
Superscalar Processors

TECH
Computer Science

• 7.1 Introduction
• 7.2 Parallel decoding
• 7.3 Superscalar instruction issue
• 7.4 Shelving
• 7.5 Register renaming
• 7.6 Parallel execution
• 7.7 Preserving the sequential consistency of instruction execution
• 7.8 Preserving the sequential consistency of exception processing
• 7.9 Implementation of superscalar CISC processors using a

superscalar RISC core
• 7.10 Case studies of superscalar processors

CH01

Superscalar Processors vs. VLIW

Superscalar Processor: Intro
• Parallel Issue
• Parallel Execution
• {Hardware} Dynamic Instruction Scheduling
• Currently the predominant class of processors

Pentium
PowerPC
UltraSparc
AMD K5-
HP PA7100-
DEC α

Emergence and spread of superscalar processors

Evolution of superscalar processor Specific tasks of superscalar processing

Parallel decoding {and Dependencies check}

• What need to be done

Decoding and Pre-decoding
• Superscalar processors tend to use 2 and sometimes

even 3 or more pipeline cycles for decoding and
issuing instructions

• >> Pre-decoding:
shifts a part of the decode task up into loading phase
resulting of pre-decoding
f the instruction class
f the type of resources required for the execution
f in some processor (e.g. UltraSparc), branch target addresses

calculation as well

the results are stored by attaching 4-7 bits

• + shortens the overall cycle time or reduces the
number of cycles needed

The principle of perdecoding Number of perdecode bits used

Specific tasks of superscalar processing: Issue 7.3 Superscalar instruction issue
• How and when to send the instruction(s) to EU(s)

Issue policies
Instruction issue policies of superscalar processors:

---Performance, tread-----

Issue rate {How many instructions/cycle}
• CISC about 2
• RISC:

Issue policies: Handing Issue Blockages

Issue stopped by True dependency
• True dependency (Blocked: need to wait)

Issue order of instructions

Aligned vs. unaligned issue Issue policies: Use of Shelving

Direct Issue The principle of shelving: Indirect Issue

Design space of shelving Scope of shelving

Layout of shelving buffers Implementation of shelving buffer

Basic variants of shelving buffers
Using a combined buffer for
shelving, renaming, and reordering

Number of shelving buffer entries Number of read and write ports
• how many instructions may be written into (input

ports) or
• read out from (output parts) a particular shelving

buffer in a cycle
• depend on individual, group, or central reservation

stations

Shelving: Operand fetch policy 7.4.4 Operand fetch policies

Operand fetch during instruction issue

Reg. file

Operand fetch during instruction dispatch

Reg. file

Shelving: Instruction dispatch Scheme // 7.4.5 instruction dispatch scheme

- Dispatch policy
• Selection Rule

Specifies when instructions are considered executable
e.g. Dataflow principle of operation
f Those instructions whose operands are available are executable.

• Arbitration Rule
Needed when more instructions are eligible for
execution than can be disseminated.
e.g. choose the ‘oldest’ instruction.

• Dispatch order
Determines whether a non-executable instruction
prevents all subsequent instructions from being
dispatched.

Dispatch policy: Dispatch order

Trend of Dispatch order -Dispatch rate (instructions/cycle)

Maximum issue rate <= Maximum dispatch rates
>> issue rate reaches max more often than dispatch rates

- Scheme for checking the availability of operands:
The principle of scoreboarding

Schemes for checking the availability of operand Operands fetched during dispatch or during issue

Use of multiple buses for updaing multiple individual
reservation strations Interal data paths of the powerpc 604

• 42

-Treatment of an empty reservation station 7.4.6 Detail Example of Shelving
• Issuing the following instruction

cycle i: mul r1, r2, r3
cycle i+1: ad r2, r3, r5

ad r3, r4, r6

f format: Rs1, Rs2, Rd

Example overview Cycle i: Issue of the ‘mul’ instruction into the reservation station and
fetching of the corresponding operands

Cycle i+1: Checking for executable instructions and dispatching of the
‘mul’ instruction

Cycle i+1 (2nd phase): Issue of the subsequent two ‘ad’ instructions into
the reservation station

Cycle i+2: Checking for executable instruction
(mul not yet completed)

Cycle i+3: Updating the FX register file with the
result of the ‘mul’ instruction

Cycle i+3 (2nd phase): Checking for executable instructions
and dispatching the ‘older’ ’ad’ instruction =Instruction Issue policies:Register Renaming

Register Remaining and dependency
• three-operand instruction format
• e.g. Rd, Rs1, Rs2
• False dependency (WAW)

mul r2, …, …
add r2, …, …
f two different rename buffer have to allocated

• True data dependency (RAW)
mul r2, …, …
ad …, r2, …
f rename to e.g.
f mul p12, …, …
f ad …, p12, ….

Choronology of introduction of renaming (high complexity,
Sparc64 used 371K transistors that is more than i386)

Static or Dynamic Renaming >Design space of register renaming

-Scope of register renaming -Layout of rename buffers

-Type of rename buffers Rename buffers hold intermediate results
• Each time a Destination register is referred to,

a new rename register is allocated to it.
• Final results are stored in

the Architectural Register file
• Access both rename buffer and architectural register

file to find the latest data,
if found in both, the data content in rename buffer (the
intermediate result) is chosen.

• When an instruction completed (retired),
(ROB) {retire only in strict program sequence}
the correspond rename buffer entry is writing into the
architectural register file
(as a result modifying the actual program state)
the correspond rename buffer entry can be de-allocated

-Number of rename buffers
-Basic mechanisms used for
accessing rename buffers

• Rename buffers with associative access (latter e.g.)
• Rename buffers with indexed access

(always corresponds to the most recent instance of renaming)

-Operand fetch policies and Rename Rate

• rename bound: fetch operands during renaming
(during instruction issue)

• dispatch bound: fetch operand during dispatching

• Rename Rate
the maximum number of renames per cycle
equals the issue rate: to avoid bottlenecks.

7.5.8 Detailed example of renaming
• renaming:

mul r2, r0, r1
ad r3, r1, r2
sub r2, r0, r1

• format:
op Rd, Rs1, Rs2

• Assume:
separate rename register file,
associative access, and
operand fetching during renaming

Structure of the rename buffers and
their supposed initial contents

Latest bit: the most recent rename 1, previous 0

Renaming steps
• Allocation of a free rename register to a destination

register
• Accessing valid source register value or a register

value that is not yet available
• Re-allocation of destination register
• Updating a particular rename buffer with a computed

result
• De-allocation of a rename buffer that is no longer

needed.

Allocation of a new rename buffer to destination register
(circular buffer: Head and Tail) (before allocation) (After allocation) of a destination register

Accessing abailable register values Accessing a register value that is not yet available

3 is the index

Re-allocate of r2 (a destination register)

1

Updating the rename buffers with computed result of
{mul r2, r0, r1} (register 2 with the result 0)

1

Deallocation of the rename buffer no. 0
(ROB retires instructions) (update tail pointer) 7.6 Parallel Execution

• Executing several instruction in parallel
instructions will generally be finished in out-of-program order

• to finish
operation of the instruction is accomplished,
except for writing back the result into
f the architectural register or
f memory location specified, and/or
f updating the status bits

• to complete
writing back the results

• to retire (ROB)
write back the results, and
delete the completed instruction from the last ROB entry

7.7 Preserving Sequential Consistency
of instruction execution //

• Multiple EUs operating in parallel, the overall
instruction execution should
>> mimic sequential execution

the order in which instruction are completed
the order in which memory is accessed

Sequential consistency models

Consistency relate to
instruction completions or memory access Trend and performance

Allows the reordering of memory access
• it permits load/store reordering

either loads can be performed before pending stores, or vice versa
a load can be performed before pending stores only IF
none of the preceding stores has the same target address as the load

• it makes Speculative loads or stores feasible
When addresses of pending stores are not yet available,
speculative loads avoid delaying memory accesses, perform the load
anywhere.
When store addresses have been computed, they are compared
against the addresses of all younger loads.
Re-load is needed if any hit is found.

• it allows cache misses to be hidden
if a cache miss, it allows loads to be performed before the missed
load; or it allows stores to be performed before the missed store.

Using Re-Order Buffer (ROB) for Preserving:
The order in which instruction are <completed>

• 1. Instruction are written into the ROB in strict program order:
One new entry is allocated for each active instruction

• 2. Each entry indicates the status of the corresponding
instruction

issued (i), in execution (x), already finished (f)

• 3. An instruction is allowed to retire only if it has finished and
all previous instruction are already retired.

retiring in strict program order
only retiring instructions are permitted to complete, that is,
to update the program state:
f by writing their result into the referenced architectural register or memory

Principle of the ROB {Circular Buffer}
Introduction of ROBs in commercial superscalar
processors

• 7.61

Use ROB for speculative execution
• Guess the outcome of a branch and execution the path

before the condition is ready

• 1. Each entry is extended to include a speculative status field
indicating whether the corresponding instruction has been executed
speculatively

• 2. speculatively executed instruction are not allow to retire
before the related condition is resolved

• 3. After the related condition is resolved,
if the guess turn out to be right, the instruction can retire in order.
if the guess is wrong, the speculative instructions are marked to be
cancelled.
Then, instruction execution continue with the correct instructions.

Design space of ROBs

Basic layout of ROBs ROB implementation details

7.8 Preserving the Sequential consistency of
exception processing

• When instructions are executed in parallel,
interrupt request, which are caused by exceptions
arising in instruction <execution>,
are also generated out of order.

• If the requests are acted upon immediately,
the requests are handled in different order than in a
sequential operation processor
called imprecise interrupts

• Precise interrupts: handling the interrupts in
consistent with the state of a sequential processor

Sequential consistency of exception processing

Use ROB for preserving sequential order
of interrupt requests

• Interrupts generated in connection with instruction execution
can handled at the correct point in the execution,
by accepting interrupt requests only when the related instruction
becomes the next to retire.

7.9 Implementation of superscalar CISC processors
using superscalar RISC core

• CISC instructions are first converted into RISC-like
instructions <during decoding>.

Simple CISC register-to-register instructions are
converted to single RISC operation (1-to-1)
CISC ALU instructions referring to memory are
converted to two or more RISC operations (1-to-(2-4))
f SUB EAX, [EDI]

• converted to e.g.
f MOV EBX, [EDI]
f SUB EAX, EBX

More complex CISC instructions are converted to long
sequences of RISC operations (1-to-(more than 4))

• On average one CISC instruction is converted to
1.5-2 RISC operations

The peinciple of superscalar CISC execution using a
superscalar RISC core

PentiumPro: Decoding/converting CISC instructions
to RISC operations (are done in program order)

Case Studies: R10000
Core part of the micro-architecture of the R10000

• 67

Case Studies: PowerPC 620

Case Studies: PentiumPro
Core part of the micro-architecture

PentiumPro Long pipeline:
Layout of the FX and load pipelines

