
8 Processing of control transfer instructions

TECH
Computer Science

• 8.1 Introduction
• 8.2 Basic approaches to branch handling
• 8.3 Delayed branching
• 8.4 Branch processing
• 8.5 Multiway branching
• 8.6 Guarded execution

CH01

8.1 Intro to Branch
• Branches modify, conditionally or unconditionally,

the value of the PC.
• To transfer control
• To alter the sequence of instructions

Major types of branches Branch: To transfer control

Branch: e.g.
8.1.2 How to check the results of operations for specified
conditions {branch} (e.g. equals 0, negative, and so on)

Alternatives for checking the operation results Result State vs. Direct Check, e.g.

Result state approach: Disadvantage
• The generation of the result state is not

straightforward
It requires an irregular structure and occupies
additional chip area

• The result state is a sequential concept.
It cannot be applied without modification in
architectures which have multiple execution units.

Retaining sequential consistency for
condition checking (in VLIW or Superscalar)

• Use multiple sets of condition codes or flags
It relies on programmer or compiler to use
different sets condition codes or flags for
different outcome generated by different EUs.

• Use Direct Check approach.

Branch Statistics
• 20% of general-purpose code are branch

on average, each fifth instruction is a branch

• 5-10% of scientific code are branch

• The Majority of branches are conditional (80%)

• 75-80% of all branches are taken

Branch statistics: Taken or not Taken

Frequency of taken and not-taken branches
8.1.4 The branch problem:
The delay caused in pipelining

More branch problems
• Conditional branch could cause an even longer

penalty
evaluation of the specified condition needs an extra
cycle
waiting for unresolved condition (the result is not yet
ready)
f e.g. wait for the result of FDIV may take 10-50 cycles

• Pipelines became more stages than 4
each branch would result in a yet larger number of
wasted cycles (called bubbles)

8.1.5 Performance measures of branch processing

Pt : branch penalties for taken
Pnt : branch penalties for not-taken
ft : frequencies of taken
fnt : frequencies for not-taken
P : effective penalty of branch processing

• P = ft * Pt + fnt * Pnt
e.g. 80386:: P = 0.75 * 8 + 0.25 * 2 = 6.5 cycles
e.g. i486:: P = 0.75 * 2 + 0.25 * 0 = 1.5 cycles

• Branch prediction correctly or mispredicted
• P = fc * Pc + fm * Pm

e.g. Pentium:: P = 0.9 * 0 + 0.1 * 3.5 = 0.35 cycles

Interpretation of the concept of branch penalty Zero-cycle branching {in no time}

8.2 Basic approaches to branch handling Review of the basic approaches to branch handling

Speculative vs. Multiway branching
-Delayed Branching: Occurrence of an unused
instruction slot (unconditional branch)

Basic scheme of delayed branching Delayed branching: Performance Gain
• Ratio of the delay slots that can be filled with useful

instructions:: ff
60-70% of the delay slot can be fill with useful
instruction
f fill only with: instruction that can be put in the delay slot but does

not violate data dependency
f fill only with: instruction that can be executed in single pipeline

cycle

• Frequency of branches:: fb
20-30% for general-propose program
5-10% for scientific program

• 100 instructions have 100* fb delay slots,
• 100*fb * ff can be utilized.
• Performance Gain = (100*fb * ff)/100 = fb * ff

Delayed branching: for conditional branches
{Can be cancel or not} Where to find the instruction to fill delay slot

Possible annulment options provided by architectures (use
special instructions) with delayed branching {Scalar only}// 8.4 Branch Processing: design space

Branch detection schemes
{early detection, better handling}

Branch detection in parallel with
decoding/issuing of other instructions (in I-Buffer)

Early detection of branches by
Looking ahead

Early detection of branches by inspection of
instruction that inputs to I-buffer

Early branch detection: {for scalar Processor}
Integrated instruction fetch and branch detection

• Detect branch instruction during fetching
• Guess taken or not taken
• Fetch next sequential instruction or target instruction

Handling of unresolved conditional branches

-Blocking branch processing

• Simply stalled (stopped and waited) until the
specified condition can be resolved

-Basic kinds of branch predictions

-The fixed prediction approach Always not taken vs. Always Taken

Always not taken: Penalty figures
Penalty figures for
the always taken prediction approach

-Static branch prediction
Static prediction: opcode based
e.g. implemented in the MC88110

-Dynamic branch prediction: branch taken in
the last n occurrences is likely to be taken next Dynamic branch prediction: e.g.

1-bit dynamic prediction: state transition diagram 2-bit dynamic prediction: state transition diagram

3-bit prediction Implicit dynamic technique
• Schemes for accessing the branch target path also

used for branch prediction
• Branch Target Access Cache (BTAC)

holds the most recently used branch addresses

• Branch Target Instruction Cache (BTIC)
holds the most recently used target instructions

• BTAC or BTIC holds entries only
for the taken branches

• The existence of an entry means that
the corresponding branch was taken at its last
occurrence
so its next occurrence is also guessed as taken

=Implementation alternatives of history bits Example of the implementation of the BHT

=Combining implicit and 2bit prediction Combining implicit and 2bit prediction..

=The effect of branch accuracy on branch penalty Simulation results of prediction accuracy on the SPEC

=Extent of speculative processing Extent of speculative processing: e.g.

=Recovery from a misprediction: Basic Tasks
Necessary activities to allow of to
shorten recovery from a misprediction

Frequently employed schemes for
shortening recovery from a misprediction shortening recovery from a misprediction: needs

Using two instruction buffers in the supersparc
to shorten recovery from a misprediction: e.g.

Using three instruction buffers in the Nx586
to shorten recovery from a misprediction: e.g.

8.4.5 Branch penalty for taken guesses depends on
branch target accessing schemes

-Compute/fetch scheme
for accessing branch targets {IFAR vs. PC}

-BTAC scheme for accessing branch targets {associative
search for BA, if found get BTA} {0-cycle branch: BA=BA-4} -BTIC scheme: store next BTA

-BTIC scheme: calculate next BTA
-Successor index in the I-cache scheme
to access the branch target path {index: next I, or target I}

Successor index in the I-cache scheme: e.g.
The microachitecture of the UltraSparc

Predecode unit: detects branches, BTA, make predictions
(based on compiler’s hint bit), set up I-cache Next address

=Branch target accessing trends // 8.5 Multiway branching: {two IFA’s or PC’s}

Threefold multiway branching: only one correct path! 8.6 Guarded Execution
• a means to eliminate branches
• by conditional operate instructions

IF the condition associated with the instruction is met,
THEN perform the specified operation
ELSE do not perform the operation

• e.g. original
beg r1, label // if (r1) = 0 branch to label
move r2, r3 // move (r2) into r3

label: …
• e.g. guarded

cmovne r1, r2, r3 // if (r1) != 0, move (r2) into r3
…

• Convert control dependencies into data dependencies

Eliminated branches by full and restricted guarding
{full: all instruction guarded, restricted: ALU inst guarded} Guarded Execution: Disadvantages

• guarding transforms instructions from both the taken
and the not-taken paths into guard instruction

increase number of instructions
by 33% for full guarding
by 8% for restricted guarding
{more instructions more time and space}

• guarding requires additional hardware resources
if an increase in processing time is to be avoided

VLIW

