Problem: Selection
Design and Analysis: Adversary Arguments
• The selection problem
 << Ranking elements of a set in nondecreasing order, find an element rank K >>
 ➔ Finding max and min
• Designing against an adversary
 << An algorithm playing Information game against an adversary >>

Design and Analysis using Adversary arguments
• An algorithm is playing an Information game against an adversary.
 ➔ The algorithm wants to get as much Information as possible in order to get as much work done as effective as possible.
 ➔ The adversary wants to give as least Information as possible to give the algorithm the worst case.
 ➔ The rule of the game is Consistency.
 The adversary can trick but cannot cause inconsistency in the given information.
• e.g. your algorithm needs to guess a date (a month and day) and your adversary gives yes/no answers.
 ➔ Let’s play!

Strategy for Designing against an adversary
• Assume a strong adversary!
 ➔ the adversary will give as least information as possible
• Choose questions (or operations) as balance as possible
 ➔ e.g. for comparison of two keys, x > y
 ➔ Yes: x > y and
 ➔ No: x not > y
 ➔ should provide about the same amount information

The Selection Problem
• Find an element with rank k
 ➔ in an array E using indexes 1 through n
 ➔ the elements in E are assumed to be unsorted
 ➔ where 1 <= k <= n
• Finding an element with rank k is equivalent to answering the question:
 ➔ If the array were sorted in nondecreasing order
 ➔ which element would be in E[k]?
• The largest key (called max) should be k = n
• The smallest key (called min) should be k = 1
• The median key should be k = Ceiling[n/2]

Finding min, finding max, finding min and max
• Finding min in an unsorted array of n elements
 ➔ require at least n-1 comparisons
• Finding max in an unsorted array of n elements
 ➔ require at least n-1 comparisons
• Now we want to find both min and max
 ➔ can we do better than 2(n-1) ?
 ➔ What is the lower bound?
• Theorem: Any algorithm to find both min and max of n keys by comparison of keys must do at least 3n/2 – 2 key comparisons in the worst case.

Proof by adversary arguments and units of information
• To know that a key v is max, an algorithm must know that every key other than v has lost some comparison
 ➔ To know that a key u is min, an algorithm must know that every key other than u has won some comparison.
• If we count each win as one unit of information
 ➔ and each loss as one unit of information
 ➔ Then an algorithm must have at least 2(n-1) units of information for finding both min and max.
• We need to determine how many comparison are required (in the worst case) to get total 2(n-1) units of information.
 ➔ The adversary to give us the worst case will provide as few information as possible.
The adversary strategy to give us the worst case

<table>
<thead>
<tr>
<th>Status of keys x and y compared by an algorithm</th>
<th>Adversary response</th>
<th>New status</th>
<th>Units of new information</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, N</td>
<td>x x y</td>
<td>W, L</td>
<td>2</td>
</tr>
<tr>
<td>W, N or W, N</td>
<td>x x y</td>
<td>W, L or W, L, L</td>
<td>1</td>
</tr>
<tr>
<td>L, N</td>
<td>x < y</td>
<td>L, W</td>
<td>1</td>
</tr>
<tr>
<td>W, W</td>
<td>x > y</td>
<td>W, W, L</td>
<td>1</td>
</tr>
<tr>
<td>L, L</td>
<td>x > y</td>
<td>W, L, L</td>
<td>1</td>
</tr>
<tr>
<td>W, L or W, L or W, W, W</td>
<td>x > y</td>
<td>No change</td>
<td>0</td>
</tr>
<tr>
<td>W, L, WL</td>
<td>Consistent with assigned values</td>
<td>No change</td>
<td>0</td>
</tr>
</tbody>
</table>

Our strategy to gain as much information

- Our algorithm can do at most \(\frac{n}{2} \) comparisons of previously unseen keys
 - suppose for the moment that \(n \) is even
 - each of these comparison give us 2 units of information
 - now we have \(n \) units of information
- Our algorithm need total \(2(n-1) = 2n - 2 \), so now we need \(n - 2 \) additional units of information
 - for each other comparison we gain at most one unit of information
 - so we need at least \(n - 2 \) additional comparisons
- In total our algorithm requires at least \(n/2 + n - 2 \) comparisons. For \(n \) is odd, \(3n/2 - 3/2 \) comparisons are needed. QED

Design an algorithm to find min and max

- Now we know the lower bound (in the worst case)
 - Can we design an algorithm to reach the lower bound?
- Exercise
 - design an algorithm to find both min and max
 - the algorithm should do at most (about) \(3n/2 \) comparison (in the worst case) for a problem size of \(n \) elements