CSC230 Software Design (Engineering)
• Dr. Ben Choi
• Ph.D. in EE (Computer Engineering), The Ohio State University
• System Performance Engineer, Lucent Technologies - Bell Labs Innovations
• Pilot, FAA certified pilot for airplanes and helicopters

What is CS 230
• Class Syllabus

CH01: What is Software Engineering
• Software Engineers build software systems
• Building a software system requires
 → (1) Planning,
 → (2) Understand what needed to be built,
 → (3) Designing the system,
 → (4) Writing the programs,
 → (5) Testing, and
 → (6) Maintaining the system.

Software Engineers use knowledge of Computer Science to Solve problems

Problem Solving: Analysis

Problem Solving: Synthesis
How successful have we been?

- Writing software is an art as well as a science.
- Software engineering is about designing high-quality software.
- System Crash!!!
- Seeking wrong target!!!
- However, we have come a long way!!!
 (Can’t leave home without a computer.)

What is Good software?

- Context helps to determine the answer
 - Games and Safety-critical systems have different standard
- Evaluate software by evaluating
 - quality of the product
 - quality of the process
 - quality in the context of the business environment

Quality of the product

- Correctness
- Reliability
- Usability
- Testability
- Maintainability

Quality of the Process

- Many (development) activities will affect the ultimate product quality, e.g.
- Talking to customers and users to understand what they want
- Code reviews
- When to conduct testing

Quality in Context of the Business Environment

- Return on investment
- Express in dollars
- Express in effort
 - schedule
 - productivity
 - customer

Who does software engineering?

CUSTOMER

Sponsors system development

$\$$, needs

DEVELOPER

Builds system

USER

Uses system

Needs

Software system

Contractual obligation

Needs
Understanding software systems: A Systems Approach

- A system is a collection of entities and activities, plus a description of the relationships that tie the entities and activities together.
 - An activity is something that happens in a system.
 - The elements involved in the activities are called entities.
 - Once entities and activities are defined, we match the entities with their activities.

Building software systems: An Engineering Approach

- Software projects progress in a way similar to the house-building process.
 - Asking customers what house they want to build
 - Drawing floor plans (rooms) ((Model house))
 - Designing interior (e.g. where the light switch should be)
 - Testing each subsystem (e.g. testing each light switch, electrical subsystem)
 - Testing everything work together
 - Maintaining the house

Members of the development team

Software development process

- requirements analysis and definition
- system design
- program design
- writing the programs (program implementation)
- unit testing
- integration testing
- system testing
- system delivery
- maintenance

How has software engineering changed? //

- Changes in software engineering
- Object technology
- Problems with waterfall
- Time to market
- Shifts in economics
- User interfaces
- Networking
Fundamental notions in software engineering

- Abstraction
- Analysis and design methods and notations
- User interface prototyping
- Software Architecture
- Software Process
- Reuse
- Measurement
- Tools and Integrated Environments

Abstraction

- is a description of the problem at some level of generalization that allows us to concentrate on the key aspects of the problem without getting mired in the details.
- Identifying classes of objects that allow us to group items together
- Forming hierarchies

Analysis and Design Methods and Notations

- build models and check them for completeness and consistency
- use standard notation to help us communicate and to document decisions

User interface prototyping

- Prototyping means building a small version of a system to
 - help the user and customer identify the key requirements of a system
 - demonstrate feasibility of a design or approach
 - Does the user like the “looks and feels”?

Software Architecture

- A system’s architecture describes the system in terms of a set of architectural units, and a map of how the units relate to one another.

Software Architecture: Units

- Ways to partition the system into units:
 - modular decomposition: based on assigning functions to modules
 - data-oriented decomposition: based on external data structures
 - event-oriented decomposition: based on events that the system must handle
 - outside-in design: based on user inputs to the system
 - object-oriented design: based on identifying classes of objects and their interrelationships
Software Process
• Process of developing software (organization and discipline in the activities)
• contribute to the quality of the software and the speed with which it is developed

Reuse
• Take advantage of the commonalities across applications by reusing items from previous development
• Reusable components as business asset

Measurement
• By quantifying where we can and what we can, we describe our actions and their outcomes in a common mathematical language that allows us to evaluate our progress.

Tools and Integrated Environments
• Use tools to enhance software development
 • tools to help tracking the progress of the development
 • tools to help debugging programs
 • tools to help testing the programs

Examples and What the chapter means for you
• Information system example
• Real-Time example
• What this chapter means for you
• What this chapter means for your development team
• What this chapter means for your researchers
• Key References and Exercises