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An interoal algebra is an interval 段。m zero to some posítive e1ement in a 
partial1y order哩d Abelian group, whích, under the restrictíon of the 草roup
op苦ratíon to the in terval, ís a p在rtiaI algebra. In this paper we study int母rva1
algebras from a categorical point of vi仰. and show that Cart栩栩 products and 
加rizontal sums are 牵贺喜ctíve a毒 categoríca1 products and ∞products，阳pec­
tively. We show that t挝 αtegory of ínterval algebras admits a tensor product, 
and introduce 在 new c1ass of ìnterva1 a1gebras, whìch are in fact orthoa1gebras, 
侬说d x也1gebras.

1. INTRODUCTION 

By an interval algebra, we mean an interγal G气。， u] = 
{geGIO S; g S; u} in a partially order时 Abelian group G, orgaruzed into a 
partial algebra under the partially defined binary operation $ obtained by 
restriction to G气。，吟， of the group operation + on G. The prototype for 
such an algebra is l' +惯，町， where l' is the additive group of self-adjoint 
operators on a Hilbert space. We recall that elements of l' +惯， 1] are called 
笔fJects and that effect-valued m岳asures play an important role in the 
stochastic approach to quantum mechanics (Alí, 1985; Beltrametti and 
Cassinelli, 1981; Prugovecki, 1986; Schro母ck and Foulis, 1990). 

In what follows, we assume the reader is familiar with the mat，母rial in 
Bennett and Foulis (n.d.) and Foulis and Bennett (1994), although, for 
convenience, we shall reproduce some of the basic d垂finitions and results. 
Effect al伊bras are mathematically equivalent to the weak orthoalgebras of 
Giuntini and Greuling (1989) and to the D节。sets of Kôpka and Cho￥anec 
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(n.d.) , Kδ萨ka and Pták (1993) and they are closely related to BZ-posεts 
(Cattaneo and Nistico, 1989). Effi民t algebras in general, and ìnterval 
磊Igebr邵阳 particular, can be regarded as (possibly) unsharp quantum 
logics (Della Chiara and Giuntini, 1989; Giuntini and Greuling, 1989). 

Our main pu晤。岱 in this paper is to show that the Cartesian product 
and horizontal sum of interval algebras are again Înterval algebras, and 
that there is a tensor product in the category of interval algebras. For a 
physical interpretation of sums, Cartesian products, and tensor products of 
quantum logic嚣， s四 Foulis (1989). We also present a number of illustrative 
examples of inte押al algebras and introduce a new class of orthoalgebras 
called x-algebras. 

2. EF亨宽CT ALGEBRAS 

In Foulis and Bennett (1994) an e.ffect algebra is defined to be an 
algebraic sy翠temμ， 0，泣， EÐ) consisting of a set A , two special elements 
0, ueA called the zero and the unit, and a partially defined binary operatìon 
EÐ on A that satìsfies the following conditions for aIl p, q, reA: 

(i) [Commutative Law] If p EÐ q ìs defined, then q EÐ p is defined and 
PEÐq = q EÐp. 

(ii) (Associative Law] If q EÐ r is defined and p EÐ 何 EÐ r) is defined, 
then p EÐ q is defined, (p EÐ q) EÐ r is defined, and 
pEÐ(qEÐ 付出 (p EÐq) EÐr. 

(iii) (Orthosupplement Law] For every peA there exists a unique qeA 
such that p EÐ q is defined and p EÐ q = u. 

(iv) (Zero …Unit Law] If u EÐ p is defined, then p 辑 O.

An effect algebra A is partially ordered by the relation 二 defined by 
p S; q iff there is an reA WÎth p EÐ r = q. The order structure 例，到 ofthe

effect algεbra A is derived from its algebraic structure (A , 0， 泣， EÐ), but not 
vice ver盹There are posets (partially ordered 段时 that can be organized 
into effect algebras in more than one way, and there are posets (even finite 
distributive lattices) that cannot be organìzed into effect algebras at all. If 
A is totally ord号red by 二， it is called a scale algebra. If (A , S;) is 磊 lattice，
we say that A is lattice ordered. 

Let A be an effect algebra and let peA. We define Op = 0 and lp = p. 
More generally, if n is a positive integer and 归一 I)p is defined, we say that 
np is defined iff (n - l)p EÐ p is d错ned, i凶n whìch 饨$衍en哗p 苦田=(机n.啕啕幽蝇蝴呻副蝴

O use 出e not汹ation 口 t怡。 mean e呵qu昭als by d宿检刷J卢!ni必ti，必σn.) τh阳e el告佣mer口1t P i沁s s韶ai诅d t怡
be isotropi，比'c iff p 亨笋毒 o and 2p 拮 p EÐp i沁sd苦finedι. If there is a largest positive 
integer n for which np is defin时， then n is called the isotropic in指X of p. If 
np is defined for all positive integers n, we say that p has infinite isotropic 
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index. An orthoa拉ebra (Benn号tt and Foulis, 1993; Foulis et al., 1992; 
Nevara and pt捻， 1993) may be characterized as an effi时t algebra with no 
isotropic elements. Therefore, Boolean algebras, orthomodular lattices 
(Beran, 1984; Kalmbach, 1983) and or议lomodular posets (Kalmbach) are 
all sp告cial cases of effi忿ct algebras. 

Let A, B, and C be effect algebras with units u, v, and w, respectively. 
A mapping φ:A 叶 B is additive i跤'， whenever p, qeA and p fÐ q is defined 
in A， φ(p) fÐ艇的 is detìned in B and φ(p tÐ q) = 制片fÐ tþ(q). An additive 
mapping 功 :A → B is called a morphism iffφ{吟黯 v. A mapping 
O:A xB叶 C is a bimorphism iff, for all aeA and heB， 负的:A → Cand
O(a,'): B • C are additive mappings and Oi扭， v) = w. 

If K is an Abelian group, a mapping φ:A → K is a K -valued meαsure 
iff, whenever p, qeA and p tÐ q is detìned in A， 争(p 部 q) = φ(辞令 φ(q). A 
mapping 0: A x B • K is a K辙。alued bimeasure i祀 for all aeA and beB, 
。，( • ，的:A 叶 K and O(a,'): B -K are K-valued measures. 

A sub幡e.ffect a智'ebra of an effect algebra A with unit 秘 is a subset S of 
A such that 0, ueS, peS 挣 3reS 飞时ith p fÐ r =u, and p, qeS with 
p tÐ q =s =争 seS. Such a sub-effect algebra S is an effect alg在bra in its own 
right under the restriction to S of fÐ on A. 

3. INTERV AL ALGEBRAS 

If G is an additively-written partially ordered A悦lian group, we 
denote the positive cone in G by G + 1= {g eG 10 三 g} and, if 0 养 uεG+ ， we 
detìne the interoal G叮0， u] .={geGIO s g 三 u}. The interval G气。， u] can 
be organized into an effect alg'母bra (G+[O，吨， 0, u, EÐ) by defining p EÐ q iff 
p + q S u, in which case p EÐ q .= p + q. An effect algebra of the form 
G气。，吟， or isomo辱负ic to such an effi缸t algebra, is called an interoal ejj专ct
algebra or simply an interoal algebra for short (Bennett and Foulis, n.d.). 
We use the notation l今 and IR+ for the standard positive cones in the 
additive groups l of integers and IR of real numbers ordered in the usual 
way. 

The following three theorems are proved in Bennett and Foulis (n.d.). 

Theorem 3.1. A sub-effect algebra of an interval algebra is again an 
interval algebra. 

Theorem 3.2. If A is an interval algebra, there exists a partially 
order琶d Abelian group G and an element 0 笋 u eG + such that: 

(i) A = G气。， u] is an interval algebra. 
(ii) G 拙 G+-G飞i.e. ， G + is a g'吉nerating con号 in G. 
(iii) Eveηelement g e G + has the form g = a j 十 a2 令… + a" for a 

tìnite sequence a! , a2"'" a"eA. 



2122 Fo瞌Iis et 1Ú. 

(iv) Jf K is an Abelian group, then every K精valued measure φ:A →K 
can be extended to a group homomorphism tþ *: G • K 

The partially ordered Abelìan group G in Theorem 3.2, which is 
unique up to an isomorphism, is called the universal group with unit u for 
A. Theorem 3.2 will be our main tool for the study of sums and products 
of interval algebras. 

Theorem 3.3. Eve叮 scale algebra is an interval algebra in a totally 
ordered Abelian group. Furthermore, if G is a totally ordered Abelian 
group， O ￥éueG飞 and every element in G φis a sum of a finite 能quence of 
elements in A.= G +币，叶， then G is the universal group for the scale 
algebra A. 

The universal group provides a natural basis for th在 following nota幡

tion of a multiple of an interval algebra. 

Definition 3.4. Jf G ís the uníversal group 明th unit u for the interval 
algebra A = G +[0， 叫， and if n is a positive integer, we define nA ,= 
G+怡， nu]. 

Lemma 3.5. Let G be the universal group with unit u for the interval 
algebra A = G +[0, u] and let n be a positive int垂ger. Then G is the universal 
group with unit nu for nA. 

Proof. Obvío阴阳， conditions (i)-(iii) ofTheorem 3.2 are satisfied. To 
prove (i吟， suppose K ís an Abelian group and 份:G+[O， nu] → K is a 
k々alued measure. Let 学 :A →K be the restriction of 份 to A = G+[O, u]. 
Then 收 is a K -valued measure on A, so there is a group homomorphism 
较安 G 叶 K 出at extends 收 • IfgenA , th在ngeG飞 and it follows from part 
(iii) of Theorem 3.2 that there is a finite sequence a" 龟，...， ansA such 
that g =乙 ai • Since 0::;; g ::;; nu, ìt follows that g 可I $'句$' . . . $'马，
where $' denotes orthogonal summation in nA. Therefore, tþ(g) 骂 Li 份(a;)
and 俨(g) 黑乙俨(ai ) = 汇， φ扭i) = tþ(后， so 俨 is an extension of tþ to 
G. • 

4. EXAMPLES 

Jn this section, we give several examples of interval alg在bras.τhese
examples wiI1 help to fix ideas and some of them are useful for constructing 
counterexamples. 

Example 4.1. τhe simplest possible interval algebra is 2.= Z +抖， 1] = 
忡， 1}. Note that 2 is the only orthoalgebra that is also a scale algebra and, 
as a poset, 2 is the two-element Boolean algebra. 
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Example 4.2. If n is a positìve ìnteger, we define the n.chain 
Cn ，=n2= 71.吁。， n]. Evidently, Cn is a scale algebra and, by Lemma 3.5, 7l. 
with the usual order is ìts univer础1 group. Every finìte 军cale algebra with 
n 十 I elements is isomorphic to the n.chaìn Cn • 

If r is a posítive integer, we d告fine 7l.' to be the 户fold Carte军ian
product 7l. x 7l. x … x 7l. of the additive Abelian group 7l. wìth itself. The 
standard positive cone 但巧， in 7l.' is understood to be the r也ld Cartesian 
product 7l. + X 7l. + X … x 71.气

Example 4.3. If n" 吧， . . . • n, is a finite sequence of positive integers, 
we define the rectangular trellis 

RT(n" n2 ,... , n,).=(71.+)'[(O, 0,..., 0), (n ., n2 ,..., n,)] 

As a poset, RT柄 ， n2尸. • , n,) forms a finite distributive lattice. We define 
th母 interval algebra 芳，=RT(nl' 町，‘. . , n,) for n, = n2 = . . . = n, = 1. As a 
p阔的， 2' is isomorphic to the Boolean algebra with 2' elements. 

If X is a s叭， we denote by 7l.x the set of all functÎons f: X • Z 
organized into an additive Abelian group under pointwise operations. The 
standard positive cone in 7l.x is understood to be the subset (71. +)X consisting 
of all functions fe 71.x such that f(x) e 71.牛 for all xeX. 

Example 4.4. Let X be a Stone space, i.e叫 a compact, Hausdorff, 
totally disconnected topological spa臼. Let G be th告 subgroup of 7l.x 

consisting of all functions f: X •7l. that are continuous when 7l. is given the 
di军crete topology. Partially order G by the positive cone G + ,= G r. (71.+)K 
and let ueG be the ∞nstant function u(x) = 1 for all x eX. Then G is the 
universal group for the interval algebra G +悍，叶， and the Boolean algebra 
of all compact open subsets M of X is isomorphic as a sublattice to 
G+忡， u] under the mapping M 1-+ XM that carri白 M into the characteristic 
set functíon XM of M. τhus， by Sto挝、 theorem (Stone, 1936), every 
Boolean algebra can be organized into an interval algebra. 

Example 4.5. The standard scale algebra IR +怡， 1] h部 IR， ordered in the 
usual way, as its universal group. A scale algebra is ísomorphic to a 
sub.etfect algebra of IR吁0， 1] itf it has no nonzero elements of infinite 
isotropic index. 

If G and H are partially ordered Abelian groups, the group 
p ,= G x H, partially ordered by the positive cone 

P飞= {(g， 的 eG x HIO 笋 geG+ or (g =0 and heH+)} 

is called the lexicographic product of G and H. If G and H are totally 
ordered, so is their lexicographic product. 

Example 4.6. Let 7l. be ordered by the standard positive cone 7l.+ and 
let p:= 7l. x 7l. be the lexicographic product. Then, in the sc在le algebra 
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A:=户肘，时， ( 1, 0)], every element of the fonn 忡，的， k e Z +, has infìnite 
isotropic index. By τh号。rem 3.3, P Îs the universal group for A. 

Example 4. 文 Let Z be ordered by the standard positive cone Z+，泌t
O 笋 m， n εZ气 let Zm denot母 the additive group of integers modulo m 
partially ordered by the trivial ∞ne (Zm)+ 揣{码， and let P ,=Z x Zm be 
the I就icographic product. We defìne the polychain 01 he怒ht n and width m 
by C，盹m'=P+[(O， 衔，柿， m - 1)]. For m = 2, we defìne the d归mond by 
D口 p+[忡，的，口， 0)]. 丁he diamond D and C2•2 are isomorphic as posets, 
but not as effi悦t alge忧郁， whereas C2•2 and 22 are isomorphic as effect 
algebras. 

The polychains C",m are maìnly useful for constructing counterexamples. 
As a poset, the elements of Cn.m are arranged in n + 1 "Ievels" with 0 alone 
in the bottom level，仰， m - 1) alone in the top level, and m elements in 
each of the n 一 1 additiona1 1evels. Distinct elements in 础.ch 1eve1 are 
in∞mparab1e， whereas every element in each level is le岱 than every 
e1ement in the next higher level. For n ;;:: 3, it can be shown that the 
lexicographically ordered group Z x Zm in Example 4.7 is the universal 
group for Cn .m and Z x Z2 is the univer随1 group for the diamond D; 
howeγer， Z x Z2 is not the universal group for C2•2 • 

Example 4.8. Let .:tf be a Hilbert space and let f be the partially 
ordered real Banach space of all self.幡adjoint operators on .:tf. The interval 
algebra S(.:tf):= f +阳，町， called the standard 写庐ct algebra on .:tf, supp1ies 
much of the motívation for the study of搭机t a1ge bras. If 0 笋 TeS(.:tf)， the 
isotropic index of T is the 1argest positive integer n such that the spectrum 
of T is contained in the interva1 掉， l/n]. ηle sub-effect algebra 1P(.:tf) of 
S(.:tf) consisti吨 of all idempotents in S(.:tf) is th窑 standard quantum logic 
(Piron, 1976). By Theorem 3.1 , IP(矿) is an interval a1gebra. 

5. PROBAB且ITY MEASUR在S

If A is an effect algebra, a morphismω:A →民吨。， 1] is called a 
probability measure on ，生 We denote by n(A) the set of all probability 
m锦sures on A. Evidently, n(A) is a convex subset of the vector space RA 

of all real-valued functions on A. The set of all e茸treme points of a convex 
set A is denoted by ðe å. ln quantum logic (Beltrametti and C部sinelli ，

1981; Greechie and Gudd意儿 1975; Gudder, 1988; Pták and Pulmannová, 
1991), elements ofn(A) are called states and elements of ðen但) are called 
pure states. We say that the effect algebra A admits an order幡determining set 
of probability measures iff, whenever p, qeA and ω(p) 必 ω(q) for all 
ωen(A)， it follows that p ~ q in A. 

The following two theorems are proved in Bennett and Foulis (n.d.). 
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Theorem 5.1. If an effect aIgebra admits an order.determining set of 
probability measures, then it is an intervaI aIgebra. 

Theorem 丘之五very interval algebra admits at least one probability 
measure. 

It can be shown that a scale algebra A admits exactly one probability 
measure ωand that A is a sub-effect algebra of the standard scale algebra 
IR+[O, 1] iff {ω} is an order-determining set of probability mea部res on A. 
In E精mple 4.6, the unique probability m部sureωsatisfies 岱(x， y) = 0 if 
y >0 and ω(x， y) = 1 if y ::;;;: 0, so it fails to be order determining. If n 注 3，

the polychain C,..m in Example 4.7 admits exactly one probability measure 
ωgiven byω怡， y) = x fn; furthermo擂，忡忡 an order-determining 摇 of
probability measures on Cn.m • 

Example 立3. Although the diamond D and the interval algebra 22 are 
isomorphic as posets, O(D) consists of a single probability m副部阳，
whereas 0(22) is affine-isomorphic to the unit interval [0, 1] s;; IR. 

6. PROD盯CTS AND SUMS OF 茸FFECT ALGEBRAS 

Let A and B be effect algebras with units u and v, respectively. The 
Cartesian product A x B can be organized into an effect algebra with 泌it

怡，时 in such a way that 帆 ， b l ) 命(龟， b2 ) is defined in A x B iff a\ EÐ龟 is
defined in A and b, EÐ b2 is defined in B, in which ca军队(肉 ， b\) EÐ(衔， b2 ):= 
(a ， ⑤吨， b\ 告 b2 ). An n.fold Cartesian product A , x A2 X … x A ,.. is 
defined in the obvious way. 

Example 6.1. The r在ctangular trellis RT(叫，叫， ,. .. ,. ，几) in Example 
4.3 is the Cartesian product C"l x C"2 X .刷. X Cnr of the chains 
C,,!, Cn2 ,. . ., C". in Example 4.2. 

If r is a positive integer, w岳飞mderstand that A' is the effect algebra 
obtained by forming the r-fold Cartesian product of A with itself. In 
particular, as a poset, the effect algebra 2' is the finite Boolean algebra with 
2' elements, However, for r 注 2， the Boolean algebra with 2' elements, 
regarded simply as a poset, can always be organized into an effect algebra 
in mo陀 than one way. 

To form the horizontal sum A 十 B of A and B, we begin by relabeling 
the elements of A and B, if neces路巧， so that A n B = 忡， w} , where 
w = u = v. The horizontal sum is then defined to be A + B .= A u B , orga­
nized into an effect algebra in such a way that, for x , yeA + B, x EÐ y is 
defined iff x , y e A or x , yeB, in which case x EÐ y is defined as in A or B, 
respectively. 
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Exαmple 6.2. The diamond D in Example 4.7 is isomorphic to the 
horizontaI sum C2 十 C2 of two 2心hains.

An n-fold horizontaI sum AI + A2 千 . . . + An is de直ned in the obvious 
way. 

Example 6.3. If n is a positive integer，也e effect algebra MO(的 is

defined to be the horizontal sum 22 十 22 十…十 22 of n copies of the 
interval algebra 22

• As a poset, MO(n) forms a finite modular orthocompl在­
mented lattice (Kalmbach, 1983, p. 29). 

Eviden t1y, an effect algebra C with unit w is isomorphic to the 
horizontal sum A + B iff there are morphisms a: A • C, ß:B • C such that 
(i)筑 is an isomorphism of A onto a sub-在ffect alg吉bra 叫A) of C, (ii) ß is 
an isomorphism of B onto a sub-eff机t algebra 阳的 of C, (iii)α(A) (ì 
ß(B) = {O，叫， (i叶剑A) υ ß(B) = C, and (v) if xEa(A) , yE卢(B) ， and x EÐ y 
is defined, then X = 0 or y = O. 

If eπect algebras and their morphisms are organized into a catego巧，
也e Cartesian product is the categorical product and the horizontal sum is 
the categorical coproduct. In this category, the tensor product of effect 
algebras A and B is de往往在d to be an effect algebra A ( B together with a 
bimorphism ( :A x B • A @B such that (i) A (8) B is generated by all 
el告I宫lents of the formα ③ b with aEA and bEB and (ii) if C is any effect 
algebra and 0: A x B • C is a bimorphism, there is a morphism 0': A ③ 
B 叶 C such that 0怡，的= 8'(α ③的 for all aEA , bEB (Bennett and Foul始，
1993). The interoal-algebra tensor product is defined in the same way, but in 
the category of inter￥al algebras. 

If B is a Boolean algebr毡， then A ( B is the Pták sum of A and B 
(F oulis and Pták, n.d.). The tensor product Cn ( Cm of chains is the chain 
Cnm . 

百e do not know of an example of eff社ct a1gebras A and B that fail to 
h盯在 a tensor product. In Dγureèenskìj (n.d.) it is shown that A @B exists 
iff there is a bimorphism with domain A x B. In Section 9 below, we 对lOW
that any two interva1 algebras have an interval-algebra tensor product. We 
do not know whether the interval-a1gebra tensor product of interval 
algebras coincides with their tensor product in the larger category of all 
effect algebras. Re!ated definitions of tensor products can be found in 
Dvureèenskij and Pulmannov在(1 994) and Pulmannov在 (1985). In what 
follows , we consider only the interva1-algebra tensor product. 

7. CARTESIAN PRODUCTS 

For the remainder of this paper， 附 a.ssume that A and B are interval 
algebras with units u and v and that G and H are the universal groups for A 
and B, respectively. 
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Note that A x B is a subset of the Abelian grollp G x H. We organize 
G x H into a partially ordered Abelian group with positive cone G + X H气

Evidently, as an etfect algebra, 

A x B =(G φx H+)[(O, 0), (u, v)] 

so A x B is again an interval algebra. Moreover, we have the following 
reslllt. 

Theorem 大 1. With G 今 x H + as the positive cone, G x H is the 
llniversal group with llnit 怡， v) for A x B. 

Proof. Conditions (i)-(iii) in Th嚣。rem 3.2 are obviollSly satisfied.τo 
V在rify condition (i吟， aSSllme thatφ:A xB → KisaK哼allled measure. The 
mappings 仅 :A → K and fJ: B • K defined by α(a).= φ怡，的 and

fJ(的情争。，的 for aeA, beB are K-val11ed meaSllres; hence, th母y can be 
extended to grollp homomorphisms (X *: G 叶 Kand 俨:H 叫互~ respectively. 
Therefore the mappíng ø *: G x H • K defined by φ气忍的'=(X气的今
F气的 for (g， 的 eG x H is a grOllp homomorphism that extends φ. • 

Example 7.2. By Theorem 7.1 , the rectangular trellis RT(叫，肉， . '" ~ , n,.) 

is an interval algebra and its llniversal grollp is 1.' partíally ordered by the 
standard positive cone (1.+)' and with llnit 帆，町， . .. . , n,.). 

LetQA .={ωeQ(A x B)Iω(0，吵 =O} ， Qs'={ωeQ(A x B)Iω(u， 的 =O}.
If ωeQA and (α， b)eA x B, then (0, b) 五 (0，吟， so ro(O, b) = 0, and it 
follows that 

ω(a， b) = ω(怡，的 $(0， b)) ω(a， 的十 ω(0， b) = ω怡，的

Likewise, for ωεQs， ω(矶的 zω(0，的.
The mapping μH向 from 副局 toα(A x B) given by J1.A怡， b) 皿反功

for all 怡，的 eA x B is an affine i嚣。morphism of Q(A) onto QA ~ ß(A x B). 
Likewise, the mappíng V 1-+ Vs from Q(B) to Q(A x B) given by 
Vs(α，掉= v(的 for all 怡，坊 εA x B is an a值ne isomorphísm of Q(B) onto 
QB ~ Q(A x B). ThllS, i往往le sense of the followíng theorem, Q(A x B) may 
be regarded as th号 "convex hllll" of Q(A) and Q(B). 

Theorem 7.3. If Q(A), Q(B) 笋 o and ωεQ(A x B), there is a uniqlle 
te lR+ 段， 1] and there are probability weíght窑 μεQ(A) and veQ(B) sllch 
that ω =tμA + (1 … t)VB' 

Proof. We may aSSllme thatω ~QA uQs , so that ro(O，吟， ω仙， 0) 笋 O.
Let t 阳 ω(u， O). Sinceω(0， v) + ω(缸， 0) =ω(u， 吟= 1, we have 1 一 t=
ω(0， v). 在vidently， μ :A 帽-φIR+[O， 1] defined by μ(a).= ω扭， 0)lt for 
all aeA is a probabi1ity meaSllre on A. Likewise, v: B → IR可0， 1] 
defined by v(b).= ω(0， b)/(I … t) for all b e B is a probability m在aSllre on B. 
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Furthen钱。f哇，

(tμA 十(I… t)vß)(a， 的 =tμ(的十(1 - t)v(的

=ω仙， 0) +ω(0， b) 

zω怡，的

F oulis et 111. 

Conv号rsely， ifω lJ.l.A + (1 - t)vß, thenω仙， 0) 硝 tμ(均嚣 t， so t is 
uniquely determined. 黯

Evidently, if !l(B) 坦白， then !l(A x B) =!lA and, if !l(A) = ø , then 
!l(A x B) = !lß. Of course, !l(A x B) = ø i仔!lA =!lß = 臼.

Corollary 7.4. ðe !l(A x B) 埠。e !lA ûðe !ljJ' 

Example 立主Becaus在 a chain Cn admits only one probability measure, 
Corollary 7.4 implies that the space of probability measures on 
RT(n lo 吨 ， . . . , nr ) has exactly r extreme points. 

8. HORIZONTAL SUMS 

The universal group of a horizontal sum of interval algebras is 
constructed from the quotient group of a direct product, and the following 
observation on ordering quotient groups will be used in that construction. 
If U is a subgroup of the partially ordered Abelian group G and 
UnGφ={时， then G j U can be organized into a partially ordered Abelian 
group with (GjU)华拙 G+ jU. Indeed, G+ jU is closed under addition, and 
if gl 十 U= -g2+ U with gl ， g2εG飞 then g! + g2e U n G + = {O}; thus 
gl = -g2> so 出at G叮Un …(G + I U) is the zero element of G / H. 

Let U be the cyclic subgroup of G x H generated by 衍，一吟， let 
Q 骂骂 (G x H)jU, and let 1'/: G x X • Q be the canonical epimorphism. Thus, 
for ne7f., geG, heH, we have 

句(g， h) = 符(g 十 nu， h - nv) 

Because U n(G+ x H可黯枉。，。汁， it follows that Q can be organized 
into a partially ordered group with Q + 川等(G+ x H叮 as a generating 
positive cone. Evidently w出η仙， 0) = l1{O，吟 is a nonzero element of Q\ 
every element in Q + is a sum of a sequence of elements in the interval 
Q +[0, w] , and Q + generates Q. 

Define a: A → Q吨。， w] and ß: B 叶 Q+抖， w] by a(a) = η怡， 0) and 
ß(b) 骂叭。，的 for all aeA, beB. Thus, 优 and ß are e疗ecωt.ω"翩4创翩嗡叫ω@创.a剖.a剖a刽1gebr览a is始omor卜幽

p抖hi岱sms of A and B onto sub-心
Q+[抖0， w]. 
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Theorem 8.1. With the notation above, Q+[O, w] = 1X(A) 十 fJ(B) and, 
with w 部 the unit, Q is the universal group for the horizontal sum 
叫A) + fJ(B). 

Proof Suppose l1(g， 的 e iX(A) 内战的. Then there are elements aeA, 
beB, and m, ne 7L such that a 踹 g + nu, h = nv, g = - mu, and b = h - mv. 
Therefore， α =(n … m)u and b 踹仙一 m)v. Since 0 ~ a ~ u, it follows that 
n …m =0 or n-m 踹 1 ， and so l1(g， 的骂骂 o or l1(g, h) = w. Therefore, 
α(A) n fJ(B) = {O, w}. 

Suppose qeQ+[O，叫. Sinω qeQ飞 there exists geG+ and heH+ 
with q = l1(g， 的. Since w … l1(g， 的 eQ +, there is an integer n such that 
o ~ g ~ (n + l)u in G and 0 ~ h ~ -nv in H. Therefore, n = 0 and 
q ::: l1(g, h) e 1X(A) or else n = …1 and q 口句(g， h)e fJ(b). Consequent1y, 
Q+[O, w] = α(A) u fJ(B). 

Suppose aeA, beB, andα(a) + 目的 eQ气。，咐， that is, w 一句扭，的 e
Q +. Then there is an integer n such that 0 ~ a ~ (n + l)u in G and 
O~b 豆 -nv in H , and it follows that ne柿，一斗， so that b = 0 or a = O. 
Therefore, Q +[0, w] is the horizontal sum of its sub-effect algebras iX(A) 
and fJ(B). 

Let 争:Q气。， w] 叶 Kbea K精valued measure. To complete the proof, 
we only have to 甜ow that 争 can be extended to a group homomorphism 
φ二 g 叶点The K剿valued m锦黯restþ 。怨:A 叶 Kand φ " fJ: B 叶 K can be 
extended to group homomorphisms 忡。哈*:G →K and 怜。 p户:

H→K. τhe group homomorphi黯1 ç: G x H叶K defined by ç(g， 均=
〈φ 。吟气g) 十 {φ " fJ)*(均 sati始部 th念 condition ç位，…v) 惧。， so thereεxists 
a group homomorphismφ拿: Q -+ K such that tþ 怠。号需 ç. For ae毛A

φ 拿气〈忽(a)) 黠 φ 拿气〈污〈αa， O)) = ç( αa， O) 辄 (tþ 。 筷吟)*(a) = tþ<筷(a))) 
and likewise， φ气声(b)) 础。伊拉)). Because Q气。， w] = α(A) u fJ(B), it fol­
lows thatφ* is an extension of φ 黯

We omit the straightforward proof of the following theorem. 

Theorem 8.2. If !l(A), !l(B) 笋臼， the mapping φ: 刷刷 x O(树叶
O(A + B) given by φ巾， v)(x) = μ.(x) for xeA and φ(μ， v)(x) = v(x) for xeB 
is an a菌ne isomorphism of O(A) x O(B) onto O(A 牛 B) and (þ maps 
ðeO(A) x ðeO(B) onto ðeO(A u B). 

As a consequence of Theorem 8.2, a horizontal sum of polychains of 
height three or more admits only one probabi1ity measure. 

In the next theorem, we illustrate the use of Theorem 8.1 by comput­
ing the universal group of the horizontal sum C" + Cm of two chains. We 
denote the additive group of integers modulo d by 7L,J> with the understand唰
ing that 7L. = {的， and we denote the canonical epimo叩hism 7L.呻 7Ld by ð. 
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Theorem 8.3. Let n, m be positive integers, let d be the greatest common 
divisor of n and m and let h and k be integers such that hn 十 km=d.
Let J ,= 71.. X 71..d and J + 口 {(mx/d + ny/d, ð(hx - ky))衍， y)e 71..+x 71..寸­
Th母n J is partiaIIy ordered by the cone J+ and, with w口 (nm/d， ð(的)eJ气
J is the universal group for J啊， w]. Furthermore, the mappings 
cx: CII 叫 J+罚，叶 and ß: Cm →J+[O， 叫 given by cx(x).= (mx/d, ð(hx)) and 
ß(y) 阳 (ny/d， ð( -ky)) for xeCn = 71..气。， n] and yeCm = 71.. +[0, mJ are 
effect-algebra isomorphisms of Cn and Cm onto sub-effect alg'在bras 程(Cn ) and 
ß(Cm ) of J-轩 [0 ， wJ. AIso, J+[O， 叶带领Cn) 千卢(Cm).

Proof We sketch the proof, leaving the details to the interested 
reader. The mapping '1': 71.. x 71.. 叶 J defined for (x, y) e 71.. x 71.. by 
甲怡， y):= (mx /d + ny /d, ð(hx - ky)) is a group epimorphism and ker( 'I') is 
the cyclic subgroup U of 71.. x 71.. generated by 衍，…m). Therefore, if 
句 :71.. x 71.. 叶 Q 山 (71.. x 71..)/U is the canonical epimorphism, there is a group 
isomorphism 乙 :Q • J such that ç何仪， y)) = '1'衍， y). Using the isomo俨
phism ç, w在 obtaìn the present theorem directly from Theorem 8.1. • 

As a corollary of Theorem 8.3, we note that if n and m are relatively 
prime, then the universal group of C" 十 Cm is isomorphicω J:= 71.. with the 
∞E出andard cone J+.= {mx + nylx, y e 71..+} and with the unit w.叫悦
Under this isomorphism, Cn corr穹sponds to {mxlx εCn } and Cm corre­
革ponds to {nylyeCm }. 

Example 8.4. Using Theorem 8.1 and math告matical induction on n, it 
can be 位。wn that M。但) in Example 6.3 can be realized as G可0，叫，
where G = 71..n + " u'= 抖， 1, 1, .. . , 1), the 2n + 2 elements of MO(n) are 
0, u, the n elements a, .=(1, 0, 0, 0, . . . , 0) , a2'皿杠， 1, 0, 0,. . .，白，
向南( 1, 1, 1, 0, . . . ，哟， . . . ， an 口 (1， 1 ， 1 ， 1 ，...， 1 ，时， and n more elements 
of the form bl ,= u - al for i = 1, 2, . . . , n. Here G + is the subcone of the 
standard positive cone (71.. +γ+ 1 consìsting of all nonnegative-integer linear 
combinations of a] ， 衔，.... ，仇，鸟，屿， . . . , and bn • 

The interval algebra MO(n) in Example 8.4 is the quantumlogic 
af窑汪ated with measurements of the spin component in n diffi号rent directions 
of a spin-1/2 particle, and MO(n) @MO(n) is the quantum logic for the 
anticorrelated spin experiments used to test the BeII inequalities (KI街，
1988). Using the result of Example 8.4 and Theorem 9.1 in the next section, 
we can compute the uniγersal group of MO切)@MO(n).

9. TENSOR PRODUCTS 

The tensor product G @ H of the Abelian groups G and H can be 
organized into a partially ordered Abelian group with positiγe cone 
(G @H)+ consisting of all sums of finite sequences of pure tensors of the 
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fonn g ( h with geG+ and heH+ (G∞dearl and Handleman; 1986, 
Proposition 2.1). 

Theorem 9.1. Wi th (G 部 H) + defined as above: 
(i) IfμeO(A) and veO(B), there is a group homomorphism 

σ:G@H→ IR such thatσ但@的捕时。)蜒的 for all aeA 措

G+[O， 吟， beB = H+[O， 和!].

(ii) 0 笋忽命ve(G@H) 飞
(iii) (H @ H) + is a generating cone in G @ H. 
(iv) Every element in (G ⑧Hγis the sum of a finite sequence of 

pure tensors a ( be(G@H)+[O, u@v] for aeA , beB. 
(v) As an effect algebra, (G@H)+[O， 就③ v] is generat在d 如y all pure 

tensors of the fonn a ( b, with aeA , beB. 
(vi) If K is an Abelian group and (): A x B 叶K is a K峭valued

bimeasure, there exists a group homomorphism 俨:G@H 叶K
such that () *但@的=()位， b) for all aeA , beB. 

(vii) With the mapping A x B →(G@H)+忡， u@v) given by 
怡，的问 a ( b as the canonical bimorphism, (G @ H) + (0, U 命 v)

is the interval心Igebra tensor product of the interval algebras A 
and B. 

(viii) G ( H is the universal group for the intξrval algebra 
(G (8) H) +[0, U ( v]. 

Proof. (i) Let μ刷刷， veO(码箱 Becaus在 G and H are the universal 
groups for A and B, we can ext在ndμ&然d v to group homomorphisms 
μ *:G 叶 IR and v*: H→盹 Sínce the mapping G x H叶 IR given by 
怡， h) t--+ μ气g)v气的 is a group bihomomorphism, there exists a group 
homomorphism 0': G (8) H • IR such thatσ(g (8)份 =μ气g)v气均 for all 
geG, heH. 

(ii) By Bennett and Foulis (n.d.)，节leorem 6.7, there are probability 
measuresμeO(A)， v eO(B) with μ(叶=叫吟带l. Letσbe the corresponding 
group homomorphism as in (i). Then σ(u (8) v) = μ(u)v(v) 骂 1 ， so u 命 v 养 O.

(iii) If geG, and h eH, we can write g = g\ - gz and h = h\ 一鸟， with 
g\ ， gzεG+ and 鸟 ， hzεH\ and it follows that 

g (8) h 坦坦 (g\ ⑧ h ， +gz⑧ h2) … (g\ ③ hz 十 gz③hd ε(G 命 H)+ 一 (G@Hγ

Since eve叩 element in G ( H is a sum of pure tensors g @h, it follows that 
(G ( H) + is a generating cone for G ( H. 

(iv) If aeA , b eB, then O!:> a !:> u in B and O!:> b !:> v in H , so 
O::;;a ( b::;; u ( v in G (8) H. If g e G + and h e H飞 then g 骂 L， IJ， and 
h 器乙鸟 for αjeA and bjeB, and it follows that g (8) h = 汇i 乙 a， ③ bj with 
αi (8) bj e(G (8) Hγ[0， u ③叶.
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(v) If t ε(G (8) H)+[O， u ③叶， then t = 'I,; aj (8) bi with aieA , bjeB by 
(iv) and, since 豆议③ v， we have t 拮 EÐiai ③ bi in the interval effect 
algebra (G ③Hγ忡， u ( v]. 

(vi) S出 Foulis and Bennett (1994), Theorem 9.4. 
(vii) By (吟，但③Hγ[0， u ( v] is generated as an e他ct algebra by all 

a ③b， 。 εA ， b e B. Suppose 出at C is an interval algebra with unit w and 
universal group K, and let 8: A x B 叶 C be a bimorphism. Then 
8:A x B • K is a bimeasure, so it induces a group homomorphism 
俨:G (8) H →K as in (vi). We have 俨(u ③吵 = 8(u, v) = w and, by (i吟， 8*

maps (G (8) H) + into K \so the restriction of 8* to the interval 
(G (8) Hγ [0， u (8) v] provides 在 morphism 8': (G ③ H)+忡， u ③ v] 叶

K+币， w] = C such that 8怡，抖嚣。'但③的 for all aeA , beB. 
(viii) Letφ: (G (8) H) +[0, U ( v] • K be a K-valued measure.τhe 

mapping 8: A x B • K given by 8怡，的 :=lþ(α ③ b) for aeA , beB is a 
K-valued bimeasure, so, by (vi), there exists a group homomorphism 
φ*: G ③H 叶 Ksuch that 份 *(a ③ b) 擂。但， b) = lþ伊③的 for all aeA , beB, 
and it follows from (v) thatφ* is an extension of q鸟. Therefore, by 
Theorem 3.2, G ( H is the universal group for (G ③Hγ[0， u ③ v]. 黯

10. l唰ALGEBRAS

Cartesian products, horizontal sums, and tensor products have pe卜
spicuous interpretations in quantum logic (Foulis, 1989). For instance, M. 
Kl革y (1988) has made effectiv在 use of MO(2) ③ MO(苟 to study the Bohm 
version of the 主PR Gedankenexperiment. This suggests that the following 
problem warrants consideration: 

The CHT Problem. Given a class CC of effect algebras, characterize the 
class CHT(CC) consisting of the effect algebras in 管 and all effect algebras 
that can be obtained from these algebras by iteratively forming finite 
Cartesian products (C), horizontal sums (H), and tensor products (丁).

For a more general CHT problem, the word "在nite" may be omitted. 
If only Cartesian products and horizontal sums are allowed, the 

corre晤。nding "CH" problem was solved for CC = {2} by Dacey (1 968). 

Dacey's CH(2) Theorem. An interval algebra A can be obtained 
starting WÌth copies of 2 and iteratively forming finite Cartesian products 
and horizontal sums iff A is a finite orthomodular lattice and there do not 
exist four distinct atoms α， b ， c, and din A such that a Ej3 b, b EÐc, and c EÐd 
are defined and a EÐ c, b EÐ d, and a EÐ d are not defined. 

In this section, we make a modest start on the problem of characteriz唰
ing CHT(2) by singling out a class of fin Îte interval algebras that contains 
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1 and is closed und悲r the formation of finìte Cartesian produc毯， horizontal 
sums, and interval心1gebra tensor products. 

If X is a nonempty set and M s:: X , the characteristic set function 
XM:X→怜， l} s:: 7L is defined 部 usual by XM(功:= 1 if xeM and XM(对，=0
if xeX\ M. If the group 7Lx is partially ordered by the standard posìtive 
cone 仪+严， then the interval algebra 仪+)X[O， XX] ∞nsists of all the 
characteristic set functions XM for M s:: X; hence, as a pos锐， it is isomor幡
phic to the power set of X. We refer to Xx as the standard unit in the group 
7Lx . 

D吃finition 10.1. An interval algebra A is called a x-algebra over X iff 
the universal group of A is G ,= 7Lx, th号 positive cone of G is contained in 
(7L叮x， and the unìt is u;出 XX'

By the following lemma, every element ofax-algebra over X is a 
characteristic set function for a subset of X, so x-algebras are closely 
related to the concrete logi岱 of Pták and Pulmannová (1 991 , p. 2). 

Lemma 10.2. Let X be a nonempty set, let G := 7Lx be partially ordered 
by a positive cone G\let u = XxeG be the standard un扰， and suppo指出at
G ìs the universal group with unit 说 for G+[O， u]. ηle注 G+ s:: (7L +)X ì佼
G + [0, u] consists only of characteristic set functions. 

Proof. If G + s:: (7L +严， geG+[O, u], and xeX, then g(功 e7L+ and 
u(x) - g(x) 揣 l-g(x)e 7L\so 反对 is either zero or one. Conversely，汪
古very function g E G +仰， u] takes on only the values zero and one, then 
G气。， u] S::(7L叮x and, sínce every element in G + is a sum of a finite 
sequence of elements of G + [0，叶， it follows that G 中 g 但÷俨. • 

Ifwe say that A is a x-algebra, we mean that ìt ìs (or is isomorphic to) 
a x-algebra over some nonempty set X. As an obvious consequence of 
Lemma 10.2, a x-algebra cannot ∞ntain any isotropic elements, and 
ther功fore every x-algebra is an orthoalgebra. 

By Example 4.3, l' is a x-algebra over X:= 杠， 2, 3, . . . , r} and，如y
Example 8.4, MO机) is a X -algebra over X:= {1, 2, . . . , n + 1}. Sínce the 
universal group ofax-algebra must be torsion-free, the polychains of 
height three or more and the diamond in Example 4.7 give examples of 
interval algebras that are not x-algebras. 

Lemma 10.3. If A and B are x-algebras, so are A x B and A + B. 

Proof. Let A = G +怡， u], B == H+[O, v] , G = 7Lx, H = 7L Y, G+ s:: 
(Z+)X, and H+ s:: (主+) Y, with standard units u and v, and suppose that G, 
H are the universal groups for A, B , respectively. Without loss of general­
ity, we may assume that X n Y 嚣妇， so that, in what follows, we can make 
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the canonical identification of G x H = 7Lx x with 7LXu Y by regarding 
an ordered pair (g， 的 εG x H as the functìon on X v Y defined by 
(g， 的(x) = g(x) for x EX and (g， 的(y) 坦 h( y) for y E Y. Note that 怡， v) is 
then the standard unit in 7LXuY and (g, h)E( 7L叮Xu Y iff gE( 7L +)X and 
hE( 7L +)Y. Therefore, A x B is a x-algebra by Theorem 7. 1. 

Let U be the cyclic subgroup of G x H generated by 仙，… v) and let 
句 : 7L Xu Y• Q.= 7L Xu Y/U be the canonical epimorphism. Choose and fix 
aEX, bEY, let Z ,=Xv Y \ {b} , R .=7L气 and define the epimorphism 
1l>:7LXuY • R by 
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Since ker( ll>) = U, there is an ìsomorphism φ:Q 叶 R such that cþ 。可=也

飞Jnder this isomorphism, wξidentify the universal group Q in Theorem 8.1 
with 1号， noting that the unit in R is th在 standard unit. If either g is a 
characteristìc set function and h 瑞 o or g 0 and h is a characteristic set 
function, thenφ(g， 均 is a characteristic set function; hence, by Lemma 
10.2, R+ ，= φ(Q+) s;;(7L+)Z, and it follows that A 十 B is a x-a1gebra. • 

1f A is a x-algebra over a finite set X = {鸟，岛， . . . , x" }, it is clear 
from Lemma 10.2 that A can contaìn at most 2" elements. Conversely, if A 
is afiníte x-algebra over X , then the group 7L x has a finite set of generators, 
namely A; hence, it has 负nite rank, so X is a finite set. 

Lemma 10.4. If A and B are finite x-algebras, then so is the ínterval­
algebra tensor product A φ B. 

Proof We use the same notation as ìn the proof of Lemma 10.3, but 
assume that X and Y 町e 负nite sets. Then there is a canonical isomorphísm 
功:G@H→ S.= 7LXx Y such that, for gEG, hEH, XEX and y ε Y， we have 
科g@h)衍，对 = g(X)h(Y)E 7L. Note that 政协@吟 is the standard unit in S 
and that, if g and h are charact在ristic set functions, so isψ(g， h). Therefore, 
by Theorem 9.1 and Lemma 10.2, S+[O, tþ(u@v)] is e的ctive 在s the 
unìversal group for an ìsomorphic copy of A @B and S+ is contained in 
the standard positive cone (7L +)XX Y. • 

Example 10.5. Let G山 7L4 be partially ordered by th号 cone
G+ ,= {(x, y, Z， 叫 E( 7L +)4Ix 十 y 十 Z 运 w}. τhen the x-a1gebra A := 

G+[(O, 0， 0，町，仆， 1, 1, 1)], which contains exactly 14 elements, ìs the 
smallest proper orthoalgebra, ì.e., the smallest orthoalgebra that is not 栩
orthomodular poset. 1t is the logic of the Wright triangle (Foulis et al吁
1992, Example 2.13) and it do~s not belong to CHT(2). There are exact1y 
five elements of ðAO(A)), four of which are given by the restrictìons to A 
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of the projection mappings 1tx ， 沈V' πρ 1tw on Z4. The 在fth is the restriction 

to A of ~(1tx + 几十 πz 一元"，) corresponding to the condition x + y 今 Z 注 w
that determin军sG飞

By Lemmas 10.3 and 10.4, every effect algebra in CHτ(2) is a finite 

x-algebra; hence, it is an orthoalgebra. However, by Example 10.5, there 

are finÎte x心1gebras that are not in CHτ(匀， so the problem of characteriz­

ing CHT( 2) remains open. 
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