19 Outlook *

- 19.1 Introduction
- 19.2 Semiconductor technology
- 19.3 Intreconnection technology
- 19.4 Optical computing
- 19.5 Bio-electronic computing
- · 19.6 Final remarks
- 19.7 References

Wafer Scale Integration				
Technology	Area	Area/device	Number	
VLSI (1984) (1984)	1 sq cm	25 sq μm	4×10e6	
WSI	100 sq cm	10 sq µm	1×10e9	

Semiconductor technology: Go Small

- · Nano-Electronic devices
- Nano-Electronic Micro-Structures

- Tarameter	vaiue
Minimum dimension	1–10 nm
Typical device area	100–10 000 sq nm
Number per sq mm	10e8-10e10
Number per system	10e9-10e11
PEs per system (SIMD)	1000
PEs per system (MIMD)	10e4

Optical Computing

• The guiding **light** to future computing

Bio-electronic Computing

- Cyborg
 - → neuron and silicon connections
- · Chemical-computing
 - →involves the generation of highly parallel ordered structures from solution
- · DNA Computing
 - **→** mutation

Quantum Computing

Probably

Final Remarks

- "Parallel Computing has historically been a field
 - → whose future promise has been characterized by hyperbole, but
 - → whose development has been defined by pragmatism."
- "It is worth noting that even the advent of nanotechnology is unlikely
 - > to raise the number of computing elements in a single system
 - → to anywhere near the number of neurons in the human brain."