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Is a Quantum Logic a Logic?

by R. J. Greechie!) and S. P. Gudder

Kansas State University, Dept. of Mathematics, Manhattan, Kansas, USA
and University of Denver, Denver, Colorado, USA

(1. V. 70)

In a recent study Jauch and Piron [27 have considered the possibility that a
quantum proposition system is an infinite valued logic. They argue that if this is the
case then for any two propositions p and g there must exist a conditional proposition
p — ¢. Following Lukasiewicz [3] the truth value [p — ¢] of the conditional p — ¢
is defined as follows: [p —» g] = min {1, 1 — [p] - [g]} where [p] and [g] are the truth
values of {$] and [g] respectively. Here [p] = 1 is interpreted as ‘p is true’. Note that
p1=1and [p —> ¢ = 1 implies [g] = 1 so we have a law of deduction, which is a
property that any reasonable logic should possess. Notice further that if [p »¢] =1
and [g 7] =1 then [ — 7] = 1 so that implication is transitive as it should be,

Let £ be an orthomodular poset (representing some quantum proposition system)
and let § be an order determining (full in [1]) set of states on £. We further assume
that if m,, my € §, then 1/2m, + 1/2 m, € §, that is, § is closed under the formation
of mid-points. We say that a, b€ L are conditional is there exists ¢ € £ such that for
allm e §m{c) = min {1, m(a’) + m(b)}. If ¢ exists it is unique. We call ¢ the conditional
of a and b and write ¢ = @ — b. We say that £ (or, more correctly, the pair (L, §))
is conditional if every pair a, b€ L are conditional. Now if £ is to be a logic with a
law of deduction then £ must be conditional. Jauch and Piron [2] have shown that
standard proposition systems (that is, cnes that are isomorphic to the lattice of all
closed subspaces of a Hilbert space) are not conditional and thus cannot be logics in
the usual sense. We generalize their results to the orthomodular posets £ considered
above. In fact we obtain the strong result that £ is conditional if and only if [ ==
{0, 1}. We then characterize the pairs a, b € £ which are conditional.

Undefined terms appear in [1]. If ¢ <" we write a - b for a V b. If a < b we
write b — a for & A a’. We first state a useful lemma whose simple proof is left to the
reader.

Lemma 1. (i) m{a — b) = 1 if and only if m(a) < m(b); mla — b) = m(a’) + m(b)
if and only if m(b} < m(a) = 1.

(il m (a->b) = m{b) if and only if m(d) = 1 or m(a) = 1.

This lemma will be frequently used without further comment.

Theqrem 2. L is conditional if and only if £ = {0, 1}.
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Proof: Clearly {0, 1} is conditional; in fact 1 = 0 > 1 and 0 = 1 — 0. Now let £
be conditional and suppose there exists ae £ — {0, 1}. Then ¢ = a — a’ exists and
m(c) = min {1, 2m{a’)}. Since § is order determining 4’ < ¢. Hence there exists
be L such that & + b=-c. Now m(b) = m{c) — m{a’) = min {m{a), m{a’)}. Thus
m(b) < 1/2 for all me §. It follows that b < ¥ since § is order determining. Hence

=0 and ¢ = a’. Thus m{c) = min {1, 2 m(c)} and hence m(c) = O or Lforall me §.
Moreover since 0 << ¢ <C 1 there exist m,, m,€ § with m,{c) = 0 and my(c) = 1.
Letting m = 1/2 m, + 1/2 m, we have m(c) = 1/2, a contradiction. Hence £ = {0, 1}.

We have seen that, for non-trivial posets £, not every pair of elements is condi-
tional. We now study the properties of pairs of elements that are conditional.

Lemma 3. If a — b and &’ V b exist and are equal then a C b.

Proof: Thereexistsde Lsuchthatd + 4 == a’ V b. Weshowd < 4'. Otherwise there
exists m € § such that m{d) > m(a’). Then m{a’ V b) = m(b) + m{d) > 1 — m{a) + m(})
so m{a) > m(b). Hence mi{a’ V b) = m({a — b) = 1 — m{a) + m(b), a contradiction.

me § with m(e) > m{b}. Then m(a’) = m(d) + m{e) > m(d) + m(b) = m{a’ V b) = m(a'},
a contradiction. Hence there exists fe Cwith b=f+¢ a4 =d-+ecand f < b < d'
so that ¢’ Cb. Thus a C b.

Lemma 4. 1f ¢ = a — b exists then a’ <{cand b < ¢.

Proof: If &' < ¢ then there exists m € § such that m{c) << m(a’). Hence m(c) < 1
and I — m{a) + m{d) = mc} < 1 —m{a). Thus m({d) < 0, a contradiction. That
b < ¢ is immediate. :

We say that § is sufficient if 0 + a € £ implies there exists m € § with m{a} = 1.

Theorem 5. Let § be sufficient and assume that ¢" V b exists. Then g — b exists
ifand only if a < bor b < a.

Proof: Clearly, if @ <Cb then ¢ > b= 1 and if b <a, then a —>b=24a" -+ b.
Conversely, assume ¢ = a —> b exists. By Lemma 4 ¢ > a’ V b. Hence there exists
d € L such that (@' V b) + d = ¢. Suppose d # 0. Then there exists m € § such that
m(d) = 1. Hence m(a’} = m(b) = 0 and m(c) = 1 — m{a) + m(b) = 0, a contradiction.
Therefore d = 0 and ¢ = &' v b. It now follows from Lemma 3 that a C b. Suppose a
and & are not comparable. Then a A b <<a and a4 A b < b. Hence there exists
my, mo€ § such that m, (@ — (@ A b)) =1 and my (b — (a A b)) = 1. 1t follows that
my{a) = my(b) = 1 and m(b) = my (@ A D) = myla) = my (@ A b} =10. Let m=
172 (12 my + 12 my) + 1/2m, = 3[4 my + 1/4 m,. Then m (a A b) = 0 and m(b) =
1/4 < 3/4 = m{a). Hence m@)+mb)=m{c)=m@ Vb =m{@g + (a A b)) =
m(a) + m {a A b). Thus m(b) = m (a A b), a contradiction.

Coroliary 6. Let § be sufficient and 4’ V b exist. If @ — b exists, then g —> b =
a’' Vb b->aexists, b V aexists,and b —>a =8 V a.

The proofs of the previous theorems depend heavily on the fact that §is order
determining, sufficient or both. If we strengthen § still further we obtain a stronger
result. We say that § is strongly order determining if {me §:m(a) =1} C {me S: m(b) =1}
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implies that 2 < b. It can be shown that strongly order determining implies both order
determining and sufficiency. (The converse fails; see [11.} Notice that the set of states
on the lattice of all closed subspaces of a Hilbert space is strongly order determining.

Theorem 7. If § is strongly order determining, then a — b exists if and only if
a<borb<a.

Proof: As in Theorem 5, if 4 and b are comparable, then a — b exists. Now.
assume ¢ = a — b exists. Suppose a { b and b < a. Then there exists m,, m; € §
such that mgy(a) = 1, my(h) < 1, my{a) < 1 and m,(b) = 1. Note that my(c) = my(b)
and my{c) = 1. Let m = 1/2 my + 1/2m,. Then m(a) = 1/2 + 1/2 m,(a) < 1, m{b) =
1/2 mg(d) + 1/2 << 1 and m(e) = m(b). This last sentence contradicts Lemma 1 (ii}.
Hence a and b are comparable.
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