possibly \(x \) does not occur in \(L \).
- **Strategy:**
 - Use recursive Procedure
 - The size of the problem is the number of elements in list \(L \)
 - Use IntList ADT
 - Base cases: ??
 - Running variable (converging number): ??

ADT for IntList

- IntList \(\text{cons}(\text{int ~newElement}, \text{IntList ~oldList}) \)
 - Precondition: None.
 - Postconditions: If \(x = \text{cons}(\text{newElement}, \text{oldList}) \) then
 1. \(x \) refers to a newly created object;
 2. \(x \) \(!=\) nil;
 3. \(\text{first}(x) = \text{newElement} \);
 4. \(\text{rest}(x) = \text{oldList} \)
- \(\text{int ~first}(\text{IntList ~aList}) // \) access function
 - Precondition: \(\text{aList} \) \(!=\) nil
- \(\text{IntList ~rest}(\text{IntList ~aList}) // \) access function
 - Precondition: \(\text{aList} \) \(!=\) nil
- \(\text{IntList ~nil} // \) constant denoting the empty list.

Recurrence Equation for delete\((L, x)\) from list \(L \)

- **Think Inductively**
 - delete\((\text{nil}, x)\) = \text{nil}
 - delete\((L, x)\) = \text{rest}(L) ; x == \text{first}(L)
 - delete\((L, x)\) = \text{cons}(\text{first}(L), \text{delete}(@\text{rest}(L), x))

Algorithm for Recursive delete\((L, x)\) from list \(L \)

```
//
intList delete(intList L, int x)
intList newL, fixedL;
if (L == nil)
   newL = L;
else if (x == first(L))
   newL = rest(L);
else
   fixedL = delete99(rest(L), x);
   newL = cons(first(L), fixedL);
return newL;
```

Algorithm for non-recursive delete\((L, x)\)

```
intList delete(intList L, int x)
intList newL, templ;
templ = L; newL = nil;
while (templ != nil & x != first(templ)) //copy elements
   newL = cons(first(templ), newL);
templ = rest(templ)
if (templ != nil) // x == first(templ)
   templ = rest(templ); // remove x
while (templ != nil) // copy the rest elements
   newL = cons(first(templ), newL);
templ = rest(templ)
return newL;
```
Convert a non-recursive procedure
to a recursive procedure

• Convert procedure with loop
 ➔ to recursive procedure without loop

• Recursive Procedure acting like WHILE loop
 ➔ While(Not Base Case)
 ➔ Setting up Sub-problem
 ➔ Recursive call to continue

• The recursive function may need an additional parameter
 ➔ which replaces an index in a FOR loop of the non-recursive procedure.

Transforming loop into a recursive procedure

• Local variable with the loop body
 ➔ give the variable only one value in any one pass
 ➔ for variable that must be updated, do all the updates at the end of the loop body

• Re-expressing a while loop with recursion
 ➔ Additional parameters
 ➔ Variables updated in the loop become procedure input parameters. Their initial values at loop entry correspond to the actual parameters in the top-level call of the recursive procedure.
 ➔ Variables referenced in the loop but not updated may also become parameters
 ➔ The recursive procedure begins by mimicking the while condition and returns if while condition is false
 ➔ a break also corresponds to a procedure return
 ➔ Continue by updating variable and make recursive call

Removing While loop, e.g.

• int factLoop(int n)
 • int k=1; int f = 1
 • while (k <= n)
 • int fnew = f*k;
 • int knew = k+1
 • k = knew; f = fnew;
 • return f;

• int factLoop(int n)
 • return factRec(n, 1, 1);
 • int factRec(int n, int k, int f)
 • if (k <= n)
 • int fnew = f*k;
 • int knew = k+1
 • return factRec(n, knew, fnew)
 • return f;

Removing For loop, e.g.

• Convert the following seqSearch
 ➔ to recursive procedure without loop

• int seqSearch(int[] E, int num, int K)
 • 1. int ans, index;
 • 2. ans = -1; // Assume failure.
 • 3. for (index = 0; index < num; index++)
 • 4. if (K == E[index])
 • ans = index; // Success!
 • 5. break; // Done!
 • 6. return ans;

• seqSearchRec(E, 0, num, K)
 • 1: if (index >= num)
 • 2: ans = -1;
 • 3: else if (E[index] == K) // index < num
 • ans = index;
 • 4: else
 • ans = seqSearchRec(E, index+1, num, K);
 • 7: return ans;

Recursive Procedure without loops e.g.

• Call with: seqSearchRec(E, 0, num, K)

• seqSearchRec(E, index, num, K)
 • 1: if (index >= num)
 • 2: ans = -1;
 • 3: else if (E[index] == K) // index < num
 • 4: ans = index;
 • 5: else
 • 6: ans = seqSearchRec(E, index+1, num, K);
 • 7: return ans;

• Compare to: for (index = 0; index < num; index++)

Analyzing Recursive Procedure
using Recurrence Equations

• Let n be the size of the problem
• Worst-Case Analysis (for procedure with no loops)
 • T(n) =
 ➔ the individual cost for a sequence of blocks
 ➔ add the maximum cost for an alternation of blocks
 ➔ add the cost of subroutine call, S(f(n))
 ➔ add the cost of recursive procedure call, T(g(n))
 • e.g. seqSearchRec,
 ➔ Basic operation is comparison of array element, cost 1
 ➔ statement: 1: + max(2.., (3: + max(4.., (5: + 6..)) + 7):)
 ➔ Cost: 0 + max(0, (1 + max(0, (0+T(n-1)) + 0)
 • T(n) = T(n-1) + 1; T(0) = 0
 • => T(n) = n; T(n) ∈ θ(n)
Evaluate recursive equation using Recursion Tree

- Evaluate: \(T(n) = T(n/2) + T(n/2) + n \)
- Work copy: \(T(k) = T(k/2) + T(k/2) + k \)
- For \(k = n/2 \), \(T(n/2) = T(n/4) + T(n/4) + (n/2) \)

Recursion Tree e.g.

- To evaluate the total cost of the recursion tree
 - sum all the non-recursive costs of all nodes
 - \(= \) Sum (rowSum(cost of all nodes at the same depth))
- Determine the maximum depth of the recursion tree:
 - For our example, at tree depth \(d \)
 - the size parameter is \(n/(2^d) \)
 - the size parameter converging to base case, i.e. case 1
 - such that, \(n/(2^d) = 1 \)
 - \(d = \log(n) \)
 - The rowSum for each row is \(n \)
- Therefore, the total cost, \(T(n) = n \log(n) \)

Proving Correctness of Procedures: Proof

- What is a Proof?
 - A Proof is a sequence of statements that form a logical argument.
 - Each statement is a complete sentence in the normal grammatical sense.
 - Each statement should draw a new conclusion from:
 - axiom: well known facts
 - assumptions: premises of the theorem you are proving or inductive hypothesis
 - intermediate conclusions: statements established earlier
 - To arrive at the last statement of a proof that must be the conclusion of the proposition being proven

Format of Theorem, Proof Format

- A proposition (theorem, lemma, and corollary) is represented as:
 - \(\forall x \in W (A(x) \Rightarrow C(x)) \)
 - for all \(x \) in \(W \), if \(A(x) \) then \(C(x) \)
 - the set \(W \) is called world,
 - \(A(x) \) represents the assumptions
 - \(C(x) \) represents the conclusion, the goal statement
 - \(\Rightarrow \) is read as “implies”
- Proof sketches provides outline of a proof
 - the strategy, the road map, or the plan.
- Two-Column Proof Format
 - Statement : Justification (supporting facts)

Induction Proofs

- Induction proofs are a mechanism, often the only mechanism, for proving a statement about an infinite set of objects.
 - inferring a property of a set based on the property of its objects
- Induction is often done over the set of natural numbers \{0, 1, 2, \ldots\}
 - starting from 0, then 1, then 2, and so on
- Induction is valid over a set, provided that:
 - The set is partially ordered;
 - i.e. an order relationship is defined between some pairs of elements, but perhaps not between all pairs.
 - There is no infinite chain of decreasing elements in the set. (e.g. cannot be set of all integers)

Induction Proof Schema

- 0: Prove: \(\forall x \in W (A(x) \Rightarrow C(x)) \)
- Proof:
 1: The Proof is by induction on \(x \), <description of \(x \)>
 2: The base case is, cases are, <base-case>
 3: <Proof of goal statement with base-case substituted into it, that is, \(C(\text{base-case}) \)>
 4: For \(x \) greater than <base-case>, assume that \(A(y) \Rightarrow C(y) \) holds for all \(y \in W \) such that \(y < x \).
 5: <Proof of the goal statement, \(C(x) \), exactly as it appears in the proposition>.
Induction Proof e.g.

- Prove:
 For all $n \geq 0$,
 \[\sum_{i=0}^{n} \frac{i(i+1)}{2} = \frac{n(n+1)(n+2)}{6} \]

- Proof: …

Proving Correctness of Procedures

- Things should be made as simple as possible – but not simpler
 - Albert Einstein

- Proving Correctness of procedures is a difficult task in general; the trick is to make it as simple as possible.
 - No loops is allowed in the procedure!
 - Variable is assigned a value only once!
 - Loops are converted into Recursive procedures.
 - Additional variables are used to make single-assignment (write-once read many) possible.
 - $x = y + 1$ does imply the equation $x = y + 1$ for entire time

General Correctness Lemma

- If all preconditions hold when the block is entered, then all postconditions hold when the block exits
- And, the procedure will terminate!

> Chains of Inference: Sequence

Proving Correctness of Binary Search, e.g.

- int binarySearch(int[] E, int first, int last, int K)
 - 1. if (last < first)
 - 2. index = -1;
 - 3. else
 - 4. int mid = (first + last)/2
 - 5. if (K == E[mid])
 - 6. index = mid;
 - 7. else if (K < E[mid])
 - 8. index = binarySearch(E, first, mid-1, K)
 - 9. else
 - 10. index = binarySearch(E, mid+1, last, K);
 - 11. return index

Proving Correctness of Binary Search

- Lemma (preconditions => postconditions)
 - if binarySearch(E, first, last, K) is called, and the problem size is $n = (last - first + 1)$, for all $n \geq 0$, and $E[first]$, … $E[last]$ are in nondecreasing order, then it returns –1 if K does not occur in E within the range first, …, last, and it returns index such that $K = E[index]$ otherwise
- Proof
 - The proof is by induction on n, the problem size.
 - The base case in $n = 0$.
 - In this case, line 1 is true, line 2 is reached, and –1 is returned. (the postcondition is true)

Inductive Proof, continue

- For $n > 0$, assume that binarySearch(E, first, last, K) satisfies the lemma on problems of size k, such that $0 \leq k < n$, and first and last are any indexes such that $k = last - first + 1$
 - For $n > 0$, line 1 is false, …, mid is within the search range (first <= mid <= last).
 - If line 5 is true, the procedure terminates with index = mid, (the postcondition is true)
 - If line 5 is false, from (first <= mid <= last) and def. of n, (mid – 1) + 1 <= (a – 1)
 - last – (mid + 1) + 1 <= (n – 1)
 - so the inductive hypothesis applies for both recursive calls,
 - If line 7 is true, …, the preconditions of binarySearch are satisfied, we can assume that the call accomplishes the objective.
 - If line 8 return positive index, done.
 - If line 8 returns –1, this implies that K is not in E in the first … mid-1, also since line 7 is true, K is not in E in range min…. last, so returning – 1 is correct (done).
 - If line 7 is false, … similar the postconditions are true. (done!)