
9. Code Scheduling for ILP-Processors

TECH
Computer Science

• {Software! compilers optimizing code
for ILP-processors, including VLIW}

• 9.1 Introduction
• 9.2 Basic block scheduling
• 9.3 Loop scheduling
• 9.4 Global scheduling

CH01

Typical layout of compiler:
traditional, optimizing, pre-pass parallel, post-pass parallel

Levels of static scheduling
Contrasting the performance of {software/hardware}
static code schedulers and ILP-processor

9.1 Basic Block Schedulers:
List scheduler: in each step
• Basic Block:

straight-line code,
can only enter at beginning and left at end

-Eligible Instructions are
• dependency-free

no predecessors in the Data Dependency Graph
or data to be produced by a predecessor node is
already available
f timing: checking when the data will be ready

• hardware required resources are available

-Looks for the ‘Best Choice’ from the eligible set
of instructions {critical path in Data Dependency Graph}

• Choose First: Schedule instructions in the critical path
• Choose Next: others

Heuristic Rule for choosing the next instructions

Set of criteria
• 1. whether there is an immediate successor that is

dependent on the instruction in question
• 2. how many successors the instruction has
• 3. how long is the longest path from the instruction in

question to the leaves

Case Study: compiler for IBM Power1
• Basic block approach: list scheduler
• Using Data Dependency Graph
• Critical path

the longest (in term of execution time)

• Earliest time
when check the data for the instruction will be available

• Latency value (on each arc of DDG)
how many time units the successors node have to wait
before the result of the predecessor node becomes
available

Example program:
The intermediate code and the corresponding DDG

The first three steps in scheduling the example DDG using Warren‘s
algoruthm

Successive steps in scheduling the example DDG Successive steps in scheduling the example DDG

9.3 Loop Scheduling -Loop Unrolling
for I = 1 to 3 do {
b(I) = 2 * a(I)
}

• Loop Unrolled: basic concept
b(1) = 2 * a(1)
b(2) = 2 * a(2)
b(3) = 2 * a(3)

• save execution time at the expense of code length
• omitting inter-iteration loop updating code

performance improvement
• enlarging the basic block size

can lead to more effective schedule with considerable
speed up

Simply unrolling is not practicable
when a loop has to be executed a large number of times

• solution:
unroll the loop a given number of time (e.g. 3)

larger basic block

• Inter-iteration dependency
only feasible if the required data becomes available in
due time

Speed-up produced by loop unrolling
for the first 14 lawrence livermore loops

-Software Pipelining
• Software pipelining is an analogous term to hardware

pipelining
• Software pipelining

each pipeline stage uses one EU
each pipeline cycle execute one instruction

• E.G.
for I = 1 to 7 do {
b(I) = 2 * a(I)
}

Basic methods for software pipelining

-Principle of the unrolling-based URPR sofeware pipelining
method E.G. loop 7 times, 4 EU’s VLIW, fmul takes 3 cycles

-Modulo scheduling //
• find the repetitive character of the schedule
• guess the minimal required length of the new

{partially unrolled} loop
period of repetition

• try schedule for this interval {period}
taking into account data and resource dependencies

• if the schedule is not feasible
then the length {period} is increased

• try again

9.4 Global Scheduling:
Scheduling of individual instructions beyond basic blocks

Moving up an independent instruction beyond a basic block boundary
‘along both paths ’ of a conditional branch

Moving up an independent instruction beyond a basic block boundary
‘along a single path’ of a conditional branch {guess T}

Trace Scheduling: flow graph, guess 3 Bookkeeping Code [B]

Finite Resource Global Scheduling: solving
long compilation times and code explosion

• For VLIW
3.7 Speed-up over Power1
49% Compilation time over PL.8
2.1 Code explosion over RISC

