Is a Quantum Logic a Logic?

by R. J. Greechie¹) and S. P. Gudder

Kansas State University, Dept. of Mathematics, Manhattan, Kansas, USA and University of Denver, Denver, Colorado, USA

(1. V. 70)

In a recent study Jauch and Piron [2] have considered the possibility that a quantum proposition system is an infinite valued logic. They argue that if this is the case then for any two propositions p and q there must exist a conditional proposition $p \to q$. Following Lukasiewicz [3] the truth value $[p \to q]$ of the conditional $p \to q$ is defined as follows: $[p \to q] = \min\{1, 1 - [p] + [q]\}$ where [p] and [q] are the truth values of [p] and [q] respectively. Here [p] = 1 is interpreted as 'p is true'. Note that [p] = 1 and $[p \to q] = 1$ implies [q] = 1 so we have a law of deduction, which is a property that any reasonable logic should possess. Notice further that if $[p \to q] = 1$ and $[q \to r] = 1$ then $[p \to r] = 1$ so that implication is transitive as it should be.

Let \mathcal{L} be an orthomodular poset (representing some quantum proposition system) and let \mathcal{S} be an order determining (full in [1]) set of states on \mathcal{L} . We further assume that if $m_1, m_2 \in \mathcal{S}$, then $1/2 m_1 + 1/2 m_2 \in \mathcal{S}$, that is, \mathcal{S} is closed under the formation of mid-points. We say that $a, b \in \mathcal{L}$ are conditional is there exists $c \in \mathcal{L}$ such that for all $m \in \mathcal{S} m(c) = \min\{1, m(a') + m(b)\}$. If c exists it is unique. We call c the conditional of a and b and write $c = a \to b$. We say that \mathcal{L} (or, more correctly, the pair $(\mathcal{L}, \mathcal{S})$) is conditional if every pair $a, b \in \mathcal{L}$ are conditional. Now if \mathcal{L} is to be a logic with a law of deduction then \mathcal{L} must be conditional. Jauch and Piron [2] have shown that standard proposition systems (that is, ones that are isomorphic to the lattice of all closed subspaces of a Hilbert space) are not conditional and thus cannot be logics in the usual sense. We generalize their results to the orthomodular posets \mathcal{L} considered above. In fact we obtain the strong result that \mathcal{L} is conditional if and only if $\mathcal{L} = \{0, 1\}$. We then characterize the pairs $a, b \in \mathcal{L}$ which are conditional.

Undefined terms appear in [1]. If $a \le b'$ we write a+b for $a \lor b$. If $a \le b$ we write b-a for $b \land a'$. We first state a useful lemma whose simple proof is left to the reader.

Lemma 1. (i) $m(a \to b) = 1$ if and only if $m(a) \le m(b)$; $m(a \to b) = m(a') + m(b)$ if and only if $m(b) \le m(a) = 1$.

(ii) $m(a \rightarrow b) = m(b)$ if and only if m(b) = 1 or m(a) = 1.

This lemma will be frequently used without further comment.

Theorem 2. \mathcal{L} is conditional if and only if $\mathcal{L} = \{0, 1\}$.

Research supported in part by the National Science Foundation Grant Number GP-11241 and in part by the Fonds National Suisse.

Proof: Clearly $\{0,1\}$ is conditional; in fact $1=0\to 1$ and $0=1\to 0$. Now let $\mathcal L$ be conditional and suppose there exists $a\in\mathcal L-\{0,1\}$. Then $c=a\to a'$ exists and $m(c)=\min\{1,2\ m(a')\}$. Since $\mathcal S$ is order determining $a'\leqslant c$. Hence there exists $b\in\mathcal L$ such that a'+b=c. Now $m(b)=m(c)-m(a')=\min\{m(a),m(a')\}$. Thus $m(b)\leqslant 1/2$ for all $m\in\mathcal S$. It follows that $b\leqslant b'$ since $\mathcal S$ is order determining. Hence b=0 and c=a'. Thus $m(c)=\min\{1,2\ m(c)\}$ and hence m(c)=0 or 1 for all $m\in\mathcal S$. Moreover since 0< c<1 there exist $m_1,m_2\in\mathcal S$ with $m_1(c)=0$ and $m_2(c)=1$. Letting m=1/2 $m_1+1/2$ m_2 we have m(c)=1/2, a contradiction. Hence $\mathcal L=\{0,1\}$.

We have seen that, for non-trivial posets \mathcal{L} , not every pair of elements is conditional. We now study the properties of pairs of elements that are conditional.

Lemma 3. If $a \to b$ and $a' \lor b$ exist and are equal then a C b.

Proof: There exists $d \in \mathcal{L}$ such that $b+d=a' \lor b$. We show $d \leqslant a'$. Otherwise there exists $m \in \mathcal{S}$ such that m(d) > m(a'). Then $m(a' \lor b) = m(b) + m(d) > 1 - m(a) + m(b)$ so m(a) > m(b). Hence $m(a' \lor b) = m(a \to b) = 1 - m(a) + m(b)$, a contradiction. Now there exists $e \in \mathcal{L}$ with d+e=a'. We show $e \leqslant b$. Otherwise there exists $m \in \mathcal{S}$ with m(e) > m(b). Then $m(a') = m(d) + m(e) > m(d) + m(b) = m(a' \lor b) \geqslant m(a')$, a contradiction. Hence there exists $f \in \mathcal{L}$ with b = f + e, a' = d + e and $f \leqslant b \leqslant d'$ so that $a' \in \mathcal{C}$ b. Thus $a \in \mathcal{C}$ b.

Lemma 4. If $c = a \rightarrow b$ exists then $a' \leqslant c$ and $b \leqslant c$.

Proof: If $a' \leq c$ then there exists $m \in S$ such that m(c) < m(a'). Hence m(c) < 1 and 1 - m(a) + m(b) = m(c) < 1 - m(a). Thus m(b) < 0, a contradiction. That $b \leq c$ is immediate.

We say that S is sufficient if $0 \neq a \in \mathcal{L}$ implies there exists $m \in S$ with m(a) = 1.

Theorem 5. Let S be sufficient and assume that $a' \lor b$ exists. Then $a \to b$ exists if and only if $a \leqslant b$ or $b \leqslant a$.

Proof: Clearly, if $a \le b$ then $a \to b = 1$ and if $b \le a$, then $a \to b = a' + b$. Conversely, assume $c = a \to b$ exists. By Lemma 4 $c \ge a' \lor b$. Hence there exists $d \in \mathcal{L}$ such that $(a' \lor b) + d = c$. Suppose $d \ne 0$. Then there exists $m \in \mathcal{S}$ such that m(d) = 1. Hence m(a') = m(b) = 0 and m(c) = 1 - m(a) + m(b) = 0, a contradiction. Therefore d = 0 and $c = a' \lor b$. It now follows from Lemma 3 that $a \in C$. Suppose a and b are not comparable. Then $a \land b < a$ and $a \land b < b$. Hence there exists $m_1, m_2 \in \mathcal{S}$ such that $m_1(a - (a \land b)) = 1$ and $m_2(b - (a \land b)) = 1$. It follows that $m_1(a) = m_2(b) = 1$ and $m_1(b) = m_1(a \land b) = m_2(a) = m_2(a \land b) = 0$. Let $m = 1/2(1/2 m_1 + 1/2 m_2) + 1/2 m_1 = 3/4 m_1 + 1/4 m_2$. Then $m(a \land b) = 0$ and m(b) = 1/4 < 3/4 = m(a). Hence $m(a') + m(b) = m(c) = m(a' \lor b) = m(a' + (a \land b)) = m(a') + m(a \land b)$. Thus $m(b) = m(a \land b)$, a contradiction.

Corollary 6. Let S be sufficient and $a' \lor b$ exist. If $a \to b$ exists, then $a \to b = a' \lor b$, $b \to a$ exists, $b' \lor a$ exists, and $b \to a = b' \lor a$.

The proofs of the previous theorems depend heavily on the fact that S is order determining, sufficient or both. If we strengthen S still further we obtain a stronger result. We say that S is strongly order determining if $\{m \in S : m(a) = 1\} \subseteq \{m \in S : m(b) = 1\}$

implies that $a \leq b$. It can be shown that strongly order determining implies both order determining and sufficiency. (The converse fails; see [1].) Notice that the set of states on the lattice of all closed subspaces of a Hilbert space is strongly order determining.

Theorem 7. If S is strongly order determining, then $a \to b$ exists if and only if $a \le b$ or $b \le a$.

Proof: As in Theorem 5, if a and b are comparable, then $a \to b$ exists. Now, assume $c = a \to b$ exists. Suppose $a \leqslant b$ and $b \leqslant a$. Then there exists $m_0, m_1 \in S$ such that $m_0(a) = 1$, $m_0(b) < 1$, $m_1(a) < 1$ and $m_1(b) = 1$. Note that $m_0(c) = m_0(b)$ and $m_1(c) = 1$. Let m = 1/2 $m_0 + 1/2$ m_1 . Then m(a) = 1/2 + 1/2 $m_1(a) < 1$, m(b) = 1/2 $m_0(b) + 1/2 < 1$ and m(c) = m(b). This last sentence contradicts Lemma 1 (ii). Hence a and b are comparable.

REFERENCES

- R. J. GREECHIE, An Orthomodular Poset with a Full Set of States not Embeddable in Hilbert Space, Carib. J. Sci. Math. 1, 15 (1969).
- [2] J. M. JAUCH and C. PIRON, What is 'Quantum-Logic'? quanta, edited by P. G. O. FREUND, C. J. GOEBEL and Y. NAMBU (The University of Chicago Press, Chicago and London 1970), p. 166-181.
- [3] J. Lukasiewicz and A. Tarski, Investigations into the Sentential Calculus, Logic, Semantics and Metamathematics (Clarendon Press, Oxford 1956).