8 Processing of control transfer instructions

8.1 Introduction

8.2 Basic approaches to branch handling
» 8.3 Delayed branching

8.4 Branch processing

* 8.5 Multiway branching

» 8.6 Guarded execution

10t

Computer Science

8.1 Intro to Branch

* Branches modify, conditionally or unconditionally,
the value of the PC.

* To transfer control
« To alter the sequence of instructions

Major types of branches

Branches
_jl-" ~~n
Unconditional branches Conditional branches
S \
A \\
/, '\\
~ A .
Simple Branch Return Loop-closing Other
uncanditional to from conditional conditional
branch subroutine subroutine branch branch

Branch: To transfer control

Branch: e.g.

Semanties of the non-slf-explanatory instructiors:

BT Rl ta /) Branch if (RI) £

9B, RLLRL // Decrenent BL by I,

BE Rl ta // Branch to 'ta:' if (RL) # 0

ot /I 3ranch to 'ta:' and store next 2 into the Lin
Register

belr /1 3ranch to the address stored in the Link Register

bz ta |/ Decrenent Count Register, branch to 'ta:’ if Com
Register # 0

L n o Lobo veo s Af repAibion Dagiotay £014 (CD1) £)

8.1.2 How to check the results of operations for specified
conditions {branch} (e.g. equals 0, negative, and so on)

ISA concepts to implement checking
for specified conditions

Result state concept Direct check concept

Alternatives for checking the operation results

ISA concepts to implement checking for
specified conditions

according
The result state

conditional branck

Two-instruction Single-instruction

implamentation implementation

Result State vs. Direct Check, e.g.

[ea seroi]| [cweea «7. e1. 0] beq vl, sere:
1 div £S5, rd, rl; i
[zexai]]
Most established Am 29000 Earfy architectures, ke
architechures, such . PDE-10
1BA/ 360 CYBER/TO
1BM/370 PDP-8 (skips)
PDP-1T RAY
WAX MIPS-ike arciitecturoes such os
X86, Pentivm MIFPS
MC 8000 MIPS-X
SPARC MIPS R-tirer
PowerPC HP P

Semantics of the non self-explanatory instructions used in the example:

empeq r7,rl,x2; [/ x] « true if (rl) = (r2), alse r7 « false
bt 7,null; /1 branch to ‘null': if (r7) = true, else NOP
apbeq rl,r2,mull; // branch to 'mull’: if (rl) = (r2), else NOP

Result state approach: Disadvantage

» The generation of the result state is not
straightforward
It requires an irregular structure and occupies
additional chip area
+ The result state is a sequential concept.

= It cannot be applied without modification in
architectures which have multiple execution units.

Retaining sequential consistency for
condition checking (in VLIW or Superscalar)

» Use multiple sets of condition codes or flags

> It relies on programmer or compiler to use
different sets condition codes or flags for
different outcome generated by different EUs.

 Use Direct Check approach.

Branch Statistics

* 20% of general-purpose code are branch
- on average, each fifth instruction is a branch

* 5-10% of scientific code are branch

» The Majority of branches are conditional (80%)

* 75-80% of all branches are taken

Branch statistics: Taken or not Taken

e

Branch Aeturn fram
1o subroutine subroutine

2 |
" EEm @E

— Taken Mot taken

Not taken
-1/6

Frequency of taken and not-taken branches

Reference Frequency of Frequency of
Iaken branches nfaken branches

Lee and Smith, 1984 §1-99% |43
Edenfild et . 1990 1%
Grohoski, 1990 ~ 5 ~ 16

8.1.4 The branch problem:
The delay caused in pipelining

S Iy

o [E [ws]
[

(a) TA (Target address)

target: i1
Iz

[{=)]
|t [t |tz | ta | tia |

i1 F (=] E we

Branch instruction

— Cancellad

Target instruction

Pa—

Dealay

of 2 cycles

More branch problems

» Conditional branch could cause an even longer
penalty
> evaluation of the specified condition needs an extra
cycle
- waiting for unresolved condition (the result is not yet
ready)
> e.g. wait for the result of FDIV may take 10-50 cycles
* Pipelines became more stages than 4

- each branch would result in a yet larger number of
wasted cycles (called bubbles)

8.1.5 Performance measures of branch processing

> Pt : branch penalties for taken
> Pnt : branch penalties for not-taken
2 ft : frequencies of taken
> fnt : frequencies for not-taken
P : effective penalty of branch processing
* P=ft*Pt+ fnt * Pnt
> e.g. 80386:: P=0.75* 8+ 0.25 * 2 = 6.5 cycles
Ye.g. id486:: P=0.75%2+0.25*0=1.5 cycles

» Branch prediction correctly or mispredicted
e P=fc*Pc+fm*Pm
7 e.g. Pentium:: P =0.9 * 0 + 0.1 * 3.5 = 0.35 cycles

Interpretation of the concept of branch penalty

t | tiar | bz | tiea | tiea
iq F D E |WB

Branch instruction B F D E wB
ia F | D

ia F BTA D

Branch target instr. ki] F

3 cycles delay =

]
2 cycles penalty

BTA: Branch target address

Zero-cycle branching {in no time}

—

b taget b [t | o | e

8.2 Basic approaches to branch handling

Branch handling

Utilizing Handling of unresolved Avoiding
branch delay siots conditional branches cond. branches

e e

Delayed Blocking Speculative Multiway Guarded
branching branch proc. branch proc. branching execution

Branch processing

(Section 8.3) (Section 8.4) (Section 8.5) (Section B.6)

Performance

Review of the basic approaches to branch handling

B hnding
Uiangtrren Hngcﬂ oy
oyt Urtethed confte b ondond e
Peapdtractig Bk Seolate Huthe g Gl on

rachpocsig brach g

Speculative vs. Multiway branching

——
Guess: ‘taken'
BC BC
‘Sequential Taken Sequential Taken
path path path path
Resolution Resolution
f the branch is If the branch is 1f the branch is If the branch is
‘taken" not taken' ‘taken" ' '

+ £ 1
T+ FX KA

-Delayed Branching: Occurrence of an unused
instruction slot (unconditional branch)

GOOD

BTA (Branch target address)

BTl (Branch target instruction)

(4 121
|
B i | | [t e | s
aid | F|D|E [ws] a2 [F|D|E|we
Wasted R | FlDlE [
b | Branch b F|D|E|ws|
ol e s
BT sub | 3 BT sub I[I Flo
| | | B® | | | B | F
(=] (a)

Basic scheme of delayed branching

Principle of delayed branching

t; tie tivz tiva tiva
b, = D E wB
& e
<,
BTA | F 1

Branching to the target instruction (sub) is executed
with one pipeline cycle of delay. This cycle is utilized
to execute the instruction in the delay slot (add).
Thus, delayed branching results in the following
execution sequence:

a, add
b, b
c, sub

Delayed branching: Performance Gain

« Ratio of the delay slots that can be filled with useful
instructions:: f;
7 60-70% of the delay slot can be fill with useful
instruction

> fill only with: instruction that can be put in the delay slot but does
not violate data dependency

> fill only with: instruction that can be executed in single pipeline
cycle

» Frequency of branches:: f,
20-30% for general-propose program
25-10% for scientific program
100 instructions have 100* f, delay slots,
* 100*f, * f; can be utilized.
» Performance Gain = (100*f, * £)/100 = f, * f;

Delayed branching: for conditional branches
{Can be cancel or not}

Kinds of annulment
for conditional branches
; A T ™

o] S~
No annulment

(Branch-with

Annul always

i)

Where to find the instruction to fill delay slot

This is equivalent Used e.g. for backward Used e.g. for forward
to the basic scheme of condiicnal branches, conditional branches, Used to provide
delayed branching N order 1o move an to move an instruction optional delayed
instruction from within from the sequential branching
the koop body into the path into the dalay slot
delay siot, as shown
balow
1
1

Possible annulment options provided by architectures (use
special instructions) with delayed branching {Scalar only}//

Annulment of an instruction in a del

-with- Branch-or- Branc Annul My

I skip always L
delay

IBM 801 (1978) X X
MIPS-X (1986) X 2
HP PA (1986) X X X 1
SPARC (1987) X X 1
MC BRI100 (1988) X |
1860 (1988) X X 1

I: Backward branches

2: Forward branches

8.4 Branch Processing: design space

C ional branch pi
|
(¢] l
Layout of branch Mi hitaat iral imnl gt
processing of branch processing

l I

Branch detection Handling of unresolved Accessing the
conditional branches branch target path

Section 8.4.7

Section 8.4.2 Section 8.4.3 Section 8.4.5

branch detection schemes
{early detection, better handling}

Branch detection
— —
— Ee S
— —
- s
- ~—
Mastor-pipaiine approsch Early branch detection
Branches are detected and processed Branches are detected (and processed)
in & unified instruction processing aartiar s in @ unitied iatruction
schame Procesnng scheme

— T
/" M""‘--._
i l o

attat

pasr L
branch detectisn Branch detaction fatch and branch

detection
Branchos are detected Branches ame delected Branches ae detected|
In paraiel with the Trom (v instrction during Fwtruction
decoding of other buter. but ahead of fatch
inmtructions using general instrection
 dedicated branch
decoder
5038 (1085) Power! (1950) EE 9000, 520-based
88020 (1084) Power? (1593) Models (- 19931
MC 88030 (1987) FowerPC 603 (1683) PowarPC 604 (1905)
N ST (1 FowerC 620 (1556
RBOOO (1554)

Branch detection in parallel with
decoding/issuing of other instructions (in I-Buffer)

From unified cache

8 instr./cycle

=== 8
P 3 -
— <4
18 entries/32 bit
w
Branch Instruction
Hetection decode/issue

Early detection of branches by
Looking ahead

Early detection of branches by inspection ot
instruction that inputs to I-buffer

From |-cache

From I-cache From I-cache
Sequential
8 instr/eycle
Sequential router % Instru:ctlon 2 instr.ieyel
I-buffs . » fnstr/eyele
er 4 instr./cycle buffer
— — 1
1
8 5 -
5 4
5 6 eniries/32 bit
| 8 entries/32 bit S !
16 entries/32 bit
¥
Branch Instruction Branch Instruction Branch lnstruc?mn
detection decoding/issue detection decoding/ssue detection decode/lesue
Powerl (1980} Power2 (1893} (b} PowerPC 603 {1993)

Early branch detection: {for scalar Processor}
Integrated instruction fetch and branch detection

* Detect branch instruction during fetching
* Guess taken or not taken

Handling of unresolved conditional branches

Handling of unrescived conditional branches

 Fetch next sequential instruction or target instruction
0
Blocking Speculative Multiway branching
branch procassing branch processing
l s} (L
Branch prediction Extent of Racovary from
scheme speculativeness a mispradiction

-Blocking branch processing

« Simply stalled (stopped and waited) until the
specified condition can be resolved

Table 8.3 Brench penalties in blacking branch processing.

Processor fype Taken penalty Now-taken penciley
cyeles cycles

MC 68020 (1984) 3 3
MC 68030 (1987) 5 3
2

BO3B6 (1985) B

-Basic kinds of branch predictions

Branch prediction scheme

Fized prediction True prediction

The guess is always the same, either & true guess is made, which is
always taken or always not taken actually either taken or not taken
{One-outcome guess) {Two-outcome guess)

o

Statie D p
Predictions are Predictions are
based on the object basad on the execution
code histary

Performance

-The fixed prediction approach

Fixed-prediction

‘Always not taken' ‘Always taken'
approach approach

= Guass an unresclved conditional
branch always as faken.

= Guess an unresclved conditional
branch always as nof taken.

* Continue with the execution of the
sequential path, but in preparation save processing status (e.g.PC)
for a wrong guess start with the and start with the execution of
axecution of the taken path (a.g. the taken path.
calculate BTA} in parallel.

* |n preparation for a wrong guess

= When the condition can be
evaluated check the guess.

= When the condition can be
evaluated check the guess

« If the guess is correct, continue
with the execution of the sequential

 If the guess is cormect, continue
with the execution of the taken

Always not taken vs. Always Taken

= If the guess is incorrect, delete the
speculative processing along the

= If the guess is incorrect,
delete the speculative processing
sequential path and continue with the along the taken path and continue
processing of the taken path, exgcuting the sequential path
l using the saved processing status.

TP is higher than NTR
It is easier to implement than the
‘Always taken' approach.

TP is usually less than NTR
It requires a more complex
implementation than the
‘Always not taken' approach

E.g.Z80 000 i1984)
80486 (1989) MCE8040 (1990}
R4000 (1982)
SuperSparc (1992) TP: Taken penalty
Power! (1990) NTP: Not-taken penalty
Power2 (1993 BTA: Branch target address
i 27064 (1982}
o 210644 (1944}

fin case of the o processors
as a selectable option)

Performance, complexity

Always not taken: Penalty figures

Table 8.4 Penalty Aigures for processors employing the “always not taken’ prodiction
approach.

Processor tipe Tutken penadry cyeles

Not-taken pengity cycles

7. 30000 (1984p) 3 0
80486 {1989p) 2 i
Power] {1990 3 0
R 4000 (1992p) 3in 0

SuperSparc (1992p) 1Dy 0
Power2 (1993) 1 0
MicroSparc (1992 1 1Dy

D: Delayed branching

Penalty figures for
the always taken prediction approach

able 8.5 Penaly figues for the ‘aways taken' preciction approach,

Processor fype Taken penaly cycles Not-taken penalty cycls

MC 68040 (1990) 2

-Static branch prediction

Static prediction

Prediction is made on particular
attributes of the object code

\C

Opcode-hased Displacement-based Compller-directed
prediction pradiction pradiction
For certain opoodes the If D <0: taken, Based on the kind of control
branch is assumed &s If D 20: not taken construct compiled, the compiler
takan, for others. makes & prediction and indicates
as not taken it by setting, o clearing, a bit
{called the predict bit)
in the enceding of the
branch instruction
MC 88110 (1993} @ 21064 (1992) and AT&T 9210 Hobbit {19930},
PowerPC 8011603 (1993), o 21064A (1894) as an PowerPC 601/603 (1993)
for fink and count register availabie option, (f pragict bit Is set, the displacernent
iated conditional branches PowerPC 601/603 (1993, or opeode prediction s reversed),

for straightforward PA BOOO (as a selectable option)
conditional branches

Static prediction: opcode based
e.g. implemented in the MC88110

1in the MC 88110 (1993).

fable 8.6 Static prediction as img

Instruction
Condition Bir 21 of the Prediction
specified instr. code
=0 0 Not Taken
1 Taken
bend (Branch >0 1 Taken
conditional) <0 0 Not Tiken
20 1 Taken
=0 0 Not Taken
bb1 (Branch on bit set) Taken
bh((Branch on it clear) Not Taken

-Dynamic branch prediction: branch taken in
the last n occurrences is likely to be taken next

Dynamic prediction

Pradiction is basad on
tha branch history

Explicit dynamic technique Implicit dynamic tachnique R 8000 (1994) (selectable) PA 8000 (1996)
Branch history is explicitly stated Branch history is implicitly stated al2itéd ”995)
by history bits by the presence of an entry for a (sefeciabfej
predicted branch target access patH R 8000 {1994)
PowarPC 04 (1395)
PowsrPC 620 (1996)
1-bit dynamic 2-bit dynamic 3-bit dynamic NibB6 (1945}
prediction prediction prediction Mi ”995}
History s represanted History is represented History Is represented Uﬂmm ”995)
by one bit per branch by two bits per branch by three bits per branch A 10000 ”QEEJ

Dynamic branch prediction: e.g.

History is rapresented ~ History is represented History is represanted
by one it per branch by two bits per branch by threa bits par branch

Gricro 100 (1991p) MC68080 (1993 PA 8000 (1996) ES/9000 (1992p)
021064 (1992) Pentium (1833 PowerPC 604 {1995
(sefectable) o 210644 (1994) PowerPC 620 (1996)

1-bit dynamic prediction: state transition diagram

NT

T. Branch has been taken
NT: Branch has not been taken

2-bit dynamic prediction: state transition diagram

Initialized to ‘11"

- v
Prediction: Taken Pratiction: Net taken

AT: Branch has actually bean laken
ANT. Branch has actually not baen taken

3-bit prediction
Actual entry Entry after updating
Each entry represents the : : :
outcome of the last three 1 ' Actual outcome '
occurrences of the corres- . !
ponding branch instruction . -'
. fo!l()ws: H ‘not taken’ —=0 | T -:
1: for ‘taken' : : '
0: for "not taken’
L = [
. Updating is —
! FIFO-based ! !

A prediction is made
using & majority decision,
In the indicated case the
quess is 'taken'.

Implicit dynamic technique

» Schemes for accessing the branch target path also
used for branch prediction
« Branch Target Access Cache (BTAC)
> holds the most recently used branch addresses
» Branch Target Instruction Cache (BTIC)
> holds the most recently used target instructions
* BTAC or BTIC holds entries only
for the taken branches
» The existence of an entry means that

> the corresponding branch was taken at its last
occurrence

)50 its next occurrence is also guessed as taken

=Implementation alternatives of history bits

Placement of history bits

-

In the I-cache Ina BHT In the BTAG
o 210847 (1992) ‘Gmicro 100 (1991p) MC 8060 (1993)
2 K = 1 bit) (256 x 1 bit) (256 = 2 bit)

o 210644 (1994) Nx586 (1995} Pantium (1994)
(4K x 2 bity (2 K x 2 bit) (256 x 2 bit)
UitraSparc’ (1992} FA 8000 (15896) R 80007 (1994)

(2 K x 2 bit) (256 x 3 bit) (1K = 1 bit}
PowerPC 604 (1994) PIIT (1995)
(512 = 2 bit} (18 = 2 bit)

FPowerPC 620 (1995)

2K » 2 bit)
BHT: Branch history table
R10000 (1996} BTAC: Branch target address cache
(612 = 2 bit) BTIC: Branch target instruction cachel

Example of the implementation of the BHT

Instruction
l fetch address
. -cache
1
28 = 4lines 16K

8 instructions/line

{four-way set associative)

2 22 2

4 instricycle l:l::D History bits

-

LT ERGENT- SR ——

4% 1 instr, I Pradiction

logic

.
issue queus { -

| 4= 1instr.

BHT: Branch history table Taken/Not taken

ETA: Branch target address BTA for 3 taken guass —

=Combining implicit and 2bit prediction

Table 8.7 Combining implic and 2-bit prediction, as implemented in the PowerPC 604
(1995) and 620 (1996) processors

BTAC Outcome of the 2-bit prediction Overall prediction
Hit Don't care Taken

Miss Taken Taken

Miss Not taken Not taken

Combining implicit and 2bit prediction..

Table 8.8 Orverall predicion by combining implictand 2-bi pediction, a implemented
inthe Pentium (1993) and MC 68060 (1993) processors

BTAC Outcome ofthe 2-bit prediction Overall prediction
Hit Taken Taken
Hit Not Tien Not taken
Miss Don't care Not taken

=The effect of branch accuracy on branch penalty

Table .9 The effect ofbranch acouracy on banch pemaly for Pe =) and Py = 4)

Prediction aceuracy (f) Branch penalty (P cycls
06 16
08 0§
09 04
(95 02

Simulation results of prediction accuracy on the SPEC

Tuble 8.10 Simulation results of prediction accuracy on the SPEC benchmark suite (Yeh
and Patt, 1992). @ 1992 ACM

Prediction method Prediction wecuracy (%)

=

Fixed, always taken b2.3
Static, displacement based (K]
Dynaruic, I-bi)

Diynamic, 2-bil 0

=Extent of speculative processing

Extent of speculativenass

T e

Level of Degree of
speculativeness speculativeness

How far instructions (other than
unresalved conditional branches) are

How many conditional branches
can be axecuted spaculatively in

SUCCassion exacuted speculatively following
C// : \\ a predicted conditional branch
1 2 4 B fetched fetched, fatched, fetched,
decoded decoded, decoded,
Most dispatched dispatched,
ProCessors executed
like (bt ot

Extent of speculative processing: e.g.

w2064 BM3033 PowerPC620 21164 Powert PowerPG 601 MC 88110

e210644 Power? — R10000 PowerPC 603
PowsrPCE01 M35 CYRIX M
PowerPC 603

y
L 4

Performance, trend Pedormance, tend

Amout of tatus to be restored
by misprediction

=Recovery from a misprediction: Basic Tasks

Recovery from a misprediction

Necessary activities to allow of to
shorten recovery from a misprediction

Metessary prior measures to allow or to shorten
racovery from a misprediction

Recovery from a Recovery from a
mispredicted taken path mispredicted sequential path

0 o

DiSGHF’ﬁmQ [hﬂ TBS‘UR Of Ras‘” mmg amﬂmmn Save the address Save prefetched Pracalculate and Prafetch and save
i i of the sequential sequentlal save the branch branch target
Spmulﬂﬂ'u'ﬁ BKGCU’[IGF‘! l‘}f Th@ aitﬂl’rlail'tfe pmh continuation instruction(s) target address ingtructions)
Frequently employed schemes for
shortening recovery from a misprediction shortening recovery from a misprediction: needs
Schames to allow or sharten Use of two address Use of two of three instruction buffers
recovery from a misprediction 1 .
fagisters per speculatad In superscalar processars
/ conditional branch
Basic prior measures Enhanced prior measuras
for recovery 1o shorten recovery
= In a 'taken'guess * In & ‘taken’ guess:
- sawve sequentlal address - save sequential address, or even
- save prefetchad sequential Two buffers Three buffers
* In a 'not taken' guess: instructionis)
- precaloulate and save)) ;
branch target address -_Inp =noe talten’ ue: PawerPC 601 (1833) SuperSparc (1992) Nx58E (1995)
branch target address, or even PowerPC 603 {1993 Power? (1990
- prefatch branch target Yy |
nstructionfs) PowerPC 604 (1995) Power? (1993)
l Pantium (1993)

Using two instruction buffers in the supersparc
to shorten recovery from a misprediction: e.g.

Using three instruction buffers in the Nx586
to shorten recovery from a misprediction: e.g.

From |-cache From |-cache
r 4 instr/cycle 8 bytes/cycle
Sequential Target Sequential [Target-1 Target-2
I-buffer I-buffer |-buffer |-buffer \-buffer
4 — , 3 fF—4 —]% ————14 ——
:‘1 — —— - byte ———— byte i byte
. [Loaded when a branch
Y has been datectad
Decode Decode
8.4.5 Branch penalty for taken guesses depends on -Compute/fetch scheme
branch target accessing schemes for accessing branch targets {IFAR vs. PC}

Branch targe! accss sceme B0 b1t iz ires

i Instrugtion f

BTA —»{ | | fetch address o i

A —p| | (FA

R l;-cach? i

Compute i i

BTA : T
Coriputefetch BTAC BTG Succassor inday i P
schame schame schama In the l-cache Next sequential l l l l

scheme address BT (BT ETHE BTRY

-BTAC scheme for accessing branch targets {associative
search for BA, if found get BTA} {0-cycle branch: BA=BA-4}

Next sequential
address

[+]

Instruction fetch address (IFA)

-— |IFA

DPpN-—-

Branch target

At frerieziea BA | BTA address (BTA)

BT} {BTi+1) BTH2) BTy

-BTIC scheme: store next BTA

Instruction fetch address (IFA)

Mext sequential

I-cache

!

To decoding

address
i
F
lHFA
A
R BTA

-Successor index in the I-cache scheme
to access the branch target path {index: next I, or target I}

-BTIC scheme: calculate next BTA

Instruction fatch addrass (IEA} ; — IFA I IIFA
A BTA+ (Next BTA, computedj Instruction fetch addrass (IFA) F
A
‘; e Next
address
AL W B4 | BT M Successor
BA | I+1 1 1+2 (143 | index
I-cach 8Tic I-cache
— —
To decoding (BT (BTI+1) (BTH+2) (BT1+3)

Successor index in the I-cache scheme: e.g. Predecode unit: detects branches, BT A, make predictions
The microachitecture of the UltraSparc (based on compiler’s hint bit), set up I-cache Next address
Ingtr TLE
| 64 entries)
Next fiel,)
Branch igtory 46T
Prefetch Decoda
: 5 l T Virtual Addr L Unit
T« 37T 1T
= [dingtr
B y Instruction
Taken Buffer
ot ke 12 entries/62 bits)

8.5 Multiway branching: {two IFA’s or PC’s}

=Branch target accessing trends //

Branch target accessing scheme
0
Computefetch BTIC BTAC Successor index Unreso;ved COHdlthﬂﬂl branCh
in the I-cache ——

486 (1989) ——— Pentium (1883 b J

MC 68040 (1380} — | MC68080 (1993} |FA
Am 29000 (1988) —_ mn??sii?ammr S N ”:ﬁ :J
Sparc CYC 600 (1992)

SuperSparc (1992) UttraSparc (1998) il ——

R4000 (1992) RBO00 (1994)

R10000 (1996)
PowerPG 601 (1998) PowerPC 604 (1995) Y v

_—

PowerPC 603 (1993) PowerPC 620 (1996)

Threefold multiway branching: only one correct path!

Unresolved
conditional branches

| / T

IFA3

8.6 Guarded Execution

T / A4 |FA2 T Unresolved conditional branch

* ameans to eliminate branches

by conditional operate instructions
~-IF the condition associated with the instruction is met,
= THEN perform the specified operation
= ELSE do not perform the operation

 e.g. original

e d beg r1, label //if (r1) =0 branch to label
> move r2,r3 // move (r2) into r3
label: ...
* e.g. guarded
> cmovne rl, r2, r3 //if (r1) != 0, move (r2) into r3
.).

« Convert control dependencies into data dependencies

Eliminated branches by full and restricted guarding
{full: all instruction guarded, restricted: ALU inst guarded}

Percemage of eliminated branches (%)

Guarded Execution: Disadvantages

Program Percentage of loop Full guarding Restricted guarding

branches (%) Cond. rcond. Carndl. ncond.

Compress 26.48 24.86 8429 18.24 0.00
Eyntott 2007 44.55 5498 40.04 1.02
Espresse IB.08 16.76 2903 10.17 117
Gee-cel 24.84 31.92 17.04 9.64 .37
Se 24.63 43.07 1774 9.83 0.18%
Sunbench 15.79 35.65 47,10 11.35 0.03
Supermips 503 50.69 19.36 17.15 0.60
Tektronix 16.83 3753 41.60 17.08 748
TeX 25.09 12.80 2403 5.99 L.o0
Thissim 11.52 6231 3370 23.26 1.43
Tycho 18.28 15.64 3384 7.0 131
Xlisp 27.03 13.64 14,33 13.87 14.14
Yace 38.64 19.53 3895 8.18 171

Arithmetic Mean 2317 3115 3507 14.76 2.4

« guarding transforms instructions from both the taken
and the not-taken paths into guard instruction
~increase number of instructions
by 33% for full guarding
by 8% for restricted guarding
- {more instructions more time and space}
« guarding requires additional hardware resources
if an increase in processing time is to be avoided
= VLIW

