Instruction-Level Parallel Processors

{Objective:
executing two or more instructions in parallel}

* 4.1 Evolution and overview of ILP-processors
» 4.2 Dependencies between instructions

* 4.3 Instruction scheduling

* 4.4 Preserving sequential consistency

* 4.5 The speed-up potential of ILP-processing
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Computer Science

Improve CPU performance by

« increasing clock rates
2 (CPU running at 2GHz!)
* increasing the number of instructions to be executed
in parallel
> (executing 6 instructions at the same time)

How do we increase the number of
instructions to be executed?

Traditional Scalar Superscalar
von Neumann processors ILP-processors ILP-processors
{Saqguential issue, (Seqauential issue. (Parallel issue,
sequential execution] parallel execution] parallel executior)

Parallelism of instruction execution

Parallielism of instruction issue

Time and Space parallelism

Internal of operation
principle
of ILP-pracessors
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VLIW
(very long instruction word,1024 bits!)

Superscalar
(sequential stream of instructions)
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KFrom Sequential instructions
to parallel execution

» Dependencies between instructions
* Instruction scheduling
 Preserving sequential consistency

4.2 Dependencies between instructions

> Instructions often depend on each other in such a way
that a particular instruction cannot be executed until a
preceding instruction or even two or three preceding
instructions have been executed.

1 Data dependencies
« 2 Control dependencies
* 3 Resource dependencies

4.2.1 Data dependencies

* Read after Write
* Write after Read
* Write after Write
* Recurrences

Data dependencies in straight-line code
(RAW)

* RAW dependencies
il: load r1, a
»r2:add r2,rl, r1

« flow dependencies
« true dependencies
 cannot be abandoned




Data dependencies 1n straight-line code
(WAR)

Data dependencies 1n straight-line code
(WAW)

* WAR dependencies
il: mul rl, r2, r3
> r2: add r2, r4, r5
« anti-dependencies
« false dependencies
* can be eliminated through register renaming
>il: mul r1, r2, r3
> r2: add r6, r4, r5
> by using compiler or ILP-processor

* WAW dependencies
2 il: mul r1, r2, r3
> r2:add rl, r4,r5
* output dependencies
» false dependencies
* can be eliminated through register renaming
il: mul r1, r2, r3
2 r2: add ré6, r4, r5
> by using compiler or ILP-processor

Data dependencies in loops

for (int i=2; i<10; i++) {
x[i] = a*x[i-1] + b
}

* cannot be executed in parallel

Data dependency graphs

e il:loadrl,a

e i2:load 2, b

e i3:load r3, rl, 12
e i4: mulrl, 12, r4;
e i5:divrl, 12, r4

4.2.2 Control dependencies

* mulrl, r2, 13
* jz zproc

* zproc: load rl, x

« actual path of execution depends on the outcome of
multiplication

» impose dependencies on the logical subsequent
instructions

Control Dependency Graph

i0: rl = opl;
il: r2 = op2;
42: ¥3 = opd;
i3: if (r2 > r1})

id: if (3 > rl)
is: rd = rd;
i6: else rd4 = rl}

17: else rd = r2;
i8: r5 = rd * rd




branches?
Frequency and branch distance

Impact of branch
on instruction issue

» Expected frequency of (all) branch
- general-purpose programs (non scientific): 20-30%
- scientific programs: 5-10%
» Expected frequency of conditional branch
- general-purpose programs: 20%
- scientific programs: 5-10%
» Expected branch distance (between two branch)
- general-purpose programs: every 3"-5" instruction, on
average, to be a conditional branch
> scientific programs: every 10%-20% instruction, on
average, to be a conditional branch

. fig. 4.14

4.2.3 Resource dependencies

* An instruction is resource-dependent on a previously
issued instruction if it requires a hardware resource
which is still being used by a previously issued
instruction.

> eg.

»>divrl, r2, r3
> div r4, r2, r5

4.3 Instruction scheduling

 scheduling or arranging two or more instruction to be
executed in parallel

> Need to detect code dependency (detection)
> Need to remove false dependency (resolution)

* ameans to extract parallelism
> instruction-level parallelism which is implicit, is made

explicit

* Two basic approaches
> Static: done by compiler
= Dynamic: done by processor

Instruction Scheduling:

and of

Dynamic
datection and resclution
of dependencies

Static
detaction and resclution
of dopendencies

H

ILP-Instruction scheduling

o
Static schaduling
boosted by parallel
eode optimization

= Parformed entirely
by the compiler

* The processor receives
dependency-free
and optimized code
for parallel axacution

Tvpteal for VLIWs
and a fow pipalined
processors fe.g. MIPS)

ILP-instruction seheduling

Dynamic seheduling
without static parallel
code optimization

Dynamic scheduling
boosted by static
parallel code optimization

* Parformad antiraly + Perfarmad by the
by the processo DrOCESSON in ¢
with the parall
compiler
= The code is not optimized

for paraliel execution
The processcr

detects and resalves
depandencies on its own

Early ILP processors
fe.g. COC 8600,
160 360/91 etc.)




4.4 Preserving sequential consistency

Concept sequential consistency

* care must be taken to maintain the logical integrity of
the program execution

parallel execution mimics sequential execution as far
as the logical integrity of program execution is
concerned

. eg.

- add r5, r6, r7

Fdiv rl, r2, r3

Sequential consistency

—

Sequential consistency Sequential consistency
of instruction execution of exception processing

—

j Consistency of the sequence Consistency of the sequence
> jz somewhere of instruction completions of memory accesses
Processor Memory Consistency of
consistency consistency exceptions
4.5 The speed-up potential of
ILP-processing Basic Block

« Parallel instruction execution may be restricted by
data, control and resource dependencies.

Potential speed-up when parallel instruction execution
is restricted by true data and control dependencies:

- general purpose programs: about 2

¥ scientific programs: about 2-4
* Why are the speed-up figures so low?

> basic block (a low-efficiency method used to extract
parallelism)

* is a straight-line code sequence that can only be
entered at the beginning and left at its end.

e il:calc: add 13, r1, 12
o i2: sub r4, rl, 12
e i3: mul r4, r3, r4
o i4: jn negproc

* Basic block lengths of 3.5-6.3, with an overall
average of 4.9
(RISC: general 7.8 and scientific 31.6 )

¢ Conditional Branch = control dependencies

Two other methods for speed up

What do we do without a perfect oracle?

* Potential speed-up embodied in loops
- amount to a figure of 50 (on average speed up)
> unlimited resources (about 50 processors, and about 400 registers)
> ideal schedule
« appropriate handling of control dependencies

~-amount to 10 to 100 times speed up
> assuming perfect oracles that always pick the right path for
conditional branch
- => control dependencies are the real obstacle in utilizing
instruction-level parallelism!

« execute all possible paths in conditional branch
> there are 2”N paths for N conditional branches
) pursuing an exponential increasing number of paths
would be an unrealistic approach.
* Make your Best Guess
= branch prediction

> pursuing both possible paths but restrict the number of
subsequent conditional branches

> (more more CH. 8)




How close real systems can come to the upper
limits of speed-up?

» ambitious processor can expect to achieve speed-up
figures of about
>4 for general purpose programs
= 10-20 for scientific programs
* an ambitious processor:
> predicts conditional branches
> has 256 integer and 256 FP register

> eliminates false data dependencies through register
renaming,

= performs a perfect memory disambiguation
= maintains a gliding instruction window of 64 items




