9. Code Scheduling for ILP-Processors

» {Software! compilers optimizing code
for ILP-processors, including VLIW}

* 9.1 Introduction

* 9.2 Basic block scheduling
* 9.3 Loop scheduling

* 9.4 Global scheduling

dECH

Computer Science

Typical layout of compiler:
traditional, optimizing, pre-pass parallel, post-pass parallel

Frar:
anct

Levels of static scheduling

Code scheduling
Basic block Loop Global
scheduling scheduling scheduling

Amount of extracted parallelism, performance

Contrasting the performance of {software/hardware}
static code schedulers and ILP-processor

Code schedulers ILP-processors
Basic block Loop Global Slightly Moderately Highly
schedulers schedulers schedulers parallel parallel parallel
o Traditional ~ * Superpipelined ¢ VLIW
pipelined
o Slightly » Highly
superscalar superscalarl

B
>

Amount of extracted parallelism Amount of exploited parallelism

9.1 Basic Block Schedulers:
List scheduler: in each step

* Basic Block:
> straight-line code,
> can only enter at beginning and left at end

List scheduler

I
) J>

Selection rule Rule for choosing
the ‘best schedule’

Laoks for the ‘best choice’
from the eligible set

Selects the set of
eligible items

-Eligible Instructions are

* dependency-free
~no predecessors in the Data Dependency Graph

~-or data to be produced by a predecessor node is
already available
> timing: checking when the data will be ready

* hardware required resources are available

-Looks for the ‘Best Choice’ from the eligible set
of instructions {critical path in Data Dependency Graph}

» Choose First: Schedule instructions in the critical path

» Choose Next: others

Interpretation of ‘critical path’

Path with the longest delay
time to the end of the basic block

Path with the greatest
number of node levels

Heuristic Rule for choosing the next instructions

Rule for choosing
the ‘best schedule’
e
- e
. - \
o
Priority based Criteria based

5 4 $

Define a hewsistics Calculate a pricrity Choose the instruction
for the I - valug for each eligitle with the highest
of the pri instruction priority value
to be associated |

sach instruction
(2.g. path length) J) l l

Define a hauristics Apply the sat of Choose the
in the form of a set criteria in the instruction
of criteria given order 1o the which first

for the 'best choice' eligible instnuctions meels a critetan

Set of criteria

1. whether there is an immediate successor that is
dependent on the instruction in question

* 2. how many successors the instruction has

* 3. how long is the longest path from the instruction in
question to the leaves

Case Study: compiler for IBM Powerl

 Basic block approach: list scheduler
» Using Data Dependency Graph
* Critical path
> the longest (in term of execution time)
« Earliest time
= when check the data for the instruction will be available
» Latency value (on each arc of DDG)

> how many time units the successors node have to wait
before the result of the predecessor node becomes

available

Example program:
The intermediate code and the corresponding DDG

1 ri00, b{xr200)
L rl0l. c(r200)
adad rioz, riuu, rl0l
1 r103, dA(£200)
sub *104, »102, r103
st ri04, a(r200)
1 ri05, e(rzuu)
cmp r106, »105, O

be 108,

The first three steps in scheduling the example DDG using Warren‘s
algoruthm

Current time: 1

Eligitsio sat; {LB,LG,LD.LE) Eiigible sot: (LB,LC.LD)
Chosen | Chosen |
E
E b} L

Successive steps in scheduling the example DDG

Current time: 3 Camment tina: 4

Earliest

Eligitse set: {LC,LD) Eug

Chasan

ey Lo o)

Currant tima: &

Successive steps in scheduling the example DDG

Current time: 8 Current time: 7 Current time: 8

Earliest
time: &

o

Earliest
time: T

[+] o

Earllest Earliest Earllest
time: & time: & time: &

Eligible set: {SUB} Elgible set: {ST.A} Eligible set: {BC}

Chosen 4 Chosen | Chosen
SUB STA BC
(] 1] (1]

9.3 Loop Scheduling

Basic approaches
for scheduling loops

Loop unrolling

Usually a component
of more sophisticated methods

Software pipelining

Standard method

Complexity, speed-up

Ly
>

-Loop Unrolling

for I=1to 3 do {
A b(I) =2 * a(l)
7}
* Loop Unrolled: basic concept
Fb(1) =2 * a(l)
Fb(2)=2 *a(2)
»b(3)=2 * a(3)
« save execution time at the expense of code length
* omitting inter-iteration loop updating code
- performance improvement
« enlarging the basic block size

> can lead to more effective schedule with considerable
speed up

. . . . Speed-up produced by loop unrolling
Simply unrolling is not practicable for the first 14 lawrence livermore loops
~when a loop has to be executed a large number of times Relative specd-up to the cass wher no unroling is used
K Lavaapy Unrolled by 2 blocks Lirireriled by 4 blocks Unralled by 8 blocks
* solution: o
L "1 1.82 2.68 292
- unroll the loop a given number of time (e.g. 3) LLL *2 148 177 Le1
> => larger basic block : :: : :rn T.::. f ”
. . . LLL s 120 30 36
Inter-iteration dependency LiL %6 o o e
-~ only feasible if the required data becomes available in LLL *7 142 167 145
. LLL H 0.92 0.94 097
due time LLL *o 126 1.35 1.22
L 10 1.49 1.59 1.36
LLL #il 1.74 2.45 503
L 12 1.74 2.63 2.73
L 13 1.03 0.93 095
LLL +14 1.03 0.95 098
Aggregate 1.34 1.50 1.56
H-i 3 e ok 1.37 1.56 162
‘ or, where memory hazards could be resolved during scheduling
i ps s here ooy Lozard could L reaolad o hacheclal

-Software Pipelining

» Software pipelining is an analogous term to hardware
pipelining
Software pipelining

7 each pipeline stage uses one EU

~ each pipeline cycle execute one instruction
- EG.

FforI=1to 7 do {

2 b(@) =2 *a(l)

7}

Basic methods for software pipelining

Implementation of
software pipelining

Unrolling-based Modulo
techniques scheduling

-Principle of the unrolling-based URPR sofeware pipelining
method

E.G. loop 7 times, 4 EU’s VLIW, fmul takes 3 cycles

J] Cycle Iteration number
| J N 1 2 3 4 5 6 7
i c load
L"l- I ST el fmul load
T c+2 decr fmul load
" c+3 nop decr fmul load
. L d "o store nop decr fmul load
T c+5 store nop decr fmul load
| c+6 store nop decr fmul load
L c+7 store nop decr fmul
c+8 store nop decr
T c+9 store nop
c+10 store
®)
9.4 Global Scheduling:

-Modulo scheduling //

+ > find the repetitive character of the schedule

* guess the minimal required length of the new
{partially unrolled} loop
- period of repetition
« try schedule for this interval {period}
7 taking into account data and resource dependencies
« if the schedule is not feasible
- then the length {period} is increased
* try again

Scheduling of individual instructions beyond basic blocks

Code scheduling ILP-processors
Basic block Leop Global Slightly Moderately Highly
scheduling scheduling | scheduling parallel parallel parallel

» Traditional * Superpipelined ¢ VLW
pipelined pIocessors

» Slightly * Highly
superscalar superscalar
processors processors

> >
r g

Moving up an independent instruction beyond a basic block boundary
‘along both paths ’ of a conditional branch

Moving up an independent instruction beyond a basic block boundary
‘along a single path’ of a conditional branch {guess T}

W

Basic block
boundary

Bookkeeping code

Trace Scheduling: flow graph, guess 3

Bookkeeping Code [B]

‘ (=

=1 B: Bookkeoping

Finite Resource Global Scheduling: solving
long compilation times and code explosion

* For VLIW
> 3.7 Speed-up over Powerl
> 49% Compilation time over PL.8
> 2.1 Code explosion over RISC

Input code

1 software
window

P
compiler

Dependency free code
for the procesor
—

i/ glg—

In the case of a In the case of a VLIW
superscalar or
pipelined processor

