
Instruction-Level Parallel Processors
{Objective:

executing two or more instructions in parallel}
• 4.1 Evolution and overview of ILP-processors
• 4.2 Dependencies between instructions
• 4.3 Instruction scheduling
• 4.4 Preserving sequential consistency
• 4.5 The speed-up potential of ILP-processing

CH04

TECH
Computer Science

Improve CPU performance by
• increasing clock rates

(CPU running at 2GHz!)

• increasing the number of instructions to be executed
in parallel

(executing 6 instructions at the same time)

How do we increase the number of
instructions to be executed? Time and Space parallelism

Pipeline (assembly line) Result of pipeline (e.g.)

VLIW
(very long instruction word,1024 bits!)

Superscalar
(sequential stream of instructions)

From Sequential instructions
to parallel execution
• Dependencies between instructions
• Instruction scheduling
• Preserving sequential consistency

4.2 Dependencies between instructions
Instructions often depend on each other in such a way
that a particular instruction cannot be executed until a
preceding instruction or even two or three preceding
instructions have been executed.

• 1 Data dependencies
• 2 Control dependencies
• 3 Resource dependencies

4.2.1 Data dependencies
• Read after Write
• Write after Read
• Write after Write
• Recurrences

Data dependencies in straight-line code
(RAW)
• RAW dependencies

i1: load r1, a
r2: add r2, r1, r1

• flow dependencies
• true dependencies
• cannot be abandoned

Data dependencies in straight-line code
(WAR)
• WAR dependencies

i1: mul r1, r2, r3
r2: add r2, r4, r5

• anti-dependencies
• false dependencies
• can be eliminated through register renaming

i1: mul r1, r2, r3
r2: add r6, r4, r5
by using compiler or ILP-processor

Data dependencies in straight-line code
(WAW)
• WAW dependencies

i1: mul r1, r2, r3
r2: add r1, r4, r5

• output dependencies
• false dependencies
• can be eliminated through register renaming

i1: mul r1, r2, r3
r2: add r6, r4, r5
by using compiler or ILP-processor

Data dependencies in loops
for (int i=2; i<10; i++) {

x[i] = a*x[i-1] + b

}
• cannot be executed in parallel

Data dependency graphs
• i1: load r1, a
• i2: load r2, b
• i3: load r3, r1, r2
• i4: mul r1, r2, r4;
• i5: div r1, r2, r4

4.2.2 Control dependencies
• mul r1, r2, r3
• jz zproc
• :
• zproc: load r1, x
• :
• actual path of execution depends on the outcome of

multiplication
• impose dependencies on the logical subsequent

instructions

Control Dependency Graph

Branches?
Frequency and branch distance
• Expected frequency of (all) branch

general-purpose programs (non scientific): 20-30%
scientific programs: 5-10%

• Expected frequency of conditional branch
general-purpose programs: 20%
scientific programs: 5-10%

• Expected branch distance (between two branch)
general-purpose programs: every 3rd-5th instruction, on
average, to be a conditional branch
scientific programs: every 10th-20th instruction, on
average, to be a conditional branch

Impact of Branch
on instruction issue
• fig. 4.14

4.2.3 Resource dependencies
• An instruction is resource-dependent on a previously

issued instruction if it requires a hardware resource
which is still being used by a previously issued
instruction.

• e.g.
div r1, r2, r3
div r4, r2, r5

4.3 Instruction scheduling
• scheduling or arranging two or more instruction to be

executed in parallel
Need to detect code dependency (detection)
Need to remove false dependency (resolution)

• a means to extract parallelism
instruction-level parallelism which is implicit, is made
explicit

• Two basic approaches
Static: done by compiler
Dynamic: done by processor

Instruction Scheduling: ILP-instruction scheduling

4.4 Preserving sequential consistency
• care must be taken to maintain the logical integrity of

the program execution
• parallel execution mimics sequential execution as far

as the logical integrity of program execution is
concerned

• e.g.
add r5, r6, r7
div r1, r2, r3
jz somewhere

Concept sequential consistency

4.5 The speed-up potential of
ILP-processing
• Parallel instruction execution may be restricted by

data, control and resource dependencies.
• Potential speed-up when parallel instruction execution

is restricted by true data and control dependencies:
general purpose programs: about 2
scientific programs: about 2-4

• Why are the speed-up figures so low?
basic block (a low-efficiency method used to extract
parallelism)

Basic Block
• is a straight-line code sequence that can only be

entered at the beginning and left at its end.
• i1: calc: add r3, r1, r2
• i2: sub r4, r1, r2
• i3: mul r4, r3, r4
• i4: jn negproc

• Basic block lengths of 3.5-6.3, with an overall
average of 4.9
(RISC: general 7.8 and scientific 31.6)

• Conditional Branch control dependencies

Two other methods for speed up
• Potential speed-up embodied in loops

amount to a figure of 50 (on average speed up)
f unlimited resources (about 50 processors, and about 400 registers)
f ideal schedule

• appropriate handling of control dependencies
amount to 10 to 100 times speed up
f assuming perfect oracles that always pick the right path for

conditional branch

control dependencies are the real obstacle in utilizing
instruction-level parallelism!

What do we do without a perfect oracle?
• execute all possible paths in conditional branch

there are 2^N paths for N conditional branches
pursuing an exponential increasing number of paths
would be an unrealistic approach.

• Make your Best Guess
branch prediction
pursuing both possible paths but restrict the number of
subsequent conditional branches
(more more CH. 8)

How close real systems can come to the upper
limits of speed-up?
• ambitious processor can expect to achieve speed-up

figures of about
4 for general purpose programs
10-20 for scientific programs

• an ambitious processor:
predicts conditional branches
has 256 integer and 256 FP register
eliminates false data dependencies through register
renaming,
performs a perfect memory disambiguation
maintains a gliding instruction window of 64 items

