Graphs and Graph Traversals

- From Tree to Graph
- Many programs can be cast as problems on graph
- Definitions and Representations
- Traversing Graphs
- Depth-First Search on Directed Graphs
- Strongly Connected Components of a Directed Graph
- Depth-First Search on Undirected Graphs
- Biconnected Components of an Undirected Graph

Problems: e.g. Airline Routes

Problems: e.g. Flowcharts

Problems: e.g. Binary relation

Definition: Directed graph

- Directed Graph
 - A directed graph, or digraph, is a pair
 - $G = (V, E)$
 - where V is a set whose elements are called vertices, and
 - E is a set of ordered pairs of elements of V.

 - Vertices are often also called nodes.
 - Elements of E are called edges, or directed edges, or arcs.
 - For directed edge (v, w) in E, v is its tail and w its head;
 - (v, w) is represented in the diagrams as the arrow, $v \rightarrow w$.
 - In text we simple write vw.

Problems: e.g. Computer Networks

(a) A star network
(b) A ring network
Definition: Undirected graph

- Undirected Graph
 - An undirected graph is a pair \(G = (V, E) \)
 - Where \(V \) is a set whose elements are called vertices, and \(E \) is a set of unordered pairs of distinct elements of \(V \).

- Vertices are often also called nodes.
- Elements of \(E \) are called edges, or undirected edges.
- Each edge may be considered as a subset of \(V \) containing two elements,
- \(\{v, w\} \) denotes an undirected edge
- In diagrams this edge is the line \(v \rightarrow w \).
- In text we simply write \(vw \), or \(wv \)
- \(vw \) is said to be incident upon the vertices \(v \) and \(w \)

Definitions: Weighted Graph

- A weighted graph is a triple \((V, E, W) \)
 - Where \((V, E) \) is a graph (directed or undirected) and \(W \) is a function from \(E \) into \(\mathbb{R} \), the reals (integer or rationals).
 - For an edge \(e \), \(W(e) \) is called the weight of \(e \).

Graph Representations using Data Structures

- **Adjacency Matrix Representation**
 - Let \(G = (V, E) \), \(n = |V| \), \(m = |E| \), \(V = \{v_1, v_2, \ldots, v_n\} \)
 - \(G \) can be represented by an \(n \times n \) matrix

Adjacency Matrix for weight digraph

- **Array of Adjacency Lists Representation**
 - From \(\rightarrow \) to

Array of Adjacency Lists Representation

- **Array of Adjacency Lists Representation**
 - From \(\rightarrow \) to, weight
More Definitions

- Subgraph
- Symmetric digraph
- complete graph
- Adjacency relation
- Path, simple path, reachable
- Connected, Strongly Connected
- Cycle, simple cycle
- acyclic
- undirected forest
- free tree, undirected tree
- rooted tree
- Connected component

Traversing Graphs

- Most algorithms for solving problems on a graph examine or process each vertex and each edge.
- Breadth-first search and depth-first search
 - are two traversal strategies that provide an efficient way to “visit” each vertex and edge exactly once.

- Breadth-first search: Strategy (for digraph)
 - choose a starting vertex, distance \(d = 0 \)
 - vertices are visited in order of increasing distance from the starting vertex,
 - examine all edges leading from vertices (at distance \(d \)) to adjacent vertices (at distance \(d+1 \))
 - then, examine all edges leading from vertices at distance \(d+1 \) to distance \(d+2 \), and so on,
 - until no new vertex is discovered

Breadth-first search, e.g.

- e.g. Start from vertex A, at \(d = 0 \)
 - visit B, C, F; at \(d = 1 \)
 - visit D; at \(d = 2 \)
- e.g. Start from vertex E, at \(d = 0 \)
 - visit G; at \(d = 1 \)

Breadth-first search: I/O Data Structures

Input: \(G = (V, E) \), a graph represented by an adjacency list structure, adjVertices, as described in Section 7.2.3, where \(V = \{1, \ldots, n\}; r \in V \), the vertex from which the search begins.

Output: A breadth-first spanning tree, stored in the parent array. The parent array is passed in and the algorithm fills it.

Remark: For a queue \(Q \), we assume operations of the Queue abstract data type (Section 3.4.2) are used. The array \(color[1] \ldots color[n] \) denotes the current search status at all vertices. Undiscovered vertices are white, those that are discovered but not yet processed (in the queue) are gray, those that are processed are black.

Breadth-first search: Algorithm

```c
void breadthFirstSearch(intList[] adjVertices, int n, int s, int[] parent)
int[] color = new int(n+1);
Queue pending = create(s);
Initialize color(1) \ldots color(n) to white.
parent[s] = -1;
color[s] = gray;
enqueue(pending, s);
while (pending is nonempty)
  v = front(pending);
dequeue(pending);
  For each vertex u in the list adjVertices[v]:
    if (color[w] == white)
      color[w] = gray;
eventh(pending, w);
  parent[w] = v; // Process tree edge vw.
  // Continue through list.
  // Process vertex v here.
color[v] = black;
return;
```

Breadth-first search: Analysis

- For a digraph having \(n \) vertices and \(m \) edges
 - Each edge is processed once in the while loop for a cost of \(\Theta(m) \)
 - Each vertex is put into the queue once and removed from the queue and processed once, for a cost \(\Theta(n) \)
- Extra space is used for color array and queue, there are \(\Theta(n) \)
- From a tree (breadth-first spanning tree)
 - the path in the tree from start vertex to any vertex contains the minimum possible number of edges
- Not all vertices are necessarily reachable from a selected starting vertex
Depth-first search for Digraph

- Depth-first search: Strategy (for digraph)
 - choose a starting vertex, distance d = 0
 - vertices are visited in order of increasing distance from the starting vertex,
 - examine One edges leading from vertices (at distance d) to adjacent vertices (at distance d+1)
 - then, examine One edges leading from vertices at distance d+1 to distance d+2, and so on,
 - until no new vertex is discovered, or dead end
 - then, backtrack one distance back up, and try other edges, and so on
 - until finally backtrack to starting vertex, with no more new vertex to be discovered.

Depth-first search algorithm: outline

dfs(G, v) // OUTLINE
 Mark v as “discovered.”
 For each vertex w such that edge vw is in G:
 If w is undiscovered:
 dfs(G, w); that is, explore vw, visit w, explore from there as much as possible, and backtrack from w to v.
 Otherwise:
 “Check” w w without visiting w.
 Mark w as “finished.”

Depth-first search tree

- edges classified:
 - tree edge, back edge, descendant edge, and cross edge

Reaching all vertices

dfsSweep(G) // OUTLINE
 Initialize all vertices of G to “undiscovered.”
 For each vertex v in G, in some order:
 If v is undiscovered:
 dfs(G, v); that is, perform a depth-first search beginning (and ending) at v; any vertices discovered during an earlier depth-first search visit are not revisited: all vertices visited during this dfs are now classified as “discovered.”
Depth-first search algorithm

```c
int dfystart(list) adjVertices, int() color, int v, ...)
int w;
intList remAdj;
int ans;
1. color[v] = gray;
2. Preorder processing of vertex v
3. remAdj = adjVertices(v);
4. while (remAdj != nil)
5. w = first(remAdj);
6. if (color[w] == white)
7. Exploratory processing for tree edge uv;
8. wans = dfs12(Vertices, color, w, ...);
9. Blackout processing for tree edge uv, using wans (like inorder);
10. else
11. Checking (i.e., processing) for non-tree edge uv;
12. remAdj = rest(remAdj);
13. Postorder processing of vertex v, including final computation of ans
14. color[v] = black;
15. return ans;
```

Strongly Connected Components of a Digraph

- **Strongly connected:**
 - A directed graph is strongly connected if and only if, for each pair of vertices \(v \) and \(w \), there is a path from \(v \) to \(w \).
- **Strongly connected component:**
 - A strongly connected component of a digraph \(G \) is a maximal strongly connected subgraph of \(G \).

Strongly Connected Components and Equivalence Relations

- **Strongly Connected Components may be defined in terms of an equivalence relation, \(S \), on the vertices**
 - \(vS\overline{w} \) if there is a path from \(v \) to \(w \) and
 - a path from \(w \) to \(v \)
- **Then, a strongly connected component consists of one equivalence class, \(C \), along with all edges \(vw \) such that \(v \) and \(w \) are in \(C \).**

Condensation graph

- The strongly connected components of a digraph can each be collapsed to a single vertex yielding a new digraph that has no cycles.
- **Condensation graph:**
 - Let \(S_1, S_2, ..., S_p \) be the strong components of \(G \).
 - The condensation graph of \(G \) denoted as \(G_\downarrow \), is the digraph \(G_\downarrow = (V', E') \),
 - where \(V' \) has \(p \) elements \(S_1, S_2, ..., S_p \) and
 - \(s_i \) is in \(E' \) if and only if \(\overline{ij} \) and
 - there is an edge in \(E \) from some vertex in \(S_i \) to some vertex in \(S_j \).

Condensation graph and its strongly connected components

- **Condensation Graph is acyclic.**

Algorithm to Find Strongly Connected Component

- **Strategy:**
 - **Phase 1:**
 - A standard depth-first search on \(G \) is performed,
 - and the vertices are put in a stack at their finishing times
 - **Phase 2:**
 - A depth-first search is performed on \(G^T \), the transpose graph.
 - To start a search, vertices are popped off the stack.
 - A strongly connected component in the graph is identified by the name of its starting vertex (call leader).
The strategy in Action, e.g.

Depth-First Search on Undirected Graphs
- Depth-first search on an undirected graph is complicated by the fact that edges should be explored in one direction only.
- but they are represented twice in the data structure (symmetric digraph equivalence)
- Depth-first search provides an orientation for each of its edges
 - they are oriented in the direction in which they are first encountered (during exploring)
 - the reverse direction is then ignored.

Algorithm for depth-first search on undirected graph
```
int dfs(IntList[] adjVertices, int[] color, int v, int p, ...)

1. color[v]=gray;
2. Preorder processing of vertex v
3. remAdj=adjVertices[v];
4. while(remAdj<>nil)
5.   w=first(remAdj);
6.   if(color[w]==white)
7. Exploratory processing for tree edge vw.
8.   int wAns=dfs(adjVertices,color, w, v, ...)
9. BackTrack processing for tree edge vw using wAns (like inorder)
10. else if(color[w]==gray && w<>p)
11.      Checking back edge vw
12. remAdj=rest(remAdj)
13.Postorder processing of vertex v, including final computation of ans
14.color[v]=black;
15.return ans;
```

Breadth-first Search on Undirected Graph
- Simply treat the undirected graph as symmetric digraph
 - in fact undirected graph is represented in adjacency list as symmetric digraph
- Each edge is processed once in the “forward” direction
 - whichever direction is encountered (explored) first is considered “forward” for the duration of the search

Bi-connected components of an Undirected graph
- Problem:
 - If any one vertex (and the edges incident upon it) are removed from a connected graph,
 - is the remaining subgraph still connected?
- Biconnected graph:
 - A connected undirected graph G is said to be biconnected if it remains connected after removal of any one vertex and the edges that are incident upon that vertex.
- Biconnected component:
 - A biconnected component of a undirected graph is a maximal biconnected subgraph, that is, a biconnected subgraph not contained in any larger biconnected subgraph.
- Articulation point:
 - A vertex v is an articulation point for an undirected graph G if there are distinct vertices w and x (distinct from v also) such that v is in every path from w to x.

Bi-connected components, e.g.
- Some vertices are in more than one component (which vertices are these?)