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Material- and geometry-independent multishell cloaking device
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In this paper we propose a multishell generic cloaking system. A transparency condition independent of the
object’s optical and geometrical properties is proposed in the quasistatic regime of operation. The suppression of
dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable
low-loss shell design is proposed based on a composite metal-dielectric shell. The effects due to dissipation and
dispersion on the overall scattering cross section are thoroughly evaluated. It is shown that a strong reduction
of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical
simulations for complex shaped particles are performed validating the analytical theory. The proposed design
does not require optical magnetism and is generic in the sense that it is independent of the object’s material and
geometrical properties.
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I. INTRODUCTION

Recently, cloaking or invisibility has received significant
attention from the scientific community. Several methods have
been proposed to cloak macroscopic and microscopic objects:
Transformation optics (TO)1–12 and elimination of dipolar
scattering13–15 are widely used. Both of these approaches are
based on engineering a specific material shell(s) around an
object to render it invisible for external observers.

In 2006, Leonhardt3 used optical conformal mapping to
design an isotropic cloaking design with spatially dependent
refractive index around an object, achieving invisibility in the
ray approximation. Pendry et al.4 proposed the TO approach
in order to design an electromagnetic metamaterial (EMM)
shell that bends light rays and conformably transfers the wave
fronts around an object. Using TO, Lai et al.7 designed a
complementary media8 that can conceal objects placed at a
distance outside the cloaking system from electromagnetic
radiation. McCall et al.,10 by transforming both space and
time, reported a space-time cloak (STC) design that can hide
events rather than objects. In contrast to spatial transformation
cloaks which bend light around a finite region of space,
STC works on the variation of the velocity of light before
and after the occurrence of the event to be cloaked and its
realization demands sophisticated temporal EMM designs.
The EMMs are artificial materials engineered with desired
electromagnetic properties that are difficult or impossible to
find in nature. The remarkable properties of these materials are
responsible for developing novel optical systems with negative
refractive index media,16 lensing with super-resolution,17

cloaking devices,11 and systems that create an optical illusion
such that an object can appear to an external observer with
entirely different characteristics.18 Furthermore, EMMs have
been used to mold the flow of light at will,19,20 functionalities
that are virtually impossible to achieve with naturally available
materials.

Electromagnetic invisibility through elimination of dipolar
scattering was studied decades ago by Kerker14 in the case of
a subwavelength ellipsoidal object. More recently, a similar
study in the case of spherical and cylindrical geometries was
presented by Alù and Engheta.13 In these studies a reduction
in the total scattering cross section was demonstrated by using

dielectric shells with appropriately configured geometrical and
optical properties. Zhou and Hu15 furthered this concept by
using the idea of neutral inclusion to derive the generalized
transparency condition in quasistatic limit. However, all these
studies place explicit geometrical and material constraints
upon the shells of the cloaking system as well as the object.
These constraints make the cloak crucially dependent on the
optical and geometrical properties of the object and arguably
limit its applicability.

In this paper, we propose a multishell design that can
cloak an object regardless of its shape and material (optical)
properties in the quasistatic regime. A set of transparency
conditions independent of the object are derived for both cylin-
drically and spherically symmetric systems. Most importantly,
as a material realization of our system, we propose a zero-
index, low-loss, tunable shell design based on metal-dielectric
composite materials. Our results show that the proposed design
can achieve cloaking across the entire optical spectral range
and can decrease the scattering cross section by a factor
up to 103. In addition, full wave analysis performed for a
two-dimensional or cylindrically symmetric system shows the
object independence of the design in good agreement with the
developed analytical theory.

The rest of the paper is organized as follows. Section II
outlines the transparency conditions for a multishell cloaking
system independent of the object’s optical and geometrical
properties. Section III analyzes the behavior of the cloak based
on realistic shells, i.e., shells made of dispersive materials
(bulk metal and metal-dielectric composites), and compares
the results to the ideal lossless case. Section IV provides a
time varying and finite difference frequency domain (FDFD)
analysis of our cloaking system.

II. THEORETICAL ANALYSIS

The geometry of the problem is depicted in Fig. 1. An
object of arbitrary shape and permittivity ε0 is placed inside a
cylindrical or spherical domain of radius r0 (core) surrounded
by a system of l shells of radii r1,r2, . . . ,rl (r0 < r1 < r2 · · · rl)
and permittivities ε1,ε2, . . . ,εl , respectively. The cloak is
embedded in a medium with permittivity εe and illuminated
by a uniform electric field E0 polarized along +x axis [or
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FIG. 1. (Color online) (a) Generic multishell cloaking system
with shell radii ri and permittivity εi , a two-shell (b) cylindrically
symmetric cloaking system and (c) spherically symmetric cloaking
system.

transfer magnetic (TM) wave]. In the quasistatic limit, the
electric potential inside and outside the cloak can be written
as

ϕ2D = E0

∞∑
n=1

(
A2D

n rn + S2D
n r−n

)
cos(nφ), (1)

ϕ3D = E0

∞∑
n=1

(
A3D

n rn + S3D
n r−(n+1)

)
Pn[cos(nφ)], (2)

where Ad
n, Sd

n are amplitude coefficients, Pn are the associated
Legendre polynomials, and d is the dimensionality. On
applying tangential and normal boundary conditions at r0, r1,
r2, . . . ,rl , the dipolar terms (n = 1) responsible for the far field
scattering in the embedding media can be written as

Sd
1 = rd

l

εl
eff − εe

εl
eff + (d − 1)εe

, (3)

where

εl
eff = εl + dεlpl

(
εl−1

eff − εl

)
dεl + (1 − pl)

(
εl−1

eff − εl

) (4)

is the effective permittivity of the l−shell system, and pl =
(rl−1/rl)d are the shells surface to volume ratios. We must
note that using the natural condition ε0

eff = ε0, Eqs. (3) and (4)
provide a straightforward recurrence formula for estimating
the scattering coefficient of multilayered dielectric particles
in the quasistatic approximation without explicitly solving the
boundary value problem (see Appendix for more details). This
rendering of the problem also gives an intuitive understanding
of the scattering process as that of an equivalent spherical
and/or cylindrical particle with effective permittivity εl

eff
immersed in a host environment with permittivity εe.

Alù and Engheta13 and Zhou and Hu15 have shown that, in
the quasistatic limit, complete elimination of dipolar scattering
can be achieved by a proper choice of the shell(s) radii.
Following their hypothesis, in the limit Sd

1 → 0 (εl
eff = εe)

we obtain a general transparency condition for the l−shell

cloaking system which depends on the object permittivity and
size:

pl =
(

εl − εe

εl − εl−1
eff

) [
εl−1

eff + (d − 1)εl

εe + (d − 1)εl

]
, (l � 1). (5)

The condition in Eq. (5) is consistent with the transparency
conditions reported in Refs. 13 and 15 for single-shell and
two-shell geometries. Specifically, for l = 1 and d = 3, i.e.,
a single-shell spherically symmetric cloak, Eq. (5) reduces to
the condition reported by Alù and Engheta:13

p1 =
(

r0

r1

)3

= (ε1 − εe)(2ε1 + ε0)

(ε1 − ε0)(2ε1 + εe)
, (6)

where ε1 is the shell permittivity. As evident from Eq. (6)
this design does not require high refractive indices or optical
magnetism as in the case of transformational optics (TO).12

However, realizations of such cloaking systems present a seri-
ous disadvantage; redesign of the entire cloak is necessitated
for any change in the object’s properties (ε0 and r0 are the
permittivity and radius of the object), and it is applicable only
for spherically and/or cylindrically symmetric objects.

Alternatively, here we propose a different condition to
achieve complete elimination of dipolar scattering for a cloak
with l � 2 shells. By inspection [see Eqs. (3) and (4)] this is
achieved (εl

eff = εe) if the two outermost cloaking shells have
permittivities that satisfy the following conditions:

εl−1 = 0, εl = εe

1 + pl/(d − 1)

1 − pl

. (7)

Provided a zero-index material can be designed the permit-
tivity of the outermost shell is dependent only on the radii of
the lth, and (l − 1)th shells, which is in sharp contrast with
the transparency condition given by Eqs. (5), and (6). Thus,
in the quasistatic limit, a cloaking system parametrized by
the transparency condition Eq. (7) has the potential to cloak
objects with arbitrary optical properties. Furthermore, as will
be demonstrated in Sec. IV, the conditions εl−1 → 0 allow
cloaking of objects with arbitrary shapes provided they are
immersed within shells of order lower than l − 1. Interestingly,
a striking similarity exists between the cloak designs based
on our approach and those on conventional transformation
optics. In the case of transformation optics, perfect cloaking
can be achieved provided the permittivity or/and permeability
of the anisotropic shell is zero at the boundary between the
shell and the object.6 Zero-index materials correspond to
a situation where the local electromagnetic field does not
experience phase shift as it travels through the material. In
the case of cloaking this also implies a singular value of the
local wavelength (λ → ∞) or an effective size of the object
equal to zero. This explains why in the case of transformation
optics and under the here-proposed transparency condition
Eq. (7), the invisibility devices operate independently of the
object geometrical or/and material properties. An object with
effective size equal to zero does not interact with the impinging
light. For the here-proposed cloak, the simplest realization is
the two-shell design.
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III. CLOAK DESIGN AND TUNABILITY

A. Metallic shell design

We consider two-shell cylindrical and spherical cloaking
systems [see Figs. 1(b) and 1(c)] with air (εe = 1) as
environment. To satisfy the transparency condition, Eq. (7),
we utilize a metallic inner shell. The metal permittivity is
described by the Drude model, εm(ω) = ε′

m(ω) + iε′′
m(ω) =

εb − ωp
2/ω(ω + iωτ ), where ωp is plasma frequency, ωτ is re-

laxation rate, and εb is contribution due to interband transitions.
Clearly, at the modified plasma frequency ω̃p = ωp/

√
εb, the

metal permittivity ε′
m(ω̃p) = 0 (for ωτ/ω̃p � 1) and a metal

shell can be used to implement the cloak. To characterize
the cloak performance we define the relative scattering length
(RSL), for the cylindrical case d = 2, and relative scattering
cross section (RSCS) for spherically symmetric case d = 3 as

σd
R = σd

cloak

σd
object

=
∣∣Sd

1,cloak

∣∣2∣∣Sd
1,object

∣∣2 , (8)

where σd
cloak and σd

object are the scattering length (scattering
cross section) of the cloak and object, respectively. Substituting
the transparency condition Eq. (7) in Eq. (3) and using
ε2 = εm(ω̃p) = iε′′

m(ω̃p) (here ε′′
m is the imaginary part of the

metal permittivity) in the second order of the small parameter
ε′′
m ≈ εbωτ /ω̃p � 1 we obtain

σd
R(ω̃p)≈

[
dε′′

m(ω̃p)

p1

]2 {
(ε0 + d − 1) [1 + (d − 1)p1]

(ε0 − 1)(1 − p1)(p2 + d − 1)2

}2

.

(9)

The existence of material dissipation clearly affects the
cloak performance with σd

R ≈ (ωτ/ωp)2 increasing quadrat-
ically with the relaxation rate ωτ . Furthermore, inspection
of Eq. (9) shows that a geometrical optimization could be
archived with the scattering having a minimum for p1 =
1/(1 + √

d). Finally, using Eq. (7) the optimal RSL and RSCS
can be written as a function of the outer-shell permittivity:

σd
R,min(ω̃p) ≈ ε3

b

(
ωτ

ωp

)2 [
(ε0 + d − 1)(d − 1 + 1/ε2)2

d(ε0 − 1)(1 − √
d)2

]2

.

(10)

To demonstrate the cloak performance we consider two
separate designs for the cylindrical and spherical geometries.
Due to lower dissipative losses, we chose silver with h̄ωp =
9.1 eV, h̄ωτ = 0.02 eV, and εb = 5.21 The cloak’s perfor-
mances calculated as a function of the outer-shell permittivity
ε2 are shown in Fig. 2. For comparison, we include the RSL and
RSCS of the ideal systems (without dissipative losses) and with
a silver inner shell. The RSL and RSCS of the ideal systems
approach zero, implying perfect invisibility at the outer-shell
permittivity values ε2 = 5 and ε2 = 10 in cases I and II
(see Fig. 2), for cylindrical and spherical geometries. These
results are in excellent agreement with the values predicted
by the transparency condition Eq. (7). A significant reduction
in scattering for the metal shell systems are also observed
at the predicted outer-shell dielectric permitivities ε2 (see
Fig. 2, dashed lines). In the figures we have also included
the minimal RSL and RSCS as given by Eq. (10), providing a
guideline of the maximal affects that can be achieved with the
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FIG. 2. (Color online) Relative scattering length (RSL) and cross
section (RSCS) versus outer-shell permittivity for two-shell (a)
cylindrically symmetric cloak and (b) spherically symmetric cloak
with inner shell made of bulk silver. Two separate designs are being
investigated in the case of cylindrical system: (I) p2 = 0.67 and (II)
p2 = 0.82, and spherical system (I) p2 = 0.73 and (II) p2 = 0.86.
The object permittivity is ε0 = 12 and for all cases we use the optimal
radii ratio p1 = 1/(1 + √

d). The limiting case as per Eq. (10) is
presented with dotted (black) lines.

proposed design. At the optimal outer-shell permittivity the
exact result correlates well with the predicted values, and for
strongly scattering objects (ε0 → ∞) asymptotically approach
the limit σ min

RSCS → ε3
b(ωτ/ωp)2(1 + 1/

√
d)4 � 1. Finally, we

must note that the cloak based on the metal shell design
inherently has a rather narrow frequency range of operation.
The operation range ω ∈ (ω̃p − 	ω,ω̃p + 	ω) is roughly set
by the condition |ε′

m(ω̃p ± 	ω)| = ε′′
m(ω̃p ± 	ω), which gives

	ω = ωτ/2.

B. Composite media: Optical tunability

From the discussions in the previous section it is clear that
while metal shells can be used to provide substantial reduction
in scattering at the respective modified plasma frequencies
their response cannot be tuned to operate across a broader
spectral range. However, such tunability can be achieved using
nanocomposite materials realized by embedding metal inclu-
sions of permittivity εm in a dielectric host with permittivity
εh.1,12,22 If the inclusions are randomly oriented ellipsoids
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FIG. 3. (Color online) (a) Depolarization factor for composite host materials εh = 1 (solid line) and εh = 2.0 (dashed line) at different
frequencies and f = 0.05. RSL and RSCS) versus outer-shell permittivity of two-shell (b) cylindrically symmetric cloaking system and (c)
spherically symmetric cloaking system, respectively. The composite inner shell is designed with two different hosts, εh = 1 (dashed red line)
and εh = 2.0 (dotted green line) at h̄ω = 1.14 eV. In the plots we also consider two separate shell designs; cylindrical system (I) p2 = 0.67
and (II) p2 = 0.82, and spherical system (I) p2 = 0.73 and (II) p2 = 0.86. The embeded object has permitivity ε0 = 12 and for all cases we
use the optimal shell radii ratio p1 = 1/(1 + √

d). The ideal lossless cases are represented with solid (blue) lines. The limiting case [as per
Eqs. (9) and (14)] is presented with horizontal (dotted and dashed) black lines for both the host media.

with small volume fraction f , the effective permittivity of
the composite is given by the Maxwell-Garnett formula:23–26

εeff = εh + f

3

∑
j=x,y,z

εh(εm − εh)

εh + ηj (εm − εh)
, (11)

where ηj are the depolarization factors of the ellipsoids
satisfying the condition

∑
j=x,y,z ηj = 1. For prolate spheroids

(needle shaped), i.e., ellipsoids with semiaxes a > b = c, the
depolarization factor is given as

ηx = η = 1 − e2

e2

[
1

2e
ln

(
1 + e

1 − e

)
− 1

]
, (12)

where e2 = 1 − (b/a)2 is the eccentricity.24 The other two
depolarization factors are equal and given by ηy = ηz =
(1 − η)/2.

To operate at reduced losses and simplify the design
we consider only the ellipsoid’s low-frequency resonance
set by the condition ε′

m(ω) = −εh(1 − η)/η. The effective
permittivity of the composite depends on the physical and
geometrical properties of the spheroids, which allows for
substantial flexibility in satisfying the transparency condition
in Eq. (7). Since Eq. (11) is valid for small volume fractions,
usually less than 5%, we study the effects due to change in
the depolarization factor, i.e., the shape of the inclusions or
the host material of the composite, or both. For small metal
losses (ε′′

m/ε′
m � 1), the depolarization factor that satisfies the

transparency condition ε′
eff(ωop) = 0 can be written as

η = 1

1 − ε′
m(ωop)/εh

− f

3
, (13)

where ωop is the operation frequency, and the depolarization
factor must vary from η = 0 (needles) to 1/3 (spheres). Con-
currently, the operation frequency for a given depolarization
factor is obtained as ωop = ωp/

√
εb − εh + 3εh/(3η + f ).

We must note that Eq. (13) is only valid for f >

6εhε
′′
m/[(ε′′

m)2 + (εh − ε′
m)2], and for lower concentrations the

transparency condition cannot be satisfied (ε′
eff > 0).

The operation frequency range of the composite cloak
is depicted in Fig. 3(a). For air as a host medium and
tuning the depolarization factor of the ellipsoids the frequency
range of operation is h̄ωop ∈ (1.14 − 3.89) eV. For the same
ellipsoid volume fraction and glass as a host medium the
operational frequency exhibits a redshift and is within the range
h̄ωop ∈ (0.83 − 3.74) eV. Clearly, by varying the composite
host material and ellipsoidal aspect ratio (depolarization
factor), one can tune the operation frequency over large
sections of the visible and near-infrared spectra. However,
for low depolarization factors the spheroid aspect ratios
become prohibitive pertaining to the design of the cloak
(the physical size of the system should be smaller than the
incident wavelength) and one should impose the restriction
1/3 � η > 1/10, which corresponds to ellipsoid aspect ratios
within the range 1 � a/b < 3. This restriction is sufficiently
weak enough to allow effective cloaking throughout the entire
optical spectral range.

To estimate the RSL and RSCS of the composite cloak we
rely on Eq. (9) with the substitution ε′

m → ε′′
eff(ωop), where the

composite effective permittivity is obtained from Eq. (11) and
(13) and is given as

ε1 = iε′′
eff(ωop) = 3ε2

h

f

iε′′
m

(εh − ε′
m)2

. (14)

For the geometrically optimized design [with p1 = 1/(1 +√
d)], low frequency of operation, and strongly scattering

objects (ε0 → ∞) the RSCS and RSL asymptotically approach
the limit:

σd
R,min(ωop) =

(
3ωτωopε2

h

f ω2
p

)2(1 + √
d√

d

)4

. (15)

Figures 3(b) and 3(c) depict the RSCS and RSL versus
the outer-shell permittivity (ε2) for two-shell cylindrical and
spherical cloaking systems with inner shells made of different
metal dielectric composites. We also compare with the ideal
case (nondispersive media) and include air (dotted line) and
glass (dashed line) as the composite host materials. The
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FIG. 4. (Color online) (a) RSL and (b) RSCS calculated as
function of outer-shell permittivity (ε2) and incident light frequency
for a dielectric particle (ε0 = 12) with εh = 1 and spheroids volume to
surface fraction f = 0.05. The shells’ radii ratios are (a) cylindrical
system (p1,p2) = (0.41,0.67), and (b) spherical system (p1,p2) =
(0.37,0.73).

operation frequency for all cases is set at h̄ω = 1.14 eV.
A strong reduction in the scattering is observed, with the
composite design based on air as a host media showing
better performance [as expected by Eq. (15)]. Furthermore,
a reduction of about 40% is observed as compared to the cloak
designs based on bulk metal inner shells (see Fig. 2). Again, the
minimal RSCS and RSL are obtained at outer-shell permittivity
(ε2) corresponding to the transparency condition Eq. (7). In the
figures we also include the predicted geometrically optimized
results as per Eqs. (9) and (14), which closely match the
minimal values due to the exact calculations.

Finally, to provide a complete picture of the cloaks’
performance, in Figs. 4(a) and 4(b) we vary the outer-shell
permittivity (ε2) and operational frequency (ωop), respectively.
A substantial decrease in the RSL and RSCS are observed
across the entire optical and near-infrared spectral range. As
predicted by Eq. (15), the scattering increases with increasing
frequency to the point where the effect of the shell on the
scattering cross section is no longer beneficial (for σd

R,min > 1
and h̄ωop > 3.2 eV). We should note that further decrease in

scattering may be achieved by increasing the volume fraction
of the spheroids provided the applicability of Eq. (11) is not
violated.

IV. FULL WAVE ANALYSIS OF A GENERIC
CYLINDRICAL CLOAK

The transparency condition Eq. (7) proposed in this work
is valid for small objects, i.e., those whose physical size is
much smaller than the wavelength of the impinging light. If
the object size is comparable to the incident wavelength, the
quasistatic analysis is no longer valid and the transparency
condition is expected to fail. To study this transition and better
understand the limiting system sizes of the design we perform
a full wave analysis of a cylindrical two-shell cloak at optical
and near-infrared frequencies.

We consider scattering of a plane transfer magnetic (TM)
wave by an infinite two-shell cylindrical cloak as depicted in
Fig. 1(b). The components of the incident Hi

z and scattered Hs
z

magnetic fields outside the cloak assume the following well
known general form:

Hz = Hi
z + Hs

z = H0

∞∑
n=−∞

in
[
Jn(ker) + SnH

1
n (ker)

]
einφ,

(16)

where Jn,H
1
n are the Bessel and Henkel functions of the first

kind, respectively, ke = (ω/c)
√

εe is the wave vector in the host
medium, and Sn are the scattering coefficients determined by
applying the respective boundary conditions (see Appendix).
The scattering cross-length is then given as a sum over all
multipoles:27–29

σ = 4

ke

∞∑
n=−∞

|Sn|2. (17)

In the calculations, the geometrical parameters of the cloak
are set at the optimal value p1 = 1/(1 + √

d), p2 = 0.67,
and the shell permittivities are matched to the transparency
condition in Eqs. (7) and (14). Figure 5 illustrates the RSL
of the composite cloak, for cylindrical dielectric and metal
particles serving as an object. As expected, for systems
with small overall sizes [see Figs. 5(a) and 5(c)] a drastic
reduction in scattering over the entire optical spectrum is
achieved for ε2 = (1 + p2)/(1 − p2), thus reproducing the
quasistatic result. Compared to a dielectric particle, a RSL
across a broader frequency range is observed in the case of a
metallic object. This is due to the dramatic enhancement of
the metal particle scattering at the surface plasmon frequency
h̄ωsp = h̄ωp/

√
εb + εe = 3.71 eV. However, as the system

size increases [see Figs. 5(b) and 5(d)] the transparency
condition in Eq. (7) is no longer sufficient to arrest the
scattering process. This is an expected behavior since the
contribution of the higher-order multipoles in the scattering
cross-length for ker2 � 1 increases with the physical size as
(see Appendix)

Sn = iπ

�(n)�(n + 1)

(
ker2

2

)2n ε2
(
1 − pn

2

) − εe

(
1 + pn

2

)
ε2

(
1 − pn

2

) + εe

(
1 + pn

2

) .

(18)
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FIG. 5. (Color online) Full wave calculations of the RSL as a function of outer-shell permittivity (ε2) and incident light frequency
for dielectric particle ε0 = 12 (a), (b) and metal particle (c), (d) enclosed in a cloaking system with radii r2 = 50 nm (a), (c) and
r2 = 100 nm (b), (d).

It is straightforward to show that the quadruple scattering
term of the cloak will overcome the dipolar term of the
object for ker2 >

√
8p1(1 + p2 + p2

2) (assuming ε0 	 1).
Overall, for particle diameters larger than 400 nm a substantial
reduction in scattering and/or extinction cannot be expected in
the optical spectral range.

Finally, we would like to address the generic property
of our cloak design, namely its object independence. The
condition εl−1 = 0 leads to εl−1

eff = 0 [see Eq. (4)] regardless
of the effective permittivity εl−2

eff of the underlying shell or
object substructure. This allows the design to cloak objects
that are virtually arbitrary in shape and composition provided
the objects are encapsulated by l � 2 shells.

To verify the generic properties of the cloak, full wave sim-
ulations using a finite-difference frequency domain (FDFD)
software package (COMSOL MULTIPHYSICS) are performed.
A metallic, rounded star-shaped object is placed inside the
cloak. The permittivities of the shells are set at ε2 = 5

and ε1 = 0 with radii ratio p1 = 0.67 (r2 = 106 nm and
r1 = 87 nm). The system is illuminated by a TM polarized
from a point source positioned 130 nm from the center of the
object.

The magnetic field distribution is shown in Fig. 6. The
cylindrical wave generated by the source smoothly bends
around the cloaked region indicating reduced scattering [see
Fig. 6(a)]. The phase fronts remain undisturbed as they exit the
cloak and no shadow formation is noted. Figure 6(b) illustrates
the magnetic field distribution when the cloak is removed.
In this case the incident wave is strongly scattered and the
phase fronts appear severely disturbed after traversing the
object. The formation of shadows and presence of resonances
within the object are clearly observed. The difference between
the systems response shows that the cloak design based on
the transparency condition Eq. (7) can considerably reduce
scattering from objects with diverse optical and geometrical
properties.
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FIG. 6. (Color online) Full wave calculations of light scattering
due to a point source in close proximity to a star-shaped metal
object with (a), and without (b) the cloak. The incident TM wave
has frequency h̄ω = 3.8 eV.

V. SUMMARY

In this work we propose a generic cloaking system
based on zero-permittivity composite materials. The proposed
analytical model and full wave calculations show that a
dramatic suppression of dipolar scattering can be achieved
for an arbitrary object enclosed within a multishell cloaking
system. A reduction of scattering across the entire optical
spectrum for dielectric objects using realistic shell materials
is demonstrated. This study provides a direction for achieving
optical invisibility without the use of metamaterials and also
underlines the role of zero-index materials in the general
phenomenon of optical transparency.
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APPENDIX

To calculate the scattering coefficients of the cloaking
system shown in Fig. 1(b), we solve the Maxwell’s curl
equations in cylindrical coordinates. For an incident plane
TM wave the components of the incident field (i), the field
inside the mth shell, and scattered magnetic fields assume the
following general form:

Hi
z = H0

∞∑
n=−∞

inJn (ker) einφ,

H (m)
z = H0

∞∑
n=−∞

in
[
A(m)

n Jn(kmr) + B(m)
n H 1

n (kmr)
]
einφ (A1)

Hs
z = H0

∞∑
n=−∞

inSnH
1
n (ker)einφ,

where Jn,H
1
n are the Bessel and Henkel functions of the first

kind, respectively, ke and km (m = 0,1,2 · · · l) are the wave
numbers inside the cloak. A(m)

n , B(m)
n , Sn are the expansion

coefficients with B(0)
n = 0 at the origin. For an l-shell system,

and applying boundary conditions, the scattering coefficients
(for εl−1 = 0) are given as

Scloak
n = αl

nJn (klrl−1) + βl
nH

1
n (klrl−1)

γ l
nJn (klrl−1) + δl

nH
1
n (klrl−1)

, (A2)

where kl = (ω/c)
√

εl and coefficients

αl
n = εlJ

′
n(kerl)H

1
n (klrl) − εeJ

′
n(klrl)Jn(kerl),

βl
n = εeJ

′
n(klrl)Jn(kerl) − εlJ

′
n(kerl)Jn(klrl),

(A3)
γ l

n = εeH
′1
n (klrl)H

1
n (kerl) − εlH

′1
n (kerl)H

1
n (klrl),

δl
n = εlH

′1
n (kerl)Jn(klrl) − εeJ

′
n(klrl)H

1
n (kerl).

Here the prime corresponds to differentiation with respect
to the radial coordinate and special care must be taken
when considering the n = 0 term. Similarly, the scattering
coefficients for the object are

Sobj
n = εeJ

′
n(k0r0)Jn(ker0) − ε0J

′
n(ker0)Jn(k0r0)

ε0H ′1
n (ker0)Jn(k0r0) − εeJ ′

n(k0r0)H 1
n (ker0)

. (A4)

In the quasistatic limit klrl � 1, Eqs. (A2) and (A4) are
reduced to

Scloak
n = iπ

� (n) � (n + 1)

(
kerl

2

)2n

×
{

εl

(
1 − pn

l

) − εe

(
1 + pn

l

)
εl

(
1 − pn

l

) + εe

(
1 + pn

l

) + O[(kerl)
2]

}
,

Sobj
n = iπ

� (n) � (n + 1)

(
ker0

2

)2n {
ε0 − εe

ε0 + εe

+ O[(ker0)2]

}
.

(A5)
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Considering the dipolar term (n = 1) we derive the second
transparency condition for the cloak

εl = εe

1 + pl

1 − pl

, (A6)

which coincides with Eq. (7b) for d = 2. We must note that

an arbitrary multipole (n) can also be eliminated from the far
field provided

εl = εe

1 + pn
l

1 − pn
l

. (A7)
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