Dynamic Sets and Searching

- Analysis Technique
 - Amortized Analysis
 // average cost of each operation in the worst case
- Dynamic Sets
 // Sets whose membership varies during computation
 - Array Doubling
 - Implementing Stack with array doubling
- Searching
 // Exist or not, in where
 - Binary Search Trees
 - Hashing

Amortized Analysis

- Provides average cost of each operation in the worst case for successive operations
- Aggregate method
 - show for a sequence of n operations takes worst-case time T(n) in total
 - In the worst case, the average cost, or amortized cost, per operation is therefore T(n)/n
- Accounting method // spreading a large cost over time
 - amortized cost = actual cost + accounting cost
 - assign different accounting cost to different operations
 1. the sum of accounting costs is nonnegative for any legal sequence of operations
 2. to make sure it is feasible to analyze the amortized cost of each operation

Array Doubling

- We don’t know how big an array we might need when the computation begins
- If not more room for inserting new elements,
 - allocating a new array that is twice as large as the current array
 - transferring all the elements into the new array
- Let t be the cost of transferring one element
 - suppose inserting the (n+1) element triggers an array-doubling
 - cost t*n for this array-doubling operation
 - cost t*n/2 + t*n/4 + t*n/8 + … for previous array-doubling, i.e. cost less than t*n
 - total cost less than 2t*n
 - The average cost for each insert operation = 2t

Implementing Stack with array doubling

- Array doubling is used behind the scenes to enlarge the array as necessary
 - Assuming actual cost of push or pop is 1
 1. when no enlarging of the array occurs
 2. the actual cost of push is 1 + t*n
 3. when array doubling is required
 - Accounting scheme, assigning
 - accounting cost for a push to be 2t
 1. when no enlarging of array occurs
 2. accounting cost for push to be –t*n + 2t
 3. when array doubling is required
 - The amortized cost of each push operation is 1+2t
 - From the time the stack is created, the sum of the accounting cost must never be negative.

Searching: Binary Search Trees

- Binary Search Tree property
 - A binary tree in which the nodes have keys from an ordered set has the binary search tree property
 - if the key at each node is greater than all the keys in its left subtree and
 - less than or equal to all keys in its right subtree
 - In this case the binary tree is called a binary search tree
 - An inorder traversal of a binary search tree produces a sorted list of keys.

Binary Search Trees, e.g.

- Binary Search trees with different degrees of balances
 - Black dots denote empty trees
Binary Search Tree Retrieval

- Element bstSearch(BinTree bst, Key K)
 - Element found
 - if (bst == nil)
 - found = null;
 - else
 - Element root = root(bst);
 - if (K == root.key)
 - found = root;
 - else if (K < root.key)
 - found = bstSearch(leftSubtree(bst), K);
 - else
 - found = bstSearch(rightSubtree(bst), K);
 - return found;

Analysis of Binary Search Tree Retrieval

- use the number of internal nodes of the tree that are examined when searching for key
 - let it be n
- For a long chain tree structure, $\Theta(n)$
- For a tree as balanced as possible, $\Theta(\log n)$

 The objective is to make the tree as balanced as possible
 - Technique: Binary Tree Rotations

Binary Tree Rotations

- Left Rotation on (15, 25)

Making binary search trees as balanced as possible

- Red-Black Tree
 - Let T be a red-black tree with n internal nodes. Then no node has depth greater than $2 \log(n + 1)$.

Hashing to aid searching

- Imagine that we could assign a unique array index to every possible key that could occur in an application.
 - locating, inserting, deleting elements could be done very easily and quickly
 - key space is much too large
- The purpose of hashing is to translate (by using hash function) an extremely large key space into a reasonable small range of integers (called hash code).
- Hash Table
 - an array H on indexes (hash code) 0, ..., h-1
 - hash function maps a key into an integer in the range 0, ..., h-1
 - Each entry may contain one or more keys!
 - Hash function is a many-to-one function

Hash Table, e.g.

- data k: 1055, 1492, 1776, 1812, 1918, and 1945
- hash function
 - hashCode(k) = 5k mod 8
- hashCode: key
 - 0: 1776
 - 1:
 - 2:
 - 3: 1055
 - 4: 1492, 1812 // Collision!
 - 5: 1945
 - 6: 1918
 - 7:
Handling Collisions: Closed Address Hashing

- H[i] is a linked list
- hashCode: key
 - 0: -> 1776
 - 1: ->
 - 2: ->
 - 3: -> 1055
 - 4: -> 1492 -> 1812
 - 5: -> 1945
 - 6: -> 1918
 - 7: ->
 - To search a given key K, first compute its hash code, say i, then search through the linked list at H[i], comparing K with the keys of the elements in the list.

Analysis of Closed Address Hashing

- Searching for a key
- Basic Operation: comparisons
 - Assume computing a hash code equals a units of comparisons
 - if there are total n elements stored in the table.
 - each elements is equally likely to be search
 - Average number of comparison for an unsuccessful search (after hashing) equal
 \[A_u(n) = \frac{n}{h} \]
 - Average cost of a successful search
 - when key i = 1, ..., n, was inserted at the end of a linked list, each linked list had average length given by (i – 1)/h
 - expected number of key comparisons = 1 + comparisons make for inserting an element at the end of a linked list
 \[A_s(n) = \frac{1}{n} \sum_{i=1}^{n} (1 + (i - 1)/h) = 1 + n/(2h) + 1/(2h) \]

Assuming uniformly distribution of hash code

- hash code for each key in our set is equally likely to be any integer in the range 0, ..., h-1
- If n/h is a constants then
 - O(1) key comparisons can be achieved, on average, for successful search and unsuccessful search.
- Uniformly distribution of hash code depends on the choice of Hash Function

Choosing a Hash Function

- // for achieve uniformly distribution of hash code
- If the key type is integer
 - hashCode(K) = (a K) mod h
- Choose h as a power of 2, and h >= 8
- Choose a = 8 Floor[h/23] + 5
- If the key type is string of characters, treat them as sequence of integers, k1, k2, k3, ..., kl
 - hashCode(K) = (a1 k1 + a2 k2 + ... + al kl) mod h
- Use array doubling whenever n/h (called load factor, where n is the number of elements in the table) gets high, say 0.5

Handling Collisions: Open Address Hashing

- is a strategy for storing all elements in the array of the hash table, rather than using linked lists to accommodate collisions
 - if the hash cell corresponding to the hash code is occupied by a different elements,
 - then a sequence of alternative locations for the current element is defined (by rehashing)
- Rehashing by linear probing
 - rehash(j) = (j+1) mod h
 - where j is the location most recently probed,
 - initially j = i, the hash code for K
- Rehashing by double hashing
 - rehash(j, d) = (j + d) mod h
 - e.g. d = hashIncr(K) = (2K + 1) mod h
 - // computing an odd increment ensures that whole hash table is accessed in the search (provided h is a power of 2)

Open Address Hashing, e.g. Linear probing

- hashCode: key
 - 0: 1776
 - 1:
 - 2:
 - 3: 1055
 - 4: 1492
 - 5: 1945
 - 6: 1918
 - 7:
- Now insert 1812, hashcode(1812) = 4, i.e. i = 4
 - h = 8, initially j = i = 4
 - rehash(j) = (j+1) mod h
 - rehash(4) = (4+1) mod 8 = 5 // collision again
 - rehash(5) = (5+1) mod 8 = 6 // collision again
 - ... put in 7
Retrieval and Deletion under open addressing hashing

- Retrieval procedure imitates the insertion procedure, stop search as soon as emptyCell is encountered.
- Deletion of a key:
 - cannot simply delete the the key and assign the cell to emptyCell // cause problem for retrieval procedure
 - need to assign the cell to a value indicating “obsolete”