Graph Optimization Problems and Greedy Algorithms

- Greedy Algorithms
 - Make the best choice now!

- Optimization Problems
 - Minimizing Cost or Maximizing Benefits
 - Minimum Spanning Tree
 - Minimum cost for connecting all vertices
 - Single-Source Shortest Paths
 - Shortest Path between two vertices

Greedy Algorithms:
Make the best choice now!

- Making choices in sequence such that
 - each individual choice is best
 - according to some limited “short-term” criterion,
 - that is not too expensive to evaluate
 - once a choice is made, it cannot be undone!
 - even if it becomes evident later that it was a poor choice

- Make progress by choosing an action that
 - incurs the minimum short-term cost,
 - in the hope that a lot of small short-term costs add up to small overall cost.

- Possible drawback:
 - actions with a small short-term cost may lead to a situation, where further large costs are unavoidable.

Optimization Problems

- Minimizing the total cost or
 - Maximizing the total benefits
 - Analyze all possible outcomes and find the best, or
 - Make a series of choices whose overall effect is to achieve the optimal.

- Some optimization problems can be solved exactly by greedy algorithms
 - Minimum cost for connecting all vertices
 - Minimum Spanning Tree Algorithm
 - Shortest Path between two vertices
 - Single-Source Shortest Paths Algorithm

Minimum Spanning Tree

- A spanning tree for a connected, undirected graph, $G=(V,E)$ is
 - a subgraph of G that is
 - an undirected tree and contains
 - all the vertices of G.

- In a weighted graph $G=(V,E,W)$, the weight of a subgraph is
 - the sum of the weights of the edges in the subgraph.

- A minimum spanning tree for a weighted graph is
 - a spanning tree with the minimum weight.

Prim’s Minimum Spanning Tree Algorithm

- Select an arbitrary starting vertex, (the root)
- branches out from the tree constructed so far by
 - choosing an edge at each iteration
 - attach the edge to the tree
 - that edge has minimum weight among all edges that can be attached
 - add to the tree the vertex associated with the edge
- During the course of the algorithm, vertices are divided into three disjoint categories:
 - Tree vertices: in the tree constructed so far,
 - Fringe vertices: not in the tree, but adjacent to some vertex in the tree,
 - Unseen vertices: all others

The Algorithm in action, e.g.
Prim’s Minimum Spanning Trees: Outline

prinMST(G, n) // OUTLINE
Initialize all vertices as unseen.
Select an arbitrary vertex s to start the tree; reclassify it as tree.
Reclassify all vertices adjacent to s as fringe.
While there are fringe vertices:
 Select an edge of minimum weight between a tree vertex t and a
 fringe vertex v;
 Reclassify v as tree; add edge tv to the tree;
 Reclassify all unseen vertices adjacent to v as fringe.

Properties of Minimum Spanning Trees

• Definition: Minimum spanning tree property
 ➔ Let a connected, weighted graph G = (V, E, W) be given, and
 let T be any spanning tree of G.
 ➔ Suppose that for every edge vw of G that is not in T,
 if uv is added to T, then it creates a cycle
 such that uv is a maximum-weight edge on that cycle.
 ➔ Then the tree T is said to have the minimum spanning tree
 property.

• Lemma: In a connected, weighted graph G = (V, E, W),
 if T1 and T2 are two spanning trees that have the MST
 property,
 then they have the same total weight.

• Theorem: In a connected, weighted graph G = (V, E, W)
 a tree T is a minimum spanning tree if and only if
 T has the MST property.

Problem: Single-Source Shortest Paths

• Problem:
 ➔ Finding a minimum-weight path between two specified
 vertices
 ➔ It turns out that, in the worst case, it is no easier to find
 a minimum-weight path between a specified pair of
 nodes s and t than
 ➔ it is to find minimum-weight path between s and every
 vertex reachable from s. (single-source shortest paths)

Properties of Minimum Spanning Trees …

• Lemma: In a connected, weighted graph G = (V, E, W),
 if T1 and T2 are two spanning trees that have the MST
 property,
 then they have the same total weight.

• Theorem: In a connected, weighted graph G = (V, E, W)
 a tree T is a minimum spanning tree if and only if
 T has the MST property.

Correctness of Prim’s MST Algorithm

• Lemma: Let G = (V, E, W) be a connected, weighted graph with
 n = |V|;
 let Tk be the tree with k vertices constructed by Prim’s
 algorithm, for k = 1, ..., n; and
 let Gk be the subgraph of G induced by the vertices of
 Tk (i.e., uv is an edge in Gk if it is an edge in G and both
 u and v are in Tk).
 ➔ Then Tk has the MST property in Gk.

• Theorem: Prim’s algorithm outputs a minimum spanning tree.

Shortest-Path

• Definition: shortest path
 ➔ Let P be a nonempty path
 in a weighted graph G = (V, E, W)
 consisting of k edges xv1, v1v2, ..., vk−1y (possibly v1=y).
 ➔ The weight of P, denoted as W(P) is
 the sum of the weights, W(xv1), W(v1v2), ..., W(vk−1y).
 ➔ If x=y, the empty path is considered to be a path from x to
 y. The weight of the empty path is zero.
 ➔ If no path between x and y has weight less than W(P),
 then P is called a shortest path, or minimum-weight path.
Properties of Shortest Paths

- **Lemma**: Shortest path property
 - In a weighted graph G,
 - suppose that a shortest path from x to z consist of
 - path P from x to y followed by
 - path Q from y to z.
 - Then P is a shortest path from x to y, and Q is a shortest path from y to z.

Dijkstra’s Shortest-Path Algorithm

- **Greedy Algorithm**
- **weights are nonnegative**

```pseudo
DijkstraSSSP(G, r) // OUTLINE
Initialize all vertices as unseen.
Start the tree with the specified source vertex $s$; reclassify it as tree;
define $d(s, s) = 0$.
Reclassify all vertices adjacent to $s$ as fringe.
While there are fringe vertices:
  Select an edge between a tree vertex $t$ and a fringe vertex $u$ such that
  $(d(s, t) + W(yu))$ is minimum;
  Reclassify $u$ as tree; add edge $tu$ to the tree;
  define $d(t, u) = (d(t, t) + W(yu))$.
Reclassify all unseen vertices adjacent to $u$ as fringe.
```

The Algorithm in action, e.g.

- **Theorem**: Given a directed weighted graph G with nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from s.

Correctness of Dijkstra’s Shortest-Path Algorithm

- **Theorem**: Let $G=(V,E,W)$ be a weighted graph with nonnegative weights.
 - Let V' be a subset of V and
 - let s be a member of V'.
 - Assume that $d(s,y)$ is the shortest distance in G from s to y,
 for each $y \in V'$.
 - If edge yz is chosen to minimize $d(s,y)+W(yz)$ over all edges
 with one vertex y in V' and one vertex z in $V-V'$,
 - then the path consisting of a shortest path from s to y followed by
 the edge yz is a shortest path from s to z.

- **Theorem**: Given a directed weighted graph G with nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from s.