
CH08: Testing the Programs

• Testing components individually and
• then integrating them to check the interfaces
• * Software Faults and Failures
• * Testing Issues
• * Unit Testing
• * Integration Testing

TECH
Computer Science

More Tests
• Testing Object-Orientated Systems
• Testing Planning
• Automated Testing Tools
• When to Stop Testing

Software Faults and Failures
• Software has failed?

Software does not do what the requirements describe.

• Reasons for software failure:
Specifications do not state exactly what the customer
wants or needs: wrong or missing requirements
Requirement is impossible to implement
Faults in system design, program design, and/or
program code

Testing to:
• demonstrate the existence of a fault
• The goal is to discover faults,
• Testing is successful only when a fault is discovered

or
• a failure occurs as a result of our testing procedures

Fault Identification and Correction
• Fault Identification is the process of determining

what fault or faults cased the failure.
• Fault Correction or Removal is the process of

making changes to the system so that the faults are
removed.

Types of Faults
• Knowing what kind of faults we are seeking
• Anything can go wrong:

algorithmic, syntax, precision, documentation, stress or
overload, capacity or boundary
timing or coordination, throughput or performance,
recovery,
hardware and system software, standards and
procedures

Algorithmic fault:
logic is wrong, wrong processing steps
• Program review (reading through the program) to find

this type of fault
• Typical algorithmic faults:

branching too soon, or too late
testing for the wrong condition
forgetting to initialize variables or set loop invariant
forgetting to test for a particular condition
comparing variables of inappropriate data types

Syntax faults
• a missing comma, or a O or 0.
• Compilers will catch most of the syntax faults
• But don’t count on it
• Know the syntax of your programming language

Computation and precision faults
• formula is not correctly implemented.
• Do not understand the order of operations

Q: y = a*x^2*b + c
A: y = a*(x^2)*b + c
B: y = ((a*x)^2)*b + c
C: y = a*(x^(2*b)) + c
D: y = a*x^2*(b+c)

• Precision faults: unexpected truncated

More Faults
• Documentation faults: documentation does not match

what the program actually does
• Stress or overload faults: exceeding maximum buffer

size
• Capacity faults: more then the systems can handle
• Timing or Coordination faults: does not meet real-

time requirement, out of sequence

Still more faults
• Throughput or performance faults: could not finish

the job within time limit
total throughput - in and out, or response time to users

• Recovery faults: could not get back to normal after
system failure

• hardware and system faults: hardware malfunction,
OS crashes.

• Standard and procedure faults: did not follow
standard or processs.

Orthogonal Defect Classification
• Categorize and track the types of faults we find to

help direct our testing efforts
• (classification scheme is orthogonal if any item being

classified belongs to exactly one category.)
• IBM Orthogonal defect classification (Fault type):

Function, Interface, Checking, Assignment,
Timing/serialization, Build/package/merge,
Documentation, and Algorithm

Hewlett-Packard Fault Classification

Specification/
requirements

Environment/
support

Documentation OtherDesign Code

ORIGIN: WHERE?

Missing Unclear Wrong Changed Better way
MODE:
WHY?

TY
PE

:
W

H
A

T?

Requirements
or

specifications

Functionality

HW interface

SW interface

User interface

Functional
description

Test HW

Test SW

Integration SW

Development
tools

Logic

Computation

Data handling

Module
interface/

implementation

Standards

(Inter-)Process
communications

Data definition

Module design

Logic
description

Error checking

Standards

Da ta h a n d lin g
6 %

Do c u me n ta tio
n

1 9 %

Re q u ir e me n ts
5 %

Ha rd w a r e
4 %

Pro c e s s /in te r p
ro c e s s

5 %L o g ic
3 2 %

Co mp u ta tio n
1 8 %

O th e r c o d e
1 1 %

Faults for one HP division

Testing Issues
• Test Organization
• Attitudes Toward Testing
• Who Performs the Test?
• Views of the Test Objects

Testing Organization
Unit
test

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
test

Installation
test

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

.

.

.

Tested com
ponent

Te
st

ed
 c

om
po

ne
nt

Integrated
modules

Functioning
system

Verified,
validated
software

Accepted
system

SYSTEM
IN USE!

Design
specifications

System
functional

requirements

Other
software

requirements

Customer
requirements
specification

User
environment

Tests
• Module, Component, or unit testing: verifies

functions of components, under controlled
environment.

• Integration test: verifying components work together
as an integrated system

• Functional test: determine if the integrated system
perform the functions as stated in the requirements.

More tests
• Performance test: determine if the integrated system

running under customer’s actual working
environment meet the response time, throughput, and
capacity requirements.

• Acceptance test: conduct at under customer’s
supervision, verify if the system meet the customer’s
requirements (or satisfactions).

Last test
• Installation test: the system is installed in the

customer’s working environment, and test the
installation is successful.

Attitudes Toward Testing
• New programmers are not accustomed to viewing

testing as a discovery process.
• We take pride on what we developed. We defend

ourselves “it is not my fault!”
• Conflict between tester and developer.
• Testers try to find faults, developers try to take pride.
• “Hurt feelings and bruised egos have no place in the

development process as faults are discovered.”

Who Performs the Test?
• Unit testing and integration testing are usually done

by development teams.
• The rest of the testings called “system testings” are

usually done be test teams.

Views of the Test Objects
• Closed box or black box view: provide the input to a

box whose contents are unknown, see what output is
produced.

Could not choose representative test cases because we
do not know enough about the processing to choose
wisely.

• Open box: we know the processing of the inside the
box, we can choose test cases to test all paths.

Usually can not test all paths

Unit Testing
• Examining the Code
• Proving Code Correct
• Testing Program Components
• Comparing Techniques

Examining the Code
• Code review: Review both your code and its

documentation for misunderstanding, inconsistencies,
and other faults.

• Two types:
Code Walk-through
Code Inspection

Code review
• Code Walk-through: you present your code and

accompanying documentation to the review team, you
lead the discussion, they comments on correctness of
your code.

• Code Inspection: a review team checks the code and
documentation against a prepared list of concerns.

Success of Code Reviews
• You may feel uncomfortable with the idea of having a

team examine your code.
• But, reviews have been shown to be extraordinarily

successful at detecting faults.
• Code review becomes mandatory or best practices for

most organization!

Success stories about Code Reviews
• One study by Fagan shows that 67% detected faults

were found by code inspections.
• Code Inspection process produces 38% fewer failures

(during the first 7 months of operation) than code
walk-through process.

More stories about Code reviews
• Another study by Ackerman et. al. shows that 93% of

all faults in a 6000-line business application were
found by code inspections !

• Another study by Jones shows that code inspections
removed as many as 85% of the total faults found.

Faults Found During Discovery Activities
• Discovery activities (Faults founded per 1000 lines of

code)
• Requirements review (2.5)
• Design review (5.0)
• Code inspection (10.0)
• Integration test (3.0)
• Acceptance test (2.0)

Proving Code Correct
• Correct: a program is correct if it implements the

functions and data property as indicated in the design,
and if it interfaces properly with other components.

• Prove: view program code as statements of logical
flow:

Formal Proof Techniques
Advantages and Disadvantages of Correctness Proofs
Other Proof Techniques
Automated Theorem Proving

Formal Proof Techniques
• Prove if A1 than A2.
• Prove if A2 than A3, ...
• Prove All paths.
• Prove the program terminates!!!
• [Never ending proofs.]

Advantages and Disadvantages of Correctness
Proofs
• It takes a lot more time to prove the code correct than

to write the code itself.
• The proof is more complex then the program itself.
• The proof may not be correct.

Other Proof Techniques:
Symbolic Execution
• Simulated execution of the code using symbols

instead of data variables.
• The program execution is viewed as a series of state

changes.
input state (determined by input data and conditions)
next state (caused by line of coded is executed)
next state ...
output state. (correct result?)

Symbolic Execution: paths
• Each logical paths through the program corresponds

to an ordered series of state changes. ((like an activity
graph))

• Divide large sets of data into equivalence classes,
work on the classes instead of the individual data: e.g.

if (a > d)
doTaskx();

else
doTasky();

Automated Theorem Proving
• Let the machine prove it.
• Develop tools to read as input

input data and conditions
output data and conditions
lines of code for the component to be tested

• Tells the user,
(1) the component is correct, or
(2) counterexample showing the input is not correctly
transformed to output by the component.

Computational Limitation on Theorem
Proving
• A theorem prover that read in any program and

produce as its output either a statement confirming
the code’s correctness or the location of a fault,
can never be built!!

• Limitation of computation. (Halting Problem)

Testing Program Components
• Testing vs. Proving
• Choosing Test Cases
• Test Thoroughness

Testing vs. Proving
• Testing is a series of experiments which gives us

information about how program works in its actual
operating environment.

• Proving tells us how a program will work in a
hypothetical environment described by the design and
requirements

Choosing Test Cases
• To test a component, we
• choose input data and conditions,
• allow the component to manipulate the data, and
• observe the output
• We select the input so that the output demonstrates

something about the behavior of the code.

How to choose test cases
• select test cases and design a test to meet a specific

objective:
demonstrate all statements execute properly
every function performed correctly

• Use closed-box or open-box view to help us choose
test cases

closed-box: supply all possible input and compare the
output according to requirements
open-box: examine internal logic, and choose test to go
through all paths.

Test Thoroughness
• How to demonstrate in a convincing way that the test

data exhibit all possible behaviors:
Statement testing
Branch testing
Path testing

Thoroughness based on data manipulated by
the code
• definition-use path testing: all definition and their

used are tested
• All-uses testing
• All-predicate-uses/some-computational-uses testing
• All-computational-uses/some-predicate-uses testing

Relative strengths of test strategies
All paths

All definition-use paths
All uses

All computational/
some predicate uses

All computational uses

All definitions

All predicate/
some computational use

All predicate uses

Branch

Statement

Relative strengths of test strategies
comparison
• Study by Ntafos shows that

random testing (not test strategies) found 79.5% faults
branch testing found 85.5%, and
all-uses testing found 90%

Strategy vs. number of test cases

RESULT > 0 ?

X > K ?

PRINT RESULT

POINTER = FALSE 1

NO

YES

YES

NO

CALL SUB (X,
POINTER, RESULT)

2
3

4

5

6
7

POINTER = TRUE

X = X + 1

Number of test cases
• Statement testing: all statements

(by choosing X and K) 1-2-3-4-5-6-7

• Branch testing: all decision points
1-2-3-4-5-6-7
1-2-4-5-6-1

• Path testing: all paths
1-2-3-4-5-6-7
1-2-4-5-6-1
1-2-4-5-6-7
1-2-3-4-5-6-1

Comparing Techniques
• Fault discovery percentages by fault origin

discovery technique, requirement, design, coding,
documentation

• Prototyping, 40, 35, 35, 15
• Requirement review, 40, 15, 0, 5
• design review, 15, 55, 0, 15
• code inspection, 20, 40, 65, 25
• unit testing, 1, 5, 20, 0

Integration Testing //
• Combine individual components into a working

system:
• Bottom-up Integration
• Top-down Integration
• Big-bang Integration
• Sandwich Integration
• Comparison of Integration Strategies

Bottom-up Integration
• Each component at the lowest level of the system

hierarchy is tested individually first, then next
components to be tested.

• Suitable for:
object-oriented design
low-level components are general-purpose utility
routines

Component hierarchy

A

DCB

FE G

Bottom-up test sequence
Test

E

Test
F

Test
G

Test
B,E,F

Test
C

Test
D,G

Test
A,B,C,D,

E,F,G

Component Driver
• a special code to aid the integration.
• a routine that calls a particular component and passes

a test case to it.
• take care of driver’s interface with the test component

Bottom-up Integration pros and cons
• - top-level components are usually the most important

but the last to be tested.
• + most sensible for object-oriented programs:

Objects are combined one at a time with collections of
objects that have been tested previously.

Top-down Integration
• The top level, usually one controlling component, is

tested by itself.
• Then, all components called by the tested

component(s) are combined and tested as a larger
unit.

Top-down testing

Test
A

Test
A,B,C,D

Test
A,B,C,D,

E,F,G

Stub
• Problem: A component being tested may call another

that is not yet tested!
• Solution: Write a special-purpose program to simulate

the activity of the missing component.
• The special-purpose program is called a stub.

-If the lowest level of components performs the input
and output operations, stubs for them may be almost
identical to the actual components they replace.

Top-down testing pros and cons
• + Any design faults or major questions about

functional feasibility can be addressed at the
beginning of testing instead of the end.

• - Writing stubs can be difficult, because they must
allow all possible conditions to be tested.

• - Stub may itself needed to be tested to insure it is
correct

• - Very large number of stubs may be required.

Modified top-down testing

Test
A

Test
A,B,C,D

Test
A,B,C,D,

E,F,G

Test
B

Test
C

Test
D

Test
E

Test
C

Test
D

Test
F

Test
G

Modified top-down (difficulty)
• Both stubs and drivers are needed for each component
• Much more coding and many potential problems.

Big-bang Integration
Test

A

Test
A,B,C,D,

E,F,G

Test
B

Test
D

Test
E

Test
C

Test
F

Test
G

Big-bang Integration (Not)
• Not recommended:
• - requires both stubs and drivers to test independent

components
• - difficult to trace the cause of any failure since all

components are merged all at once.
• interface faults cannot be distinguished easily from

other types of faults.

Sandwich Integration

Test
A

Test
B,E,F

Test
A,B,C,D,

E,F,G

Test
E

Test
D,G

Test
F

Test
G

Sandwich Up and Down
• combine both top-down and bottom-up
• three layers:

bottom-up for the lower layer
top-down for the top layer
then, “big-bang” for mid layer

• + combines advantages of top-down with bottom-up
• - individual components are not thoroughly tested

before integration

Modified Sandwich testing: allows upper-level
components to be tested before merging them

Test
A

Test
B,E,F

Test
A,B,C,D,

E,F,G

Test
B

Test
D

Test
E

Test
C

Test
D,G

Test
F

Test
G

Comparison of Integration Strategies
Botton-
up

Top-
down

Mod.
Top-d

Big-
bang

Sand-
wich

Mod.
Sand

Integrtion Early Early Early Late Early Early

Time to basic working
program

Late Early Early Late Early Early

Component Drivers
needed

Yes No Yes Yes Yes Yes

Stubs needed No Yes Yes Yes Yes Yes

Work parallelism at
beginning

Medium Low Medium High Medium High

Ability to test
particular paths

Easy Hard Easy Easy Medium Easy

Ability to plan and
control sequence

Easy Hard Hard Easy Hard Hard

Builds At Microsoft
• iterates: designing, building, testing -- involving

customers in the testing process
• teams size: three to eight developers
• different teams are responsible for different features
• allows team to change the specification of features
• partitioning of features

Microsoft Synch-and-stabilize approach
Milestone 1: Most critical features

and shared components
Design, code, prototype

Usability testing
Daily builds

Feature integration
Eliminate severe faults

Milestone 2: Desirable features
Design, code, prototype

Usability testing
Daily builds

Feature integration

Milestone 3: Least critical feature
Design, code, prototype

Usability testing
Daily builds

Feature integration and completio
Release to manufacturing

Testing Object-Orientated Systems
• take several additional steps to make sure that your

object-oriented programs’ characteristics have been
addressed by your testing techniques.

• Testing the code
• Differences between object-oriented and traditional

testing

Testing the code
• you need more class definitions (missing class) if

one class is playing two or more roles
an operation has no good target class

• you have too many class definitions (unnecessary
class) if

a class has not attributes, operations, or associations.

• Develop tests to track an object’s state and changes to
that state.

Differences between object-oriented and
traditional testing
• Object-oriented does not always minimize testing
• adding or changing subclass requires re-testing of the

methods inherited from each of its ancestor super-
classes.

• need to develop new test case to test a method that is
locally overrided by a subclass.

• >Use top-down testing: test base classes having no
parents then next level ...

Object-oriented aspects make testing easier or
harder
• objects tend to be small -- easier
• interface (inheritance) more complex -- harder
• = unit testing is less difficult
• = integration testing is more difficult
• = more source code analysis
• = more coverage analysis
• = more test case generation

Testing Planning
• Each step of the testing process must be planned:

1. establishing test objectives
2. designing test cases
3. writing test cases
4. testing test cases
5. executing tests
6. evaluating test results

Test Cases
• If test cases are not representative and do not

thoroughly
• exercise the functions that demonstrate the

correctness and validity of the system,
• then the remainder of the testing process is useless.

“Testing” test case: to verify that they are correct,
feasible, provide the desired degree of coverage, and
demonstrate the desired functionality.

Test Plan
• describes the way in which we will show our

customers that the software works correctly
• addresses unit testing, integration testing, and system

testing.
• explains who does the testing, why the tests are

performed, how the tests are conducted, and when the
tests are scheduled.

Contents of Test Plan
• test objectives,
• addressing each type of tests: unit --- to functional ---

installation testing
• how test will be run
• what criteria will be used to determine when the

testing is complete.
• testing tools needed.
• testing environment needed.

Parts of a test plan
See (Section 8.8)

MATERIALS NEEDED

SCHEDULE

MAJOR TESTS

SYSTEM SUMMARY

DOCUMENT REFERENCES

OBJECTIVES

TEST PLAN

Detailed Test Plan

TEST PLAN

SYSTEM TEST
FUNCTION

Function 1 1
Function 2 3,4

.

.

TEST SPECIFICATION
TEST 1

Requirements tested

Functions tested

Methods

Conditions

TEST SPECIFICATION
TEST 2

Requirements tested

Functions tested

Methods

Conditions

TEST SPECIFICATION
TEST 3

Requirements tested

Functions tested

Methods

Conditions

TEST DESCRIPTION
TEST 1

Test data

Test procedures
1.

2.

TEST DESCRIPTION
TEST 2

Test data

Test procedures
1.

2.

TEST DESCRIPTION
TEST 3

Test data

Test procedures
1.

2.

TEST ANALYSIS
REPORT

TEST 1
Results

TEST ANALYSIS
REPORT

TEST 3
Results

Perform
test 1

Perform
test 2

Perform
test 3

TEST ANALYSIS
REPORT

TEST 2
Results

Test specification and evaluation, test
description
• Test specification and evaluation: details each test and

defines the criteria for evaluating each feature
addressed by the test.

• Test description: presents the test data and procedures
for individual tests.

• > Use naming or numbering scheme that ties together
all documents.

Test schedule includes
• 1. the overall testing period
• 2. the major subdivisions of testing, and their start and

stop times
• 3. any pretest requirements (generation of test data,

setting up test environments) and the time necessary
for each

• 4. the time necessary for preparing and reviewing the
test report

More on Test Specification and Evaluation
• (Test plan describes an overall breakdown of testing

into individual tests)
• for each individual tests, we write a test specification

and evaluation
• (keep track on the correspondence between

requirements and tests)

Specification states test conditions
• Is the testing using actual input from user or devices,

or are special cases generate by a program or
surrogate device?

• What are the test coverage criteria?
• How will data be recorded?
• Are there timing, interface, equipment, personal,

database, or other limitations on testing?
• What order are the test to be performed?

More on Test Description
• A test description is written for every test defined in

the test specification.
• We use the test description as a guide in performing

the test.
• It states clearly:

the means of control
the data
the procedures

• It provides procedure “test script” to guide us through
the test.

Test Script
• gives a step-by-step description of how to perform the

test
• provides rigidly defined set of steps to give us control

over the test:
allows us to duplicate conditions and recreate the
failure if necessary.

• steps are numbered and data associated with each step
are referenced.

Automated Testing Tools
• testing tools are useful and often necessary
• Tools for:

Code Analysis
Test Execution
Test Case Generation

Code Analysis tools
• Static Analysis: is performed when the program is not

actually executing
• Dynamic analysis: is done when the program is

running.

Static Analysis
• Code analyzer: check proper syntax
• Structure checker: generates a graph from codes to

depict the logic flow, also check structural flaws.
• Data analyzer: review the data structures and data

declarations, check conflicting data definitions and
illegal data usage.

• Sequence Checker: check sequences of events

Output from static Analysis (e.g.)
Inline faults

Interface faults

Nesting

Decisions

Paths

Uninitiated variables

External coupling

Bad Average Good

Dynamic analysis
• also called program monitors or debugger: they watch

and report the program’s behavior
• tracing the running of program
• Set break points to stop running, allow us to see a

“snapshot” of program status
• examine the contents of memory or values of specific

data items.

Test Execution tools
• tools for automating the test planing and even running

the tests themselves
• Capture and Replay: record key-strokes, mouse

movement, mouse clicks, and
responses to whose inputs
while a test case is being execute by a human tester.

• Playback or replay the recorded test cases.

Stubs and Drivers Tools
• Commercial tools are available to assist you in

generating stubs and drivers automatically!

Test Case Generators
• Structural test case generators: base their test cases on

the structure of the source code.
• Formal specifications of programs: using extend finite

state machine, (like UML), can generate all possible
paths

• user can choose coverage criteria

Automated Testing Environments
• Test planning,
• Test case Generations
• Test execution,
• Test result reporting,
• Re-test
• Testing result analysis
• ($$$)

When to Stop Testing
• NOW? or Never ending....

large number of faults find -> more faults to be find

• Faults Seeding
• Confidence in the software
• Other Stopping Criteria
• Identifying Fault-prone Code

Myers Study shows (more fault-> more to be
found)

Probability
of existence
of additional

faults

Number of faults found to date

Faults Seeding
• intentionally inserts (or “seeds”) a know number of

faults in a program.
• (detected seeded faults)/(total seeded faults) =

(detected nonseeded faults)/(total nonseeded faults)
• Pro and cons

+ simple and useful
- assumes that seeded faults are of the same kind and
complexity as the actual faults, but we don’t know what
kind of faults are where.

Two groups testing the same program
• group A found 25 faults (A)
• group B found 30 faults (B)
• both groups found the Same 15 faults (S)
• Total number of faults in the program??? (T)
• In general: S <= A and S <= B

How many faults are where in the program?
• (Effectiveness of group A) = A/T

Assume group A is just as effective at finding faults in
any part of the program as in any other part. Thus that,

• (Effectiveness of group A) = S/B
• (Effectiveness of group A) = A/T = S/B
• T = A*B/S
• T = 25*30/15 = 50 (faults in the program)

Confidence in the software
• Confidence, usually expressed as a percentage, tells

us the liklihood that the software is faults-free.
• If we say a program is fault-free with a 95% level of

confidence,
• then we mean that the probability that the program

has no faults is 0.95

Confidence calculation using “Fault Seeding”
method
• seeded a program with 10 faults (S)
• we claim a fault-free program there is 0 faults (N)
• We find all 10 seeded faults but not others faults (n)
• Confidence level = S/(S - N + 1) if n <= N
• Confidence level = 10/(10 - 0 + 1) = 10/11 = 91%

Higher Confidence more tests
• Contract or requirements mandate a confidence level

of 98% that the program is fault-free
• That is: S/(S - 0 + 1) = 98/100
• Solve for S:

S/(S + 1) = 0.98
S = 0.98*S + 0.98
S = 0.98/(1-0.98) = 49

Better calculation Confidence
So far, can not predict confidence until all seeded faults
are founded.

• seeded a program with 10 faults (S)
• we claim a fault-free program there is 0 faults (T)
• We find only 8 seeded faults but not others faults (f)
• (Richards) Confidence =

(S!*(f+T)!) / ((f-1)!*(S+T+1)!)

•=73%

Other Stopping Criteria
• determine our test progress in terms of the number of

statements, paths, or branches left to test
• Use automated tool to calculate coverage values for

us.

Identifying Fault-prone Code

+- +

-

-

-

Size

Number of
decisions Code

changes

Design
review

< 100 LOC

100 -
300 LOC

> 300 LOC

Yes
No

< 15 > 15
< 5 > 5

