Superscalar Processors

7.1 Introduction

7.2 Parallel decoding

+ 7.3 Superscalar instruction issue
+ 7.4 Shelving

+ 7.5 Register renaming

+ 7.6 Parallel execution

« 7.7 Preserving the sequential consistency of instruction execution

7.8 Preserving the sequential consistency of exception processing

+ 7.9 Implementation of superscalar CISC processors using a
superscalar RISC core

+ 7.10 Case studies of superscalar processors

100 Il

Computer Science

Superscalar Processors vs. VLIW

[eu | [eu
| |
T11 11l i

VLIW approach

Super:

Superscalar Processor: Intro

* Parallel Issue
* Parallel Execution
» {Hardware} Dynamic Instruction Scheduling
 Currently the predominant class of processors
~ Pentium
-~ PowerPC
~ UltraSparc
- AMD K5-
> HP PA7100-
»DECa

Emergence and spread of superscalar processors

The term
‘Superscaler’
Chesteh project Amarica project
IBM F t t @ -
DEC ;M"“"“'m' project__,
Starford . MATCH TORCH
@ o
Kyush U. SIMP DSNS
@ @
[T R] } L1 L e

1982 1983 1984 1885 1986 1987 1968 1089 1980

Evolution of superscalar processor

— o BECCAR ——— DEOM — "
st
[L — P—— _
— Amw —— —— Powml [} ————— RS) — = Power O — ~ PRSCIH
£
- " = — B e o 6
P g e e
Aearce) w
— —_—
— —_——— S t P
e — ————— e AT e PDAA) — o 21984
[P ! —— TR e FRTERE gy
u
Sun —_— e — — __WW__
MM — G — —— ——— e GrunSMl | — (Al —
R = " _— 800 4y e A) -
_ _ — A 00 8 U} ———
Anaz
S T —
O — W —— W
o —_— N — — o —
Aoty ————— I — —————————
o,
S TR W S W—
1800 1999 3 1088 0 1504 i 9

i NxdB6 has scadar isset for CISC mstructions bl a 3 way siperscalar cors for cotverfed RISC

Specific tasks of superscalar processing

Specific tasks of superscalar processing
Parallel Superscalar Parallg Praserving the Pregerving the
decoding Instructionlesue instruction sequential consistency sequential consistency
execution of execution of exception
processing
Section 7.2 Section 7.3 Section 7.6 Section 7.7 Saction 7.4

Parallel decoding {and Dependencies check}

* What need to be done

Decoding and Pre-decoding

* Superscalar processors tend to use 2 and sometimes
even 3 or more pipeline cycles for decoding and
issuing instructions

+ >> Pre-decoding:

> shifts a part of the decode task up into loading phase
> resulting of pre-decoding

> the instruction class
> the type of resources required for the execution

> in some processor (e.g. UltraSparc), branch target addresses
calculation as well

> the results are stored by attaching 4-7 bits
* + shortens the overall cycle time or reduces the
number of cycles needed

The principle of perdecoding

J’ Typicaily 128 bits/cycle
2

Praciecode
et

n into tha
operds

{ E.0. 148 bits/cycle

1-cacho
Tin the AMD K5, which is an xB6-compatibie CISC processor,
thae predecods urit appends 5 bits [0 each Dyte

Number of perdecode bits used

Table 7.1 Number of predecode bits used.

Type/year of first volume Number of predecaode bits
shipment appended 10 each instruction

PA 7200 (1995) 5

PA 8000 (1996) 5
PowerPC 620 (1996) 7
UltraSparc (1995) 4
HAL PML (1995} 4
AMD K5 (1995)) st
RI10000 (1996) 4

"I the K5, 5 predecode bits are added to each byte

Specific tasks of superscalar processing: Issue

Specific tasks of superscalar processing
Parallel Superscalar Parallat Praserving the Pregerving the
decoding Instruction issue instruction sequential consistency sequential consistency
execution of execution of exception

processing

Saction 7.2 Section 7.3 Section 7.6 Section 7.7 Saction 7.8

7.3 Superscalar instruction issue

* How and when to send the instruction(s) to EU(s)
Superscalar Instruction lesue

N
! I

Issua policy Issue rate

Issue policies

a8ue policy
Corng with Coping wih unrsalved Use of Handiing of
faise gata dependencies control dependencies shetving 3808 blochages

N NN

Nowra Regster Watnglor Speculitve Blocking issue Sheved lssus
provisionfor renaming mesolution branchproc, (Direct lssus) (Incirect issue)

Instruction issue policies of superscalar processors:
---Performance, tread----- >

Alignedissue Alignment-free : Typicat n recent

Typicalis eady * issue £ -
first-generation- - Typicel i foow-on. : L ,W
MC 68060 (1933

: _ R
.- MC8er10(19gy’ - MC 88110 (1953

Issue rate {How many instructions/cycle}

e CISC about 2
* RISC: Issue rate

2 3 4 5

Fower? (1990) ———t» Power2 (1993}
PowarPC 601 {1983) g POWSIFC 604 (1995)

PowerPC 603 (1993) PowerPC 620 (1996)
27064 (1,
a2 10644 :ﬁlﬁ; > 221164155
PA 7100 (1992}

PA 7200 (1995 P> F4.0000 (196)

SuperSparc (1992) ———pp LiltraSparc (1995)

Issue policies: Handing Issue Blockages

ague policy
Corng with Coping wih unrsalved Use of Handiing of
faise gata dependencies control dependencies shetving 8608 blockages

N NN

Nowdra Regster Wetnglr Specultve Blockingissus Shaved lssus
provisionfor renaming mesolution branchproc, (Direct lssus) (Indlrect issug)

Issue stopped by True dependency

* True dependency = (Blocked: need to wait)
Handling of Issue biockages

Preserving iasue order Alignment of Instruction
iasve

Whether a dependent instruction
blocks the Issue of
subsequent independent

Whether a fixed or a gliding

instruction window is used
Instructiong in the issue window

SN, TN

In-order Out-of-order Aligned Unaligned|
issue Issue issue issue

Issue order of instructions

Preserving Issua order
In-order insue Out-of-order lasus
Isaue window r_h,’ﬂ_
tructicns Instructions
o _8 (=) (o) 1o be lssusd % (e (a)

Instructions may be lssued
strictly in program ordar out of order

MG 88110 (1995 (partially)
PowerPC 601 (1953} (oartialy)

Aligned vs. unaligned issue

Alignment of instruction issue

e

o—
Aligned issue

Instructions Next win

@ & ® &
1

Checked in cycle 1

5

Issued in cycle 1

Checked in cycle 2

Issued in cycle 2

Checked in cycle 3

Issued in cycle 3

Issue policies: Use of Shelving

lasue policy
Corng with Coping wih unrsalved Use of Handiing of
faise gata dependencies control dependencies shetving 8608 blockages

N NN

Wetngfor Specultve Blockingissus Shaived lssus
meoiion branchproc, (Dirsctissus) (indirect issug)

Noenra Regste
provision for renaming

Direct Issue

The principle of shelving: Indirect Issue

Design space of shelving
Shelving
Scope of Layout Oparand fatch
shetving of the shelving policy
buffars
Section 7.4.3 Section7.44

Instruction
dispatch scheme

Section 745

Scope of shelving

Scope of sheiving

Partial
shelving

Shelving is restricted
to one or to a few
insyruction types

A fow suparscatar
processors, such as

Power1 (1990)
Powerz (1993)
{oth processors shelve
only FP instructions)

MC 88710 (1883)
(shelves only stares and
conditional branchas)

RB000 (1994}
(sheives only FP instructions)

O//\o

Full
aheiving

Shelving covers
all instruction types

AMost recent superscalar]
processors, such as

PowerPC 603 (1993)
PowerPC 604 (1995}
PowerPC 620 (1996)
Pentium Pro (1995)

R10000 (1996)

lssus perforrnance. trend

Layout of shelving buffers

Layout of the shelving bufters

T
L l

Type of the Number of Number of read

shetving buffers shelving tufter
antries

Implementation of shelving buffer

Type of shelving buffer
Standalone Combined buffers for shelving,
sheiving buffers renaming and reordering
Reservatlon stations DRIS
(Deferred scheduling, Register renaming,

Instruction Shelve)

Basic variants of shelving buffers

Reservation stations (RS)

Individual RSs Group RSs

=

!

= B = =
[

Usmg a combined buller for

shelving, renaming, and reordering

Combined buffer for shelving, ing and reordering
From decode/fissue
Reorder buffer which is alsa used Ao designed as DRIS
for renaming and sh alving (Deferred scheduiing, Register renaming,
L 7 T Instruction Shelve)

Lightning (1991p)

Number of shelving buffer entries

Table 7.2 _Comparison of available shelves in recent superscalar processom,

Processor Total number
of shelves

PowerPC 603 (1993) 3
PowerPC 604 (1994) 12
PowerPC 620 (1995) 15
Nx586 (1994) 42
K5 (1995) 14
PM1 (Sparctd) (1995) 36
PeatiumPro (1995) 20
RI0000 (1996) 48

Number of read and write ports

* how many instructions may be written into (input
ports) or

* read out from (output parts) a particular shelving
buffer in a cycle

* depend on individual, group, or central reservation
stations

Shelving: Operand fetch policy 7.4.4 Operand fetch policies
aiving
T . Iasue bound Dispatch bound
fatch fetch
coring imatruction Isaue durg matruction diepatch
Then shalving buffers Than u:.:iulnn buffars
Scope of Layout Oparand fetch ingtruction operand vanss regietar RS
shaving of m';l;helvlng policy dispatch seheme e 00/p (108%) coc ae??; (1999
- -] S
; Am sup. (1
rocﬂon 742 Saction 7.4.3 Section7.44 Saction 7.4.5 oy L0999 Doisse (1864
PentiumPro (T R10000(T596)

Operand fetch during instruction issue

i-butter

: Source register numbers

J

Issue

Source 1 opsrands
I Source 2 operands

Operand fetch during instruction dispatch

Shelving: Instruction dispatch Scheme // 7.4.5 instruction dispatch scheme
Shehving {nstruction disfalch scheme
Scope of Layout Oparand fetch instruction l l \J) l)
sheving of the shelving policy dispatch scherne Dispatch Dispatch Scheme for Treatment
bufiers _ policy rate checking the of an ampty
742 Saction 7.4.3 Section 744 Section 745 availabiliy resérvation
rmn of operands station

Dispatch policy

 Selection Rule
- Specifies when instructions are considered executable
> e.g. Dataflow principle of operation
> Those instructions whose operands are available are executable.
* Arbitration Rule
- Needed when more instructions are eligible for
execution than can be disseminated.
> e.g. choose the ‘oldest’ instruction.
 Dispatch order
= Determines whether a non-executable instruction

prevents all subsequent instructions from being
dispatched.

Dispatch policy: Dispatch order

Dispatch order
In-order Partialy Out-of-order
dispatch out-of-order dispatch
dispatch
Shetving Shedving
buffer buffer
Check Check|

A non-executable Non-axecutable instructions A non-executable

instruction blocks the belonging to particular instruction doas not
dissemination of instruction types block the block the dissemination
subsaquent instructions dissemination of all other of subsequent exacutable
subsequent instructions, instructions

but others do not

Trend of Dispatch order

Am29000 sup. (19

e e e
Performance, trend

only a single pending (no! executable) FP instructio

can be skipped.

dispatch from the three inl
Load/Store and FP reservation stations.

r reservation stations, but in-order ch from the B

* Out-of-order dispatch from the three int
the Branch and FP reservation sia

and Load/Store reserva

-Dispatch rate (instructions/cycle)

Dispatch rate

o —~—0

Single instruction/cycle Multiple instructions/cycle

Typhcal with individual RSs Typécal when group stations,

a central station or a DRIS is used

Incividual RS Central RS, DRIS

[- RS i RS : — RS or
Examplas are, among others.

PowerPC 603 (1393)
PowerPC 604 (1994)
PowerPC 620 (1995)

Group RS

PM1 [Sparctd) (1995)
R10000 (1996)
PA BO0O (1996)

Lightning (1991g)
PentiumPro (1995)

Table 7.3 Maximum issuc and dispatch rates of superscalar processors with shelving.

shipment instrieyele instrfeyele

PowerPC 603 (1993) 3 3
PowerPC 604 (1995) 4 6
PowerPC 620 (1996) 4 6
Power2 (1993) a6’ 10
NxSE6 (1994) 3t 34t
K5 (1995) a 5
PentiumPro (1995) 4 5
PMI1 (Sparc 64) (1995) 4 8
PARDO0D { 1996) 4 4
RAIODO0 { 1996) 4 5

Maximum issue rate <= Maximum dispatch rates
>> jssue rate reaches max more often than dispatch rates

Processor/Year of volume Mavimum issue rate Maximum dispatch rate’

Because of address calculations performed separately, the given numbers are usually 1o b
interpreted as operstionsicycle. Fi tance, the Power2 performs maximum 10 opera-

i yele, which ionsfeyele.

1 4 for target mode,

abelled NxS87) and 4 with

Both rates are related 1o RISC ope
formed by the lar RISC core.

- Scheme for checking the availability of operands:
The principle of scoreboarding

Register file

9
!

Scoreboard

Intarpratation:

0 =———— When an instruction s issued the
scoraboard entry corresponding
to the destination register is reset to ‘0"

1 =———— When the execution of an instruction
is completed, and the result is
written into the destination register,
the corresponding scoreboard
entry is set to '1"

Schemes for checking the availability of operand Operands fetched during dispatch or during issue

Eop—— [—

Schemes for checking the availability of operands

/\-&\n

G 0
Direct check Check of
of the scoreboard bits the explicit status bits
The avalabilty of source The availabiity of source
operands is not explicithy operands is explicithy
indicated in the RS. indicated in the RS.
Thus, the scoreboard bits These explict status bits
re tested for availability are tested for availability
Operation code
| . o N Son sty i
Usually employed if Usually employed if mf‘"i".f:'ﬁ;;amf“w
operands are fetched operands are fefched Opi Oszt Source operand values
i instruction dsna:;'.‘:_ ing inst i e ™3 Source operand identifiers (tags)
.'-' L 'I g instruction issue, Vi, Vit Sowrce operand valid bils
a5 assumed below 45 assumed below BS__B tatice,

Use of multiple buses for updaing multiple individual
reservation strations

Interal data paths of the powerpc 604

(e

Update
e
| Srwire
Dopatch
-
[
-Treatment of an empty reservation station 7.4.6 Detail Example of Shelving
* Issuing the following instruction
Treatment of an i:
empty reservation station (RS) 'Hycle N mul rl’ rz’ 3
> cycle i+1: ad r2,r3, r5
e d ad r3,r4,r6
Straightforward Bypassing
approach > format: Rs1, Rs2, Rd
——— 1 Atleast 7 Bypassing
“ one-cycle stay RS ifRS
[—] intheRs is empty
Nx586 (1994) PowerPC 604 (1995)
PM71 (Sparc64, 1995)

Example overview

From
Fgs, A Raault,
Fatoh Fae, Fas 0 91, Aga, Rp Flg
resst V-bit of Ao 2 l l .4
o Update Ag
H S - mot its V-bit
T2 alf FXregleter 1T
Fx Aar

102.,. van = J’ B
Onallas Vias
I I 1

OC | OaiMlas |Vas | Osilas |Vas | Ao
T 1 1
jUpdate RS — - — Outet -
- staten | one
I xR — Inetructionoyoke
1 1 1 1 1

OC Og/OpaFe

< .
Eu 1
Foault, Ao

Cycle i: Issue of the ‘mul’ instruction into the reservation station and
fetching of the corr ding operands

P

From decode/issue rename

Cycle i+1: Checking for executable instructions and dispatching of the
‘mul’ instruction

From decoderissue/rename

Ll

00| Osales [Vs: | Oseilss [V | Ro
FX RS
{Cut-oi-order) checking Checking
for executable instructions o
s i

Forward the exscutable
mul inst. to the FX EU

Cycle i+1 (2" phase): Issue of the subsequent two ‘ad’ instructions into
the reservation station

GU BN

Issue Sf e renamos
i instructan ine
Ahe FR RS

I [

e
!

1 1
e
R o[|

ol 10, 20, £
G anecutico) £x
B

Cycle i+2: Checking for executable instruction
(mul not yet completed)

From cecoderisswelmenane

FX RS

DUl e tharh cnacking
for smecuUtalie mstrusons.] =

AT
s | 20 [

Cnecking

vl 10, 20, £
T wmcation]

Cycle 1+3: Updating the FX register file with the
result of the ‘mul’ instruction

From decodaissuaename
]

—

v v
!G«: Denls |War | O |vee| A |

ras panding | |
W ARG Vea Dits arn set

Cycle i+3 (2" phase): Checking for executable instructions
and dispatching the ‘older’ ’ad’ instruction

From decode/issus/renams

Chacking

=Instruction Issue policies:Register Renaming

lasue policy
Corng with Coping wih unrsalved Use of Handiing of
faise gata dependencies control dependencies shetving 3808 blochages

N NN

Nowdra Regster Wetnglr Specultve Blockingissus Shaved lssus
provisionfor renaming mesolution branchproc, (Direct lssus) (Indlrect issug)

Register Remaining and dependency

* three-operand instruction format
* e.g.Rd, Rsl, Rs2
* False dependency (WAW)
>mulr2,
Faddr2, ..., ...
> two different rename buffer have to allocated
* True data dependency (RAW)
>mulr2, ..., ...
Jad ..., r2,...

> rename to e.g.
=mulpl2, ..., ...
=ad...,pl2, ...

Choronology of introduction of renaming (high complexity,
Sparc64 used 371K transistors that is more than i386)

—— SECHAMDIHT 3

o8 e

! 7 Fullwnaming

Static or Dynamic Renaming

Implementation of register renaming
Static Dynamic
impiemantation implamentation
Performed during Parformed during
compllation, i.e. execution, i..

statically, in paralisi dynamically, In

optimizing compilers superscalar processors

>Design space of register renaming
Reglater ranaming
Scope of Layout Operand Rename rate(
registar of the rename fatch
renaming buffers policy
Sectlon 7.5.2 Section 7.5.3 Section 7.5.4 Section 7.5.3

-Scope of register renaming

of bl

//\o

Partial renaming
Renaming s restrictad
to particutar
instruction types

PowerT? (RS/6000, 1993}
Power 2% (1

Full ronaming

FRenaming comprises
all oligible
instruction typaes

PowerC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)
10000 (7996)
and
most recent

Sun’s UltraSparc (1995}

Trend

1The Power1 renames only FP loads
2The Power2 extends renaming to alt FP instructions
3The PowerPGC 801 renames only the Link and

Count registers

4Since the Nx586 is an FX processor, it renames only

FX Instructiona

-Layout of rename buffers
Layout of the rename buflers

Basi¢
mechanism used
for acceusing

Number of
rename buffers

Type of the
rename buffers

renarme buffers

-Type of rename buffers

{The basiz approach

Suparals reamo
and architeotural
sugister files Ao

Type of rename butfers
o i rename butfers are i

Halkting senamed
waises in the

rzlerneraed)

—
Hoichrsg renamed
walusa i the

oAIS

reg. fia

Brrevee P E04 (12531
]

g, 0

Rename buffers hold intermediate results

+ Each time a Destination register is referred to,
a new rename register is allocated to it.
* Final results are stored in
the Architectural Register file
* Access both rename buffer and architectural register
file to find the latest data,
- if found in both, the data content in rename buffer (the
intermediate result) is chosen.
* When an instruction completed (retired),
> (ROB) {retire only in strict program sequence}

> the correspond rename buffer entry is writing into the
architectural register file
(as a result modifying the actual program state)

> the correspond rename buffer entry can be de-allocated

-Number of rename buffers

Implementartion of renaming

Number of rename buffers

Processor type

FX

Merged rename and arch. register file

Powerk 1950)
Power2 (1993)
ES/9000 (1992p)
PM1 (1995}
R10000 (1996}

Separate rename register file

PowerPC 603 (1993)
PowerPC 604 {1995)
PowerPC 620 {1996)

16

(16 arch. + 16 ren.)
38

(78 arch. + 38 ren.)

3z
(32 arch. + 32 ren.)
na.

iz
8

FP

8
(32 arch. + 8 rename)

(32 arch. + 22 rename)
12 .
{4 arch. + 12 rename)

(32 arch. + 24 rename)

32
(32 arch. + 32 rename))

a
8
8

10
16

-Basic mechanisms used for
accessing rename buffers

+ Rename buffers with associative access (latter e.g.)

* Rename buffers with indexed access
> (always corresponds to the most recent instance of renaming)

£y | AR |
vaikd |i-.u-.; i
w—=g 1 i 2
=il 1 I
: B 3 |
Lo |
4 0 B
s n Sl 011
: Mapping |
| e

Physical ragistar fa

1

-Operand fetch policies and Rename Rate

» rename bound: fetch operands during renaming
(during instruction issue)

« dispatch bound: fetch operand during dispatching

* Rename Rate
- the maximum number of renames per cycle
- equals the issue rate: to avoid bottlenecks.

7.5.8 Detailed example of renaming

* renaming:
- mul r2, r0, rl
Jad r3,rl, r2
sub r2, r0, r1

 format:
~op Rd, Rsl, Rs2

* Assume:
> separate rename register file,
- associative access, and
= operand fetching during renaming

Structure of the rename buffers and
their supposed initial contents

> Latest bit: the most recent rename 1, previous 0

Entry | Dest Value Value [Latest
valid [reg.no wvalld bit
2] 1 4 40 1 1
1 1 o 0 1 1
2 1 1 10 1 1
3 [+]
4 o
i !
1] Rename registers
]

Renaming steps

* Allocation of a free rename register to a destination
register

Accessing valid source register value or a register
value that is not yet available

» Re-allocation of destination register

« Updating a particular rename buffer with a computed
result

 De-allocation of a rename buffer that is no longer
needed.

Allocation of a new rename buffer to destination register
(circular buffer: Head and Tail) (before allocation)

mul r2,| r0, ri:

Entry Dest Value Value |Latest
valid |reg.no valid | bit
4] 1 4 40 1 1
1 1 0 0 1 1
2 1 1 10 1 1
Head —= 3 (o]
4 0

1 | Rename registers

(i) Tail —» 0

(After allocation) of a destination register

Entry | Dest Value Value |Latest
valid |reg.no valid | bit
of 1 4 40 1
1 0 0 1 1
20 1 1 10 1 1
3 [= @G
Head —= 4 (1]
| |
| I Rename registers
| |
(ii) Tail —= 0

Accessing abailable register values

(] 2 [roa]
| Entry | Gat [| Waksa |Labes:
valed eg re, wakd | bt
! H
—= 0 1 = iel | 1 1
—- 1[0 al o | I)
=+ 2 [Seli 10 | EE A D]
Associative -3 1 n 1
ookug for [4] O]
hen Ralest
wahaes of o | .
mand rl i | Hename negsicrs
I
I 1 |
]_H i

0, wakd

ric [&H
10, wald

Accessing a register value that is not yet available

@,
Entry | Dast walue value |Latest
valid |reg.ne. walid | bit
of 1 4 40 1 1
11 (o) [5) 1 1
bl g e e
Associative 3 B o [et (o) .(1.
loakup for EY e 3 &) 1
the latest 5 Q
walues of | .
r1 and r2 ! ! i Ae=name registers
| |
I 1 I

3 is the index

r1 H
10, valid 1 2, not valid

Re-allocate of r2 (a destination register)

Entry Dest Value Value |Latest

valid |reg.no valid bit
o] 1 4 40 1 1
1 1 (o] o] 1 1
2 1 1 10 1 (8}
3 1 2 o] o]
4 Q 3 o] 1
T 7 O @)
6 0
I I Rename registers
I I
1 I

o]

Updating the rename buffers with computed result of
{mul r2, r0, r1} (register 2 with the result 0)

Entry | Dest Value Value |Latest
valid |reg.no valid | bit
ol 1[4 40 11
1 1 0 0 1 1
2 1 1 10 1 1
Result 0
entry no 3 3 2 0 (] o
4 0 3 0 1
5| 1 2 Q 1
6l 0 i
[N
[Rename registers
I I
0

Deallocation of the rename buffer no. 0
(ROB retires instructions) (update tail pointer)

—_—

Deallocation
of entry no. 0

DB W = O

Entry | Dest Valug Value |Latest
valid [reg.no valid | bit
0| 4 40 e
1 0 0 1 1
1 1 10 1 1
[0 0 [0
0 3 0 1
1 2 0 1
L 0
|
I Rename registers
I
5 N

7.6 Parallel Execution

+ Executing several instruction in parallel
> instructions will generally be finished in out-of-program order
* to finish
> operation of the instruction is accomplished,
> except for writing back the result into
> the architectural register or
= memory location specified, and/or
> updating the status bits
* to complete
> writing back the results
to retire (ROB)

> write back the results, and

> delete the completed instruction from the last ROB entry

1.7 Preserving Sequential Consistency
of instruction execution //

» Multiple EUs operating in parallel, the overall
instruction execution should
>> mimic sequential execution
> the order in which instruction are completed
- the order in which memory is accessed

Sequential consistency models

Sequential consistency
of instructiop execution

Processor consistency

Consistency relate to
instruction completions or memory access

Congistency of the sequence Consistency of the sequence
of instruction completions of memory accesses

Weak

processor

Weak Strong

memery consistency

Trend and performance

Memory consistency

v
A

Allows the reordering of memory access

* it permits load/store reordering
- either loads can be performed before pending stores, or vice versa
> aload can be performed before pending stores only IF
> none of the preceding stores has the same target address as the load
+ it makes Speculative loads or stores feasible
> When addresses of pending stores are not yet available,

> speculative loads avoid delaying memory accesses, perform the load
anywhere.

-~ When store addresses have been computed, they are compared
against the addresses of all younger loads.

> Re-load is needed if any hit is found.
« it allows cache misses to be hidden

> if a cache miss, it allows loads to be performed before the missed
load; or it allows stores to be performed before the missed store.

Using Re-Order Buffer (ROB) for Preserving:
The order in which instruction are <completed>

1. Instruction are written into the ROB in strict program order:
> One new entry is allocated for each active instruction
¢ 2. Each entry indicates the status of the corresponding
instruction
> issued (i), in execution (x), already finished (f)
3. An instruction is allowed to retire only if it has finished and
all previous instruction are already retired.
> retiring in strict program order

> only retiring instructions are permitted to complete, that is,
to update the program state:

- by writing their result into the referenced architectural register or memory

Principle of the ROB {Circular Buffer}

Head
(first Tras antry)

Introduction of ROBs in commercial superscalar

processors
260 asocam —

e
— Power — T

— PowerPG

L T —
ey

s AR

Use ROB for speculative execution

* Guess the outcome of a branch and execution the path
> before the condition is ready

1. Each entry is extended to include a speculative status field
*> indicating whether the corresponding instruction has been executed

speculatively

+ 2. speculatively executed instruction are not allow to retire
- before the related condition is resolved

* 3. After the related condition is resolved,
+> if the guess turn out to be right, the instruction can retire in order.

+> if the guess is wrong, the speculative instructions are marked to be

cancelled.

Then, instruction execution continue with the correct instructions.

Design space of ROBs

Reorder buffer

(ROB)

Baslc layout
ofthe ROB

ROB

Basic layout of ROBs
Basic layout of ROBs
Reordering Reordering Reordering,
alone and renaming renaming and
shelving
{DRIg)
E£5/9000 Am29000 sup (1995) Lightning (1991p)
PowerPC 603 (1993} Ka (1995)
PowerPC 604 (1995} PentiumPro (1995)
PowerPC 620 (1986}
PM1 (1995)
R10000 (1996)

ROB implementation details

ROB Issue Retire I i Destg

size raie rate results stored
ES/000 (1992p) 2 2 2 No Completion control logic
PowerPC 602 (1995} 4 2 1 na. Completion unit
PowerPC 603 (1993) 5 3 2 No Completion buffer
PowerPC 604 (1995) 16 4 4 No ROB
PowerPC 620 (1996) 16 4 4 No ROB
PentiumPro (1995) 40 3 3 Yes ROB
Am29000 sup (1995) 10 4 2 Yes ROB
KS (1995) 6 4 4 Yes ROB |
FM1 (Sparct4, 1995) 64 4 4 No Precise state unit
UliraSparc (1995) na. 4 na. o.a Completion unit
PA 8000 (1996) 56 4 4 Yes Instruction reorder buffer
RI0G00 (1996) 2 4 4 No Active list

7.8 Preserving the Sequential consistency of
exception processing

* When instructions are executed in parallel,
- interrupt request, which are caused by exceptions
arising in instruction <execution>,
7 are also generated out of order.
« If the requests are acted upon immediately,
> the requests are handled in different order than in a
sequential operation processor
> called imprecise interrupts
* Precise interrupts: handling the interrupts in
consistent with the state of a sequential processor

Sequential consistency of exception processing

Weak conslstency

imprecise Interrupis

Powerl (1990)
Power2 (1993}
@ Processors

Sequential consistency
of exception processing

Strong consistency

Precise Interrupts

MCB8110 (1993)
Pentium (1993) and

ES/9000 (19920)
PowerPC line
PA 80GO0 (1996)
B10000 (1336)

Use ROB for preserving sequential order
of interrupt requests

 Interrupts generated in connection with instruction execution
- can handled at the correct point in the execution,
» by accepting interrupt requests only when the related instruction
becomes the next to retire.

7.9 Implementation of superscalar CISC processors
using superscalar RISC core

* CISC instructions are first converted into RISC-like
instructions <during decoding>.
= Simple CISC register-to-register instructions are
converted to single RISC operation (1-to-1)
= CISC ALU instructions referring to memory are
converted to two or more RISC operations (1-to-(2-4))
> SUB EAX, [EDI]
« converted to e.g.
> MOV EBX, [EDI]
= SUB EAX, EBX
= More complex CISC instructions are converted to long
sequences of RISC operations (1-to-(more than 4))
* On average one CISC instruction is converted to
1.5-2 RISC operations

The peinciple of superscalar CISC execution using a
superscalar RISC core

_— ciscC-part

Decoder/ =
CISC/RISC converter

) Supserscalar / RISC-

Pata cache

/ GISG/RISC cornveralon

PentiumPro: Decoding/converting CISC instructions
to RISC operations (are done in program order)

decoder
T
buffer ! Simple | 1uop
5 ! decoder

decoder

sequencer

Simple 1 uop

General |upto4ucps

Case Studies: R10000
Core part of the micro-architecture of the R10000

Case Studies: PowerPC 620

Case Studies: PentiumPro
Core part of the micro-architecture

PentiumPro Long pipeline:
Layout of the FX and load pipelines

