Parallel Algorithms

- several operations can be executed at the same time
- many problems are most naturally modeled with parallelism
- A Simple Model for Parallel Processing
- Approaches to the design of parallel algorithms
- Speedup and Efficiency of parallel algorithms
- A class of problems \(NC \)
- Parallel algorithms, e.g.

A Simple Model for Parallel Processing

- Parallel Random Access Machine (PRAM) model
 - a number of processors all can access
 - a large share memory
 - all processors are synchronized
 - all processor running the same program
 - each processor has an unique id, pid. and
 - may instruct to do different things depending on their pid

PRAM models

- PRAM models vary according
 - how they handle write conflicts
 - The models differ in how fast they can solve various problems.
- Concurrent Read Exclusive Write (CREW)
 - only one processor are allow to write to
 - one particular memory cell at any one step
- Concurrent Read Concurrent Write (CRCW)
 - Algorithm works correctly for CREW
 - will also works correctly for CRCW
 - but not vice versa

Approaches to the design of parallel algorithms

- Modify an existing sequential algorithm
 - exploiting those parts of the algorithm that are naturally parallelizable.
- Design a completely new parallel algorithm that
 - may have no natural sequential analog.
- Brute force Methods for parallel processing:
 - Using an existing sequential algorithm but
 - each processor using differential initial conditions
 - Using compiler to optimize sequential algorithm
 - Using advanced CPU to optimize code

Speedup and Efficiency of parallel algorithms

- Let \(T^*(n) \) be the time complexity of a sequential algorithm to solve a problem \(P \) of input size \(n \)
- Let \(T_p(n) \) be the time complexity of a parallel algorithm to solves \(P \) on a parallel computer with \(p \) processors

 - **Speedup**
 - \(S_p(n) = T^*(n) / T_p(n) \)
 - \(S_p(n) \leq p \)
 - Best possible, \(S_p(n) = p \)
 - when \(T_p(n) = T^*(n)/p \)

 - **Efficiency**
 - \(E_p(n) = T_1(n) / (p T_p(n)) \)
 - where \(T_1(n) \) is when the parallel algorithm run in 1 processor
 - Best possible, \(E_p(n) = 1 \)

A class of problems \(NC \)

- The class \(NC \) consists of problems that
 - can be solved by parallel algorithm using
 - polynomially bounded number of processors \(p(n) \)
 - \(p(n) \in O(n^k) \) for problem size \(n \) and some constant \(k \)
 - the number of time steps bounded by a polynomial in the logarithm of the problem size \(n \)
 - \(T(n) = O(\log n)^m \) for some constant \(m \)

- Theorem:
 - \(NC \subseteq P \)
Parallel algorithms, e.g.

Binary Fan-In Technique

Algorithm: Parallel Tournament for Max

- **Algorithm:** Parallel Tournament for Maximum
- **Input:** Keys $x[0], x[1], \ldots, x[n-1]$.
- **Initially in memory cells:** $M[0], \ldots, M[n-1]$.
- **Integer n.**
- **Output:** The largest key will be left in $M[0]$.
- **parTournamentMax(M, n)**
 - int incr
 - Write (some very small value) into $M[n+\text{pid}]$
 - incr = 1;
 - while (incr < n)
 - key big, temp0, temp1;
 - Read $M[\text{pid}]$ into temp0
 - Read $M[\text{pid} + \text{incr}]$ into temp1
 - big = max(temp0, temp1);
 - Write big into $M[\text{pid}]$
 - incr = 2 * incr;
- **Analysis:** Use n processors and $O(\log n)$ time.

Algorithm: Finding Max in Constant Time

- **Algorithm:** Common-Write Max of n Keys
 - **Uses n^2 processors, does only three read/write steps!**

 - **fastMax(M, n)**
 1. Compare i and j from pid.
 - if $i \geq j$ return $x[i]$.
 - P_i reads x_i from $M[i]$.
 2. P_j reads x_j from $M[j]$.
 - P_j compares x_i and x_j.
 - Let k be the index of the smaller key (if tied).
 - P_j writes 1 in $\text{losser}[k]$.
 - At this point, every key other than the largest
 // has lost a comparison.

 // This processor already has the needed x in its local memory
 // from steps 1 and 2.