5 Pipelined Processor

- temporal overlapping of processing, assembly line
5.1 Basic concept
» 5.2 Design space of pipelines
* 5.3 Overview of pipelined instruction processing

* 5.4 Pipelined execution of integer and Boolean
instructions

* 5.5 Pipelined processing of loads and stores

drcl

Computer Science

5.1.1 Principle of pipelining

[Single task '

Principle of pipelining e.g.

Processing of a single instruction

[Fetch l Decode I Execute } Writeback |

Processing of a sequence of instructions using

abasic pipeline

I F stage l D stage IEstage |WB stagﬂ

Cycle In In processing Qut (Finished)

1. Cycle Instr 1—> Fy

2.Cycle Instr 2 — F, D,

3. Cycle Instr 3— Fy D, E,

4. Cycle Instr 4 — Fy D E, | W8, | —lnstr

5. Cycle Instr5—» F D, E, | WB, | —»Instr2

Pipelined and unpipelined processing

Instr. 3 Instr. 2 Instr. 1 Rasult of instr. 1

" Pipelined
execution unit

5.1.2 General structure of pipelines

L
loesl
(=) %
Instr. 2 Instr. 1
ﬂ L. Unpipelined J
E secution unit
L I I 1 1 1 I 1 Il 1 I L
lersl

Stage 1

Latch |

Stage 2

Latch

Structure and pipelined operation of the Fx
unit of the IBM Powerl

Dt * +

Pipeline Performance Measures

* Cycle time: t,
> is determined by the worst-case processing time of the
longest stage

» Repetition Rate: R

> the shortest possible time interval between subsequent
independent instructions in the pipeline

+ Performance potential of a pipeline: P
P=1/(R *t,)

» PowerPC603 FP double Mul. e.g. R=2,t,=12 nsec
P=1/(R *t)=1/(2*12nec) = 44.6 MFLOPS

Performance: RAW-dependent

» Latency:
> specifies the amount of time that the result of a
particular instruction takes to become available in the
pipeline for a subsequent dependent instruction.
* Define-use latency (10 to 100 cycles)
Y mul rl, r2, r3
Jadd r5, rl, r4
» Load-use latency (1 to 3 cycles)
~load rl, x
~add r5, rl, r2
« Stalled: the immediately following RAW-dependent
instruction has to be stalled in the pipeline for n-1
cycle

Improve Performance

* Multiple-operation instructions

« HP PA 7100

FMPYADD RM1, RM2, RM3, RA1, RA2
RM3<RMI*RM2 RA2€RAI1+RA2

* PowerPC
»FMA for performing (A*C) + B

5.1.4 Application scenarios of pipelines

Vector processors General Processing of

classes

ingof F ingof F ing of
i FP i USi i

5.2 Design space of pipelines

Chapter 13 of Part ill Section 5.3 Section 5.4 Section 5.5

+ key aspect of the design space of pipeline

Layout of a pipaline (in general)
Basic layout Method of
of the pipeline dependency resolution

5.2.2 Basic layout of a pipeline

» Design space of the overall stage layout

Basic layout of a pipeline

!
0 e B

Number of Specification Layoutofthe Use of Timing of the
sipeline stages of the subtasks stage sequence bypassing pipeline operations
to be performed in
each of the stages

Increasing parellelism by raising the number of
—pipeline stages

Instructions
Yt ‘e ta et

i
h

Eight -stage pipeline

Instructions

.|

o ottt e to e e Yo fort Yo tora T tots

)

Problems arise for more stages

« data and control dependencies occur more frequently
> stalled and wait for data
> reload pipe in case of branch

« subtask becomes less balances (in execution time)

> cycle time is determined by the worst-case processing
time of the longest stage

* In most case
> 5-10 stages

Pipelines e.g. DEC o 21064

Intager pipeline
[EaTw
/" Flating-poit ppelne

AR

[FIoT THE s ppoie
R C: Cache access
[E [| E Exeoute
' D : Decode
'~‘Load|’siore pipeling F : Instruction fetch

[4 |8 |wel W Wik

Layout of the stage sequence

Layout of the stage sequence

/O\\\
Ll T

Sequential Cycled
operation operation

A

Used in most Used for performing certain complex
casas parations such as mu
and division

Bypasses (data forwarding in RAW)

» Unless special arrangements are made,

* the results of the operation instruction is written into
the register file, or into the memory,
« and then it is fetched from there as a source operand.

Principle of bypassing in define-use and load-
use conflicts

Bypassing
Bypassing ina Bypassing in a
define-use conflict load-use conflict
—
EU Register| Data
file cache
[Bypass
Bypass Registar
ypa: EU e
—

Possibilities for the timing of pipeline

Aperation

Timing
Sychronous (clocked) Asynchronous timing
timing (self-timing)
Worst-case timing approach Timing by means of a
completion (acknowledge) signal
Al commercially Ressarch work only
available processors

3.3 Overview: pipelined Instruction
processing

Pipelined instruction processing

I
! }

Logical layout implementation
of instruction pipelines of instruction pipelines

!)

Declaration of the Detailed specification
‘logical’ pipelines of each of the pipelines
foreseen

Declaration of Logical Pipeline: e.g. Powerpc 601

Branch pipeline | Fetch ssue

FX pipeline | Fetch Issue | Execute | Writeback

USpipeline | Fetch lssue | Addrgen | Cache | Writeback

FP pipefine | Fetch lssue | Decode | Execute! | Execute 2 | Writeback

Detailed Specification of each of the pipeline: e.g. //

i Issue l Exectue | Writeback '
Read
referenced
registers Perform
specified
operation
on register
contents Write back
result into
the specified |
destination

register

Implementation of instruction pipelines
(v.s. logical)

[mplementation of
instruction pipelines

Muttiplicity Preservation of sequential
of pipelines consistency in case of
multiple physical pipelings

Layout of the
‘physical’ pipelines

Layout of physical pipelines

Layout of the "physical’ pipelines

Multifunctional pipalines Dedicated pipelines
(MF pipatines)
FX pipalina
FP pipatine
L/S pipaline
B pipeling

MF pipedine for MF pipedine for MF pipaling for
FX, FP. LS, B FX, LS, B FX, LS

Functionality

Trend

Multiplicity of pipelines
Multiplicity of pipelines

Single instance of a Multiple ins!a_nce_s ofa
physical pipeline physical pipeline
E.g. two FX pipelines
such as in the processors
Pentium (1993), Power2 (1993)
or DEC v.21164 (1995)

E.g. asingle multifunctional pipeline
such as the IBM 807 (1978) or the
WVIPS 1 (1981), or a single dedicated one
for the execution of FX instructions,
such as in the processors
486 (1989), PowerPC 601 (1993),
603 (1993) or DEC 1 21064 (1992)

Preserveing sequential consistency

Preservation of sequential consistency
in case of multiple pipelines

e
/ -\"-__‘__‘_x
o
i Reordering

Soft L of the
write back of the ‘shorter' pipeline
results

{enly in cases when thera
is a possibility of a hazard)

Genaevally used whan
there are multiple
(more than twa) pipelines
a.g. in the PowarPC 620,
MC 88110, PowerPC 603

Used when there is an FX and
an FP pipeline, e.g. in the
Pentium, MC 68050

Used mostly by early
coprocessor-based
FP implamantations

such as the R2000, R3000

Trend

Preserveing sequential consistency,
implementation e.g.

Implementation of pipelined
instruction processing

Single D
ouble !

instructon pipeline instruction pipel b

(Master instruction "I PRefes Instruction pipelines

pipeline) Either_ pr\icit saftware control Reordering of writing
Folr all except FP of writing back the results, or back the results
instructions enforced in-order completion

by the shorter pipeline

Preserveing sequential consistency, e.g.

Eary RISC processars Scalar 5
Wit an 6 unt, P coprocestorsorai e e
such as intergrated FP units, such as =
RISC { {1982) Z 80000 (1984) PA 7100 (1983,
f:’:ﬁg Hrr’;:?&} R2000 (1987) MC 8g7 IO((@&J?J
M]'ps,; r’fg;;] RFOOIO (1988} Paower 2 (15993
feroetive carly SPARC implementations PowrerPC 603 (1953}
(1978 Am_ 29000 (1987) PowerPC 804 (1595)
486 (1938) Pantium Pro {1895)
Fenativm (1983) Power PC 620 (1996)
BA 8000 (1996)
A 10000 (1556)

Parformance, trend

Case studies: Pentium

* Logic layout of Pentium’s pipelines

Integer pipeline

Floating-point pipeline

S Am e e we]

Case studies: PowerPC 604

K

Mutti-cycle Integer pipeling

P CFToTE - oo ,
[F o g o[e ["] o cunescen o]
D: Decode .. Branch pipeline
g . R
F: Instruction fetch ", Losd/store pipeiine
-, WB: Writeback B e E— CMPL: Complete
*., Branch pipeline Q: Tteration 2: E‘m:
; ““ E: hﬂmmchunmch

3.4 (Speciiic) Pipelines execution:
Integer and Boolean instructions (FX)

Pipelined exacution of FX instructions

|
! l

Logical layout Implementation
of FX pipelines of FX pipelines
RISC CisC
pipelines pipelines

RISC pipelines 4 or 5 stages

Layout of FX pipslines
in RISC proceasars

— T

Traditional 4-stage RISC Traditional &-stage MIPS
pipeline pipeline

|F|D|E|wa||F,,]D|E
Lald out for the execution Laid out for the executlon of

of reglater—register Instructions both reglster—ragister and
load/store instructions

E.g. 1860, Sparc processors, E.g. MIPS-iine (except R8000 and R10000), HP PA 7100
Am29000, MC 88110,
PowerPC iine

F: Fetch instruction
D: Decode
C: Cache access
E: Execute
WB: Write back the result

Tradictrional FX pipeline of RISC processors

L e | ol & [ws |
F I
instr; 3
regi ute
cper
back
the
Figure 5.36 Tradiu 1 FX pipeline of RISC p
Table 5.2 ati in pipeline eycle d in diti 1 FX
pipelines.
F =] E wB
Most processors 1 1 1 1
MC 8E110 1 72 1 2
SuperSparc arn 1 1/2

Logical to Physical: e.g.
PowerPC601 using a single universal FX unit

................. [Oocoe e v iches e

A{ ALL input muttiplexers and latches | B

Logie
wnit

{ ALU output mustiplexers and wtches I

| I

Execute stage

Layout 5 stages e.g. :
FX and L/S pipelines in the MIPS R4200

o . L |
Phase !m||q‘2.o||w1m|mlm|¢z|¢1_¢2!

Cycle IF]_D1E]c|wa_l

Istruction fatch ITLB
Instruction decode ——
Register fle raad

IDEC
LRFR |
FX (integerogical) }> .- ALU i

instructions

fload/stora) DOVA DTLB| DTC
Instructions ——=|DCA | LA | RFW

CISC pipeline 6 or S stages

Layout of FX pipelines
in CISC processors

Traditional 8-stage CISC 5-stage CISC
nipetine pipatine
[FIol=»JcTelw] [FTol»Tle[wl]
Laid gut for the execution Laid out for the execution of
of registar-memary instructions Both register-register and

load/slan instructions.
For register—memorny instructions the
pipeline is dynamically extended by an
maditional stage through recycling of the
E/C stage

E.g. | 488, Pontium, GrmicroS00
{its is also used in certain current
RISC processors, such as
PA 7100 and R8000)

Fatch instrsction
Address generation
Decode

E.g. ZBO0O,
Motorola MC 88040, MC 68060

Cache acess
Execute
Write back the result

Fm0grm

]

Traditional CISC pipeline:

The execution of reister-memory instruction

Register-memory
instructions

F: Fetch instruction
Dx Decode
A: Address generaticn
C: Cache access
E: Execute
WB: Write back the result

CISC pipeline:

Execution of register-register and load/store instructions

CF T o I~ c [€ [w]

Fogister—register
Instructions

Load
instructions

Store
instructions

CISC pipeline 5 stage: recycling E/C stage

Register-register |

Implementation of FX units: how many

Implementation of
FX pipeiines
O
- —
o o
Universal FX unit Dodicated FX unit
A\ Multiple dedcated
,/ \“\\ FX-units
™o
Singlo universal Multiple universal
FX unit FX units Simpla-
el s
et Sone Dw MY D0
ar T

486 (1985 ———————* Pentim (1993) [s60CAfross | 1 [T
Yower? (1990} MC 88110 (1953 l 2| G
000 (1991) o L
4P 7100 (1992 - e WP 7200 (19594) f’cw.:rpc 604 (1995) | | 1 ~
SpwerPC 601, 603 (1993 —= Power2 (1993} | Reooo (1994 [2]] 1 |
+ 21064 (1992) ——— 1 21164 (1995) == -

": Withaut shift operations
2. For poth FX and FP operations
*. Second adder doesn't conain 8 MulDiw unit

Trend in increasing the performance

Comman pipeline Separale pipelines Separate, in
rELSad —=> forFl,USand — somecases mulip
B inslructions Binstructions pipelines

3.5 (Specitic) Pipelines execution:
loads and stores

ipel

Sequential with
the FX execution

L/S addresses are

Master pioaling
SuperSPARC (1982p)
PowerPC 6071 (1863)

R4000 (1992)

B8060 (1993p)

of L'S

calculated by the FX pipeline

Pentium (1983, 2 FX EUs)

/\

Parallel with
the FX execution

LS is performed by
a separate L/S unit
Autonomons load/stone unitis)
960CA (1988)
MCEE110 (1991)
PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)

a2l 164 (1994, 2 FX EUs)
1]

RE000 (1994, 2 LIS units)
FPower2 (1993

« 21064/21064A (1992, 1993)

L/S: Load/Store

—_—

Parformance, trend

5.5.3 Load-use delay: RICS pipelines

FIpEINed Processing Of i0aas ana stores 111

Fatch | Calc. |Translate,| Write

Sublesis ok lad operafion reg. (instr addr | access C | into reg.

| |
1 1 1 1

Traditional RISC pipeline F [D E WEB

VA Data available

Load-use delay: MIPS

Sublasks of aload operation Fr'f Oak. [Taneltn(Wi

inst. e access C | nto reg.

TodtonalMPSgoeioe . | D | E [¢ | ws

VA Data available

Load-1ea
Load-use LU ol
=1
Data nesded Lo delay =1 .. Daaveededy |
S d instruction F 0 £ WE Subsequent dependent instruction F] E c [
Load-use delay: CISC Handling Load-use delay
 Basic approaches to cope with a load-use delay
btasks of 2 oad cperd Fetch | Cale. |Translate,| Write
reg. [instr. addr access G | into reg.
| Handiing of load-use delays
1 1 1
Traditional CISC pipeline . F D A C E W8
"""" | Ddaaclabe [ome Handing by tatc scheduing Handing by dynamic schediing
....... Daareced oy Thraugh he compier nsering Either through serting ppne holes
) : independent instuctions in (es s often done by scalar processars)
Subsequent dependent instruction F D A C E We botween dpondent nsiuctons or trough peventing e dependent
................. instruction from executing Lt the
requested data is avalable
LUD: Load-use delay

(used mostly by superscalar processors)

Remove Load-use delay

G C, C; Gy Gu GCs

m[FJo]e]w

Diata available

st by sarly MIPS processors,
such as the R2000, R3000

» ==t

Ingarting a pipeline hole '\"--
Data needed

w [F] o
Pipaling hole
The standard method used by most
up-to-date processors that have 2 load-use delay

Remove Load-use delay: bringing forward the
claculation of virtual address: for slow cache

Traditional e
RISC pipeline H _“:‘ ! o E we
va Data

Traditional wa
MIFS pipstine N | ° E h |
1 VA Data
¥ r L
RB000
A2
PAT100

Gmicro 500

