International Journal of Theoretical Physics, Vol. 33, No. 11, 1994

Sums and Products of Interval Algebras

D. J. Foulis,! R. J. Greechie,> and M. K. Bennett'

Received August 17, 1994

An interval algebra is an interval from zero to some positive clement in a
partially ordered Abelian group, which, under the restriction of the group
operation to the interval, is a partial algebra. In this paper we study interval
algebras from a categorical point of view, and show that Cartesian products and
horizontal sums are effective as categorical products and coproducts, respec-
tively. We show that the category of interval algebras admits a tensor product,
and introduce a new class of interval algebras, which are in fact orthoalgebras,
called x-algebras.

1. INTRODUCTION

By an interval algebra, we mean an interval G*[0,u]l =
{geG|0 < g <u} in a partially ordered Abelian group G, organized into a
partial algebra under the partially defined binary operation @ obtained by
restriction to G {0, 4], of the group operation + on G. The prototype for
such an algebra is ¥"*[0, 1], where ¥~ is the additive group of self-adjoint
operators on a Hilbert space. We recall that elements of ¥~ *[0, 1] are called
effects and that effect-valued measures play an important role in the
stochastic approach to quantum mechanics (Ali, 1985; Beltrametti and
Cassinelli, 1981; Prugovecki, 1986; Schroeck and Foulis, 1990).

In what follows, we assume the reader is familiar with the material in
Bennett and Foulis (n.d.) and Foulis and Bennett (1994), although, for
convenience, we shall reproduce some of the basic definitions and results.
Effect algebras are mathematically equivalent to the weak orthoalgebras of
Giuntini and Greuling (1989) and to the D-posets of Képka and Chovanec
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(nd.), Kdpka and Ptdk (1993) and they are closely related to BZ-posets
(Cattaneo and Nistico, 1989). Effect algebras in general, and interval
algebras in particular, can be regarded as (possibly) unsharp quantum
logics (Della Chiara and Giuntini, 1989; Giuntini and Greuling, 1989).

Our main purpose in this paper is to show that the Cartesian product
and horizontal sum of interval algebras are again interval algebras, and
that there is a tensor product in the category of interval algebras. For a
physical interpretation of sums, Cartesian products, and tensor products of
quantum logics, see Foulis (1989). We also present a number of illustrative
examples of interval algebras and introduce a new class of orthoalgebras
called y-algebras.

2. EFFECT ALGEBRAS

In Foulis and Bennett (1994) an effect algebra is defined to be an
algebraic system (A4, 0, 4, @) consisting of a set 4, two special elements
0, ue A called the zero and the unit, and a partially defined binary operation
@ on A that satisfies the following conditions for all p, q, re4:

(1) [Commurative Law] If p @ q is defined, then g @ p is defined and
POg=qDp. ‘

(ii) [Associative Law] If q@®r is defined and p ® (g D r) is defined,
then p&®gq is defined, (pDg @®r is defined, and
P& =(p@9SDr.

(iii) [Orthosupplement Law] For every peA there exists a unique ge 4
such that p@q is defined and p G g =w.

(iv) [Zero—Unit Law] If u @ p is defined, then p =0.

An effect algebra A4 is partially ordered by the relation < defined by
p < q iff there is an re 4 with p @ r = g. The order structure (4, <) of the
effect algebra A is derived from its algebraic structure (4, 0, v, @), but not
vice versa. There are posets (partially ordered sets) that can be organized
into effect algebras in more than one way, and there are posets (even finite
distributive lattices) that cannot be organized into effect algebras at all. If
A is totally ordered by <, it is called a scale algebra. If (4, <) is a lattice,
we say that A4 is lattice ordered.

Let 4 be an effect algebra and let pe4. We define 0p =0 and lp =p.
More generally, if n is a positive integer and (n — 1)p is defined, we say that
np is defined iff (n — 1)p @ p is defined, in which case np=(n — 1) @ p. (We
use the notation = to mean equals by definition.) The element p is said to
be isotropic iff p #0 and 2p = p @ p is defined. If there is a largest positive
integer n for which np is defined, then n is called the isotropic index of p. If
np is defined for all positive integers n, we say that p has infinite isotropic
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index. An orthoalgebra (Bennett and Foulis, 1993; Foulis et al., 1992;
Nevara and Ptak, 1993) may be characterized as an effect algebra with no
isotropic elements. Therefore, Boolean algebras, orthomodular lattices
(Beran, 1984; Kalmbach, 1983) and orthomodular posets (Kalmbach) are
all special cases of effect algebras.

Let 4, B, and C be effect algebras with units «, v, and w, respectively.
A mapping ¢: A — B is additive iff, whenever p, g4 and p @ ¢ is defined
in 4, ¢(p) D ¢(q) is defined in B and ¢(p @ q) = ¢(p) ® ¢(g). An additive
mapping ¢: A—B is called a morphism ff ¢(u)=v. A mapping
8: 4 x B-»C is a bimorphism iff, for all ae 4 and heB, 8( - ,b): A - C and
&a, - ). B— C are additive mappings and 8(u, v) =w

If K is an Abelian group, a mapping ¢: 4 — K is a K-valued measure
iff, whenever p, geA4 and p @ q is defined in 4, ¢(p ® q) = d(p) + ¢(g). A
mapping 8: A x B— K is a K-palued bimeasure iff, for all ae A and beB,
8(-,b): A=K and 8(q, - ): B— K are K-valued measures.
_ A sub-effect algebra of an effect algebra A with unit « is a subset S of
A such that O,ueS, peS =3reS with p@®r=u, and p,geS with
p B gq =5 = seS. Such a sub-effect algebra S is an effect algebra in its own
right under the restriction to S of @ on 4.

3. INTERVAL ALGEBRAS

If G is an additively-written partially ordered Abelian group, we
denote the positive cone in G by G*:={geG|0<g} and, if 0 #uecG™*, we
define the interval G*[0, u] == {geG|0 < g < u}. The interval G*[0, 4] can
be organized into an eﬂ'ect algebra (G*[0, 4}, 0, u, @) by defining p D q iff
p+qSu in which case p@Bg:=p +g. An effect algebra of the form
G *{0, 4], or isomorphic to such an effect algebra, is called an interval effect
algebra or simply an interval algebra for short (Bennett and Foulis, nd.).
We use the notation Z* and R* for the standard positive cones in the
additive groups Z of integers and R of real numbers ordered in the usual
way.

The following three theorems are proved in Bennett and Foulis (n.d.).

Theorem 3.1. A sub-effect algebra of an interval algebra is again an
interval algebra.

Theorem 3.2 If A is an interval algebra, there exists a partially
ordered Abelian group G and an element 0 # ueG* such that:

(i) 4 =G™*[0, 4] is an interval algebra.
(ii) G=G*—G*, ie, G* is a generating cone in G,
(iit) Every element geG* has the form g=a,+a,+ - +a, for a
finite sequence a,, a,,...,a,€A4.
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(iv) If K is an Abelian group, then every K-valued measure ¢: 4 - K
can be extended to a group homomorphism ¢*: G — K.

The partially ordered Abelian group G in Theorem 3.2, which is
unique up to an isomorphism, is called the wniversal group with unit u for
A. Theorem 3.2 will be our main tool for the study of sums and products
of interval algebras.

Theorem 3.3. Every scale algebra is an interval algebra in a totally
ordered Abelian group. Furthermore, if G is a totally ordered Abelian
group, 0 # weG ™, and every element in G * is a sum of a finite sequence of
elements in A:=G*[0, u], then G is the universal group for the scale
algebra A.

The universal group provides a natural basis for the following nota- -
tion of a multiple of an interval algebra.

Definition 3.4. If G is the universal group with unit « for the interval
algebra A =G *[0,u], and if n is a positive integer, we define nd =
G [0, nu).

Lemma 3.5. Let G be the universal group with unit « for the interval
algebra A = G *[0, u] and let n be a positive integer. Then G is the universal
group with unit nu for nd.

Proof. Obviously, conditions (i) —(iii) of Theorem 3.2 are satisfied. To
prove (iv), suppose K is an Abelian group and ¢: G*[0,nu] > K is a
K-valued measure. Let §: 4 — K be the restriction of ¢ to 4 = G *[0, u].
Then ¢ is a K-valued measure on A4, so there is a group homomorphism
Y *: G — K that extends y. If gend, then geG™, and it follows from part
(iii) of Theorem 3.2 that there is a finite sequence a,,d,,...,a,€4 such
that g =Y, 4, Since 0< g Sy, it follows that g=a, D' ¢, @' - - @’ a,,
where @’ denotes orthogonal summation in nA4. Therefore, ¢(g) = Zi Pla;)
and Y*(g) =Y, ¥*a) =3, @) = ¢(g), so Y* is an extension of ¢ to
G. m

4. EXAMPLES

In this section, we give several examples of interval algebras. These
examples will help to fix ideas and some of them are useful for constructing
counterexamples.

Example 4.1. The simplest possible interval algebra is 2:=27{0, 1] =
{0, 1}. Note that 2 is the only orthoalgebra that is also a scale algebra and,
as a poset, 2 is the two-element Boolean algebra.



Sums and Products of Interval Algebras 2123

Example 4.2. If n is a positive integer, we define the n-chain
C,:=n2=Z*{0, n]. Evidently, C, is a scale algebra and, by Lemma 3.5, Z
with the usual order is its universal group. Every finite scale algebra with
n + 1 elements is isomorphic to the n-chain C,.

If r is a positive integer, we define Z" to be the r-fold Cartesian
product Z x Z x - - - x Z of the additive Abelian group Z with itself. The
standard positive cone {(Z*)" in Z" is understood to be the r-fold Cartesian
product Z* x Z* x -+ x Z™.

Example 4.3. If n,,n,,...,n, is a finite sequence of positive integers,
we define the rectangular trellis

RT(n,, 0y, ..., 0):=(Z"Y{(0,0,...,0),(n,n,,...,n)]

As a poset, RT(n;, n,, ..., n,) forms a finite distributive lattice. We define
the interval algebra 2":==RT(n,,n,,...,n)forn =n=---=n =1 Asa
poset, 2° is isomorphic to the Boolean algebra with 27 elements.

If X is a set, we denote by Z¥ the set of all functions f: X —»Z
organized into an additive Abelian group under pointwise operations. The
standard positive cone in Z* is understood to be the subset (Z*)* consisting
of all functions feZ* such that f{x)eZ™* for all xeX.

Example 4.4. Let X be a Stone space, i.e., a compact, Hausdorff,
totally disconnected topological space. Let G be the subgroup of Z*
consisting of all functions /> X — Z that are continuous when Z is given the
discrete topology. Partially order G by the positive cone G+ =G n(Z*)¥
and let u€G be the constant function u(x) = 1 for all xeX. Then G is the
universal group for the interval algebra G *[0, u], and the Boolean algebra
of all compact open subsets M of X is isomorphic as a sublattice to
G *[0, u] under the mapping M +» z,, that carries M into the characteristic
set function y, of M. Thus, by Stone’s theorem (Stone, 1936), every
Boolean algebra can be organized into an interval algebra.

Example 4.5. The standard scale algebra R*[0, 1] has R, ordered in the
usual way, as its universal group. A scale algebra is isomorphic to a
sub-effect algebra of R*{0, 1] iff it has no nonzero elements of infinite
isotropic index.

If G and H are partially ordered Abelian groups, the group
P:=(G x H, partially ordered by the positive cone

P*:={(g, h)eG x HI0 #geG* or (g =0 and heH*)}

is called the lexicographic product of G and H. If G and H are totally
ordered, so is their lexicographic product.

Example 4.6. Let Z be ordered by the standard positive cone Z* and
let P:==Z x Z_be the lexicographic product. Then, in the scale algebra
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A=P*[(0,0), (1, 0)], every element of the form (0, k), keZ™, has infinite
isotropic index. By Theorem 3.3, P is the universal group for 4.

Example 4.7. Let Z be ordered by the standard positive cone Z*, let
0#m,neZ*, let Z, denote the additive group of integers modulo m
partially ordered by the trivial cone (Z,)* = {0}, and let P:=Z x Z,, be
the lexicographic product. We define the polychain of height n and width m
by Chm=P7[(0,0),(n,m —1)]. For m=2, we define the diamond by
D=P~[(0,0),(2,0)]. The diamond D and C,, are isomorphic as posets,
but not as effect algebras, whereas C,, and 2? are isomorphic as effect
algebras.

The polychains C,,, are mainly useful for constructing counterexamples.
As a poset, the elements of C,, ,, are arranged in # + 1 “levels” with 0 alone
in the bottom level, (n, m — I) alone in the top level, and m elements in
each of the n -1 additional levels. Distinct elements in each level are
incomparable, whereas every element in each level is less than every
element in the next higher level. For n 23, it can be shown that the
lexicographically ordered group Z x Z,, in Example 4.7 is the universal
group for C,, and Z x Z, is the universal group for the diamond D;
however, Z x Z, is not the universal group for C,,.

Example 4.8. Let s be a Hilbert space and let ¥~ be the partially
ordered real Banach space of all self-adjoint operators on 5. The interval
algebra &(5#) =¥ *[0, 1], called the standard effect algebra on #, supplies
much of the motivation for the study of effect algebras. If 0 # T e&(o¢), the
isotropic index of T is the largest positive integer n such that the spectrum
of T is contained in the interval [0, I/n]. The sub-effect algebra P(s#) of
&(#) consisting of all idempotents in §() is the standard quantum logic
(Piron, 1976). By Theorem 3.1, P(5¥) is an interval algebra.

5. PROBABILITY MEASURES

If A4 is an effect algebra, a morphism w: 4 - R*[0,1] is called a
probability measure on A. We denote by Q(A) the set of all probability
measures on A. Evidently, Q(4) is a convex subset of the vector space R*
of all real-valued functions on 4. The set of all extreme points of a convex
set A is denoted by d,A. In quantum logic (Beltrametti and Cassinelli,
1981; Greechie and Gudder, 1975; Gudder, 1988; Ptak and Pulmannova,
1991), elements of Q(A4) are called states and elements of 3, Q(A4) are called
pure states. We say that the effect algebra 4 admits an order-determining set
of probability measures iff, whenever p,ge4 and w(p) s w(g) for all
we)(A4), it follows that p < g in 4.

The following two theorems are proved in Bennett and Foulis (n.d.).
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Theorem 5.1. If an effect algebra admits an order-determining set of
probability measures, then it is an interval algebra,

Theorem 5.2. Every interval algebra admits at least one probability
measure,

It can be shown that a scale aigebra 4 admits exactly one probability
measure « and that 4 is a sub-effect algebra of the standard scale algebra
R*[0, 1] iff {w} is an order-determining set of probability measures on A.
In Example 4.6, the unique probability measure w satisfies w(x, y) =0 if
y>0and wix,y)=11if y 0, so it fails to be order determining. If n = 3,
the polychain C,,, in Example 4.7 admits exactly one probability measure
w given by w(x, y) = x/n; furthermore, {w} is an order-determining set of
probability measures on C,, .

Example 5.3. Although the diamond D and the interval algebra 2? are
isomorphic as posets, (D) consists of a single probability measure,
whereas Q(2?) is affine-isomorphic to the unit interval [0, 1] < R.

6. PRODUCTS AND SUMS OF EFFECT ALGEBRAS

Let 4 and B be effect algebras with units ¥ and », respectively. The
Cartesian product 4 x B can be organized into an effect algebra with unit
(u, v) in such a way that (a,, ;) ®(a,, b,) is defined in A x B iff a, D a, is
defined in 4 and b, @ b, is defined in B, in which case, (a,, b,) ®(a,, b,) ==
(a,@a,,b,®b,). An n-fold Cartesian product A4, X Ay x---x 4, is
defined in the obvious way.

Example 6.1. The rectangular trellis RT(n,, n,,...,n,) in Example
4.3 is the Cartesian product C, xC,,x---xC, of the chains
Cns Coys oo - G, in Example 4.2.

If r is a positive integer, we understand that 4" is the effect algebra
obtained by forming the r-fold Cartesian product of 4 with itself. In
particular, as a poset, the effect algebra 2" is the finite Boolean algebra with
2" elements, However, for r 2 2, the Boolean algebra with 27 elements,
regarded simply as a poset, can always be organized into an effect algebra
in more than one way. ’

To form the horizontal sum A4 + B of 4 and B, we begin by relabeling
the elements of 4 and B, if necessary, so that 4 8 ={0, w}, where
w = u =, The horizontal sum is then defined to be 4 + B:=4 U B, orga-
nized into an effect algebra in such a way that, for x,yed + B, x@y is
defined iff x, yed or x, yeB, in which case x @ y is defined as in 4 or B,
respectively.
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Example 6.2. The diamond D in Example 4.7 is isomorphic to the
horizontal sum C,+ C, of two 2-chains.

An n-fold horizontal sum 4, + 4, +- - -+ 4, is defined in the obvious
way.

Example 6.3. If n is a positive integer, the effect algebra MO(n) is
defined to be the horizontal sum 2*+42*+:-+2% of n copies of the
interval algebra 2. As a poset, MO(n) forms a finite modular orthocomple-
mented lattice (Kalmbach, 1983, p. 29).

Evidently, an effect algebra C with unit w is isomorphic to the
horizontal sum A4 + B iff there are morphisms «: 4 — C, §: B — C such that
(i) o is an isomorphism of A4 onto a sub-effect algebra «{A4) of C, (ii) # is
an isomorphism of B onto a sub-effect algebra B(B) of C, (iii) a(4) n
B(B) = {0, w}, (iv) &(4) U B(B) = C, and (V) if xea(d), yef(B), and x Dy
is defined, then x =0 or y =0.

If effect algebras and their morphisms are organized into a category,
the Cartesian product is the categorical product and the horizontal sum is
the categorical coproduct. In this category, the tensor product of effect
algebras 4 and B is defined to be an effect algebra 4 ® B together with a
bimorphism ®:4 x B> A ® B such that (i) A ® B is generated by all
elements of the form ¢ ® b with aeA and beB and (i1) if C is any effect
algebra and 6: A x B— ( is a bimorphism, there is a morphism 8. 4 ®
B - C such that (a, b) = 8’(a ® b) for all ac 4, beB (Bennett and Foulis,
1993). The interval-algebra tensor product is defined in the same way, but in
the category of interval algebras.

If B is a Boolean algebra, then 4 ® B is the Ptak sum of 4 and B
(Foulis and Ptik, n.d.). The tensor product C, ® C,, of chains is the chain
Cpm-

We do not know of an example of effect algebras 4 and B that fail to
have a tensor product. In DvureCenskij (n.d.) it is shown that 4 ® B exists
iff there is a bimorphism with domain 4 x B. In Section 9 below, we show
that any two interval algebras have an interval-algebra tensor product. We
do not know whether the interval-algebra tensor product of interval
algebras coincides with their tensor product in the larger category of all
effect algebras. Related definitions of tensor products can be found in
Dvurecenskij and Pulmannova (1994) and Pulmannova (1985). In what
follows, we consider only the interval-algebra tensor product.

7. CARTESIAN PRODUCTS

For the remainder of this paper, we assume that A and B are interval
algebras with units u and v and that G and H are the universal groups for A
and B, respectively.
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Note that 4 x B is a subset of the Abelian group G x H. We organize
G x Hinto a partially ordered Abelian group with positivecone G* x H+,
Evidently, as an effect algebra,

A xB=(G*" x H)[(0,0), (u, v)]

so A x B is again an interval algebra. Moreover, we have the following
result.

Theorem 7.1. With G* x H*™ as the positive cone, G x H is the
universal group with unit (¥, v) for 4 x B,

Proof. Conditions (i)—(iii) in Theorem 3.2 are obviously satisfied. To
verify condition (iv), assume that ¢: 4 x B — K is a K-valued measure. The
mappings o: 4 —->K and f:B—K defined by afa):=¢(a,0) and
B(b) = (0, b) for aeA, beB are K-valued measures; hence, they can be
extended to group homomorphisms a*: G — K and B*: H — K, respectively.
Therefore the mapping ¢*: G x H - K defined by ¢*(g, h)=a*(g) +
B*(h) for (g, ) eG x H is a group homomorphism that extends ¢. W

Example 7.2. By Theorem 7.1, the rectangular trellis RT(n,, 7., ..., n,)
is an interval algebra and its universal group is Z" partially ordered by the
standard positive cone (Z*)" and with unit (n,,n,,...,n).

- LetQ,:={we(4 x B)|w(0, v) =0}, Qp={weM4 x B)|w(u, 0) =0}.
If weQ, and (a,b)ed x B, then (0,5) <(0,v), so w(0,b) =0, and it
follows that ’

w(a, b) = w((a, 0) ®(0, b)) = w(a, 0) + (0, b) = w(a, 0)

Likewise, for weQy, w{a, b) = (0, b).

The mapping u +— u, from Q(A4) to (A4 x B} given by u,(a, b) = u(a)
for all (a, b)e A x B is an affine isomorphism of Q(4) onto Q, < A(4 x B).
Likewise, the mapping vr>vy from XB) to QU4 x B) given by
vg(a, b) = v(b) for all (a, b)eA x B is an affine isomorphism of Q(B) onto
Qp (4 x B). Thus, in the sense of the following theorem, Q(4 x B) may
be regarded as the ‘“‘convex hull” of Q(A4) and Q(B).

Theorem 7.3. If Q(A), KX B) # @ and wef(4 x B), there is a unique
teR*[0, 1] and there are probability weights ueQ(4) and ve(B) such
that @ =1, + (1 — vy

Proof. We may assume that wéQ, UQy, so that @(0, v), w(y, 0) #0.
Let 1=w(u, 0). Since w(0,v) +w, 0) =w(m,v)=1, we have | -t =
@(0,v). Evidently, u:4-R*[0,1] defined by ua)=w(a,0)/t for
all aeA is a probability measure on 4. Likewise, v: B—->R*[0, 1]
defined by v(b) == w(0, b)/(1 — ) for all be B is a probability measure on B.
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Furthermore,
(tig + (1 = vp)a, b) = tp(a@) + (1 — H(b)
= w(a, 0) + (0, b)
= w(a, b)

Conversely, if @ =1tu, + (1 — vy, then o(u, 0) = tu(u) =1, so t is
uniquely determined. W

Evidently, if (B) = J, then Q4 x B) =Q, and, if (4) = ¢, then
Q4 x B)y =€Q,. Of course, 4 xBy=F iff Q, =Qz= .

Corollary 7.4. 3,44 x By =0,Q,068,.8;.

Example 7.5. Because a chain C, admits only one probability measure,
Corollary 7.4 implies that the space of probability measures on
RT(ny, ny, ..., n,) has exactly r extreme points.

8. HORIZONTAL SUMS

The universal group of a horizontal sum of interval algebras is
constructed from the quotient group of a direct product, and the following
observation on ordering quotient groups will be used in that construction.
If U is a subgroup of the partially ordered Abelian group G and
UnG™* = {0}, then G/U can be organized into a partially ordered Abelian
group with (G/U)* = G*/U. Indeed, G*/U is closed under addition, and
if g+ U= —g,+ U with g,,2,6G™, then g, +g,eUnG™* ={0}; thus
g1 = —g,, 50 that G*/Un —{(G*/U) is the zero element of G/H.

Let U be the cyclic subgroup of G x H generated by (u, —v), let
0 =(G x H)/U, and let 5: G x X — Q be the canonical epimorphism. Thus,
for neZ, geG, heH, we have

n(g, h) = n(g + nu, h — nv)

Because Un(G* x H*) = {(0, 0)}, it follows that Q can be organized
into a partially ordered group with Q*:=#(G* x H*) as a generating
positive cone. Evidently w:=n(u, 0) = n(0, v} is a nonzero element of @,
every element in 0% is a sum of a sequence of elements in the interval
Q0 [0, w], and @* generates (.

Define a: 4 —-Q*[0,w] and §: B—-Q7*[0,w] by «(a) =#n(a,0) and
B(b) =n(0, b) for all ac A4, beB. Thus, « and § are effect-algebra isomor-
phisms of 4 and B onto sub-effect algebras «(4) and f(B), respectively, of

27(0, w].
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Theorem 8.1. With the notation above, Q*[0, w] = a(4) 4+ f(B) and,
with w as the unit, Q is the universal group for the horizontal sum
a(Ad) + B(B).

Proof. Suppose n(g, h)ea(4) nB(B). Then there are elements ae4,
beB,and mneZsuchthata=g+nu, h=nv,g = —mu,and b = h — mp.
Therefore, @ = (n — m)u and b = (n — m)o. Since 0 < g <y, it follows that
n—m=0 or n—m=1, and so n(g,h) =0 or n(g, h) =w. Therefore,
a(A4) N f(B) = {0, w}.

Suppose geQ *[0, w]. Since geQ ™, there exists geG* and heH™*
with ¢ = n(g, h). Since w —n(g, )eQ ™, there is an integer n such that
0<gs(m+Du in G and 0<shs< —nv in H. Therefore, n=0 and
q=n(g,h)ea(d) or else n=~1 and q =n(g, h)ep(b). Consequently,
Q*[0, w] = a(4) U B(B).

Suppose ae A, beB, and a(a) + B(b)eQ [0, w], that is, w — #(a, b) €
Q*. Then there is an integer n such that 0<a<(n+ Du in G and
0<b < —min H, and it follows that ne{0, —1}, so that 5 =0 or a =0.
Therefore, QO *[0, w] is the horizontal sum of its sub-effect algebras o(4)
and (B).

Let ¢: 0 *[0, w] » K be a K-valued measure. To complete the proof,
we only have to show that ¢ can be extended to a group homomorphism
¢*. @ — K. The K-valued measures ¢ ra: 4 +Kand ¢ - §: B— K can be
extended to group homomorphisms (poa)*:G—-K and (¢-H™
H - K. The group homomorphism &:G x H—K defined by &(g, ) =
(¢ o )*(g) + (P o B)*(h) satisfies the condition &(u, —v) = 0, so there exists
a group homomorphism ¢*: Q — K such that ¢*on = ¢, For ae4d,

¢*(x(a) = d*(n(a, 0)) =¢(a, 0) = (¢ - )*(a) = ¢(x(a))

and likewise, ¢*(B(b)) = P(P(h)). Because Q*[0, w] = a(4) U B(B), it fol-
lows that ¢* is an extension of ¢. W

We omit the straightforward proof of the following theorem.

Theorem 8.2. If Q(A), Q(B) = ¢J, the mapping ®: Q(A) x QB) —
Q(A + B) given by Oy, v)(x) = u(x) for x4 and Oy, v)(x) = v(x) for xeB
is an affine isomorphism of Q(4) x (B) onto XA + B) and ® maps
3,Q(A4) x 8,QB) onto 3,4 u B).

As a consequence of Theorem 8.2, a horizontal sum of polychains of
height three or more admits only one probability measure.

In the next theorem, we illustrate the use of Theorem 8.1 by comput-
ing the universal group of the horizontal sum C, + C,, of two chains. We
denote the additive group of integers modulo 4 by Z,, with the understand-
ing that Z, = {0}, and we denote the canonical epimorphism Z — Z, by 4.
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Theorem 8.3. Let n, m be positive integers, let d be the greatest common
divisor of n and m and let h and & be integers such that in +km=d.
Let J=Z xZ, and J*={(mx/d + ny/d, 6(hx — ky))|(x, p)eZ* x Z*}.
Then J is partially ordered by the cone J* and, with ws=(nm/d, 5(0)) e J ¥,
J is the universal group for J™*[0,w]. Furthermore, the mappings
a: C,—J*[0,w] and §: C,, = J*[0, w] given by afx):=(mx/d, 5(hx)) and
B(y)=(ny/d, 6( —ky)) for xeC,=2Z*[0,n] and yeC, =Z*[0,m] are
effect-algebra isomorphisms of C, and C,, onto sub-effect algebras «(C,) and
B(C,) of J*[0, w]. Also, J*[0, w] = a(C,) + B(C,,).

Proof. We sketch the proof, leaving the details to the interested
reader. The mapping W:ZxZ—J defined for (x,y)eZxZ by
Y(x, y)=(mx/d + ny/d, 6(hx — ky)) is a group epimorphism and ker(¥) is
the cyclic subgroup U of Z x Z generated by (n, —m). Therefore, if
n:ZxZ-Q:=(Z x Z)]U is the canonical epimorphism, there is a group
isomorphism &: @ —J such that &(y(x, y)) = ¥(x, y). Using the isomor-
phism £, we obtain the present theorem directly from Theorem §.1. W

As a corollary of Theorem 8.3, we note that if » and m are relatively
prime, then the universal group of C, + C,, is isomorphic to J:=Z with the
nonstandard cone J*:={mx + ny|x, yeZ*} and with the unit w:=nm.
Under this isomorphism, C, corresponds to {mx|xeC,} and C,, corre-
sponds to {nylyeC,}.

Example 8.4. Using Theorem 8.1 and mathematical induction on n, it
can be shown that MO(#n) in Example 6.3 can be realized as G [0, u],
where G =Z"%"', u=(1,1,1,...,1), the 2n + 2 elements of MO(n) are
0,u, the n elements a,:=(1,0,0,0,...,0), a»=(1,1,0,0,...,0),
ay=(1,1,1,0,...,0),...,a,=(1,1,1,1,..., 1,0}, and n more elements
of the form b;:=u —a, for i =1,2,...,n Here G* is the subcone of the
standard pesitive cone (Z+)"*! consisting of all nonnegative-integer linear
combinations of @, a,, ..., a,, b, b,,..., and b,.

The interval algebra MO(n) in Example 8.4 is the quantum logic
affiliated with measurements of the spin component in # different directions
of a spin-1/2 particle, and MO(n) ® MO(n) is the quantum logic for the
anticorrelated spin experiments used to test the Bell inequalities (Kldy,
1988). Using the result of Example 8.4 and Theorem 9.1 in the next section,
we can compute the universal group of MO(n) ® MO(n).

9. TENSOR PRODUCTS

The tensor product G ® H of the Abelian groups G and H can be
organized into a partially ordered Abelian group with positive cone
(G ® H)* consisting of all sums of finite sequences of pure tensors of the
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form g®h with geG* and heH* (Goodearl and Handleman; 1986,
Proposition 2.1).

Theorem 9.1. With (G ® H)* defined as above:

(i) If pef)A4) and vef)(B), there is a group homomorphism
6:GOH—-R such that ola®b) = ula)v(h) for all aed =
G*[0,u), beB = HT[0, ]

(i) 0 u@ve(GRH) ™.

(i) (H® H)™* is a generating cone in G ® H.

(iv) Every element in (G ® H) ™ is the sum of a finite sequence of
pure tensors a @ be(G H) [0, u @v] for acA, beB.

(v) As an effect algebra, (G® H) *[0, u ® 1] is generated by all pure
tensors of the form a® b, with aeAd, beB.

(vi) If K is an Abelian group and 0: 4 x B—~K is a K-valued
bimeasure, there exists a group homomorphism 6*: G @ H - K
such that 0*(a ® b) =8(a, b) for all a4, beB.

(vii) With the mapping A xB->(GR®H)*(0,u®v) given by
(a, b) + a ® b as the canonical bimorphism, (C® H)* (0, u ®v)
is the interval-algebra tensor product of the interval algebras A
and B.

(viii) G®H is the universal group for the interval algebra
(G®H)*[0,u®u].

Proof. (i) Let uef)(A4), veQ(B). Because G and H are the universal
groups for A and B, we can extend g and v to group homomorphisms
u*G—-R and v* H-R. Since the mapping G x H—-R given by
(g, h) — u*(g)v*(h) is a group bihomomorphism, there exists a group
homomorphism ¢: G® H - R such that o(g ®Ak) = u*(ghv*(h) for all
g€G, heH.

(it) By Bennett and Foulis (n.d.), Theorem 6.7, there are probability
measures p e A), veQ(B) with u(x) = v(r) = 1. Let ¢ be the corresponding
group homomorphism as in (i). Then a(u @v) = u(uv(v) =1, s0 u v #0.

(iii) If geG, and heH, we can write g =g, — g, and A = h; — h,, with
8,.£.€G"* and h, hbe H*, and it follows that

EQh=(5 B +2:0h)—(&®h+20hr)e(GRH)* - (GRH)"

Since every element in G ® H is a sum of pure tensors g ® A, it follows that
(G®H)™ is a generating cone for G ® H.

(iv) If aeAd, beB, then 0<sasu in B and 0<b<v in H, so
0sa®bsu®vin GOH. If geG* and heH™*, then g=3 4, and
h=Y,b for q,eA and b;eB, and it follows that g®h =), ¥, a; ® b, with
a;,Qbe(GOH) [0, u®@v].
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(v) If te(GR®H)*[0,u®u], then t =) ,a,®b, with a,e4, b,eB by
(iv) and, since t <u®v, we have ¢t = @,a, ®5b; in the interval effect
algebra (G® H) [0, u ®v].

{vi) See Foulis and Bennett (1994), Theorem 9.4,

(vii) By (v), (G® H)*[0, u ®v] is generated as an eflect algebra by all
a®b, ac4, beB. Suppose that C is an interval algebra with unit w and
universal group K, and let 6: 4 x B—C be a bimorphism. Then
#:4 x B—K is a bimeasure, so it induces a group homomorphism
8% G®H — K as in (vi). We have 8*(u ® v) = 8(u, v) = w and, by (iv), §*
maps (G®H)* into K™*, so the restriction of 6* to the interval
(GOH)Y*[0,u®v] provides a morphism 8 (GROH)T 0, u®v] —
K*[0, w] = C such that 8(a, b) =0'(a ®b) for all ac4, beB.

(viil) Let ¢: (GOH)'[0,u®v] - K be a K-valued measure. The
mapping 8: 4 x B— K given by 0(a, b)=¢(a®@b) for acA, beB is a
K-valued bimeasure, so, by (vi), there exists a group homomorphism
¢* GQ® H - K such that ¢*(a ® b) = 6(a, b) = ¢(a ® b) for all aec 4, beB,
and it follows from (v) that ¢* is an extension of ¢. Therefore, by
Theorem 3.2, G ® H is the universal group for (GO H) [0, u®@v]. W

10. y-ALGEBRAS

Cartesian products, horizontal sums, and tensor products have per-
spicuous interpretations in quantum logic (Foulis, 1989). For instance, M.
Kldy (1988) has made effective use of MO(2) ® MO(2) to study the Bohm
version of the EPR Gedankenexperiment. This suggests that the following
problem warrants consideration:

The CHT Problem. Given a class € of effect algebras, characterize the
class CHT(¥) consisting of the effect algebras in € and all effect algebras
that can be obtained from these algebras by iteratively forming finite
Cartesian products (C), horizontal sums (H), and tensor products (T).

- For a more general CHT problem, the word “finite” may be omitted.
If only Cartesian products and horizontal sums are allowed, the
corresponding “CH” problem was solved for € = {2} by Dacey (1968).

 Dacey’s CH(2) Theorem. An interval algebra 4 can be obtained
starting with copies of 2 and iteratively forming finite Cartesian products
and horizontal sums iff 4 is a finite orthomodular lattice and there do not
exist four distinct atoms ¢, b, ¢, and din A such that a @ b, b @ ¢, and c B d
are defined and a @ ¢, b @d, and a P d are not defined.

In this section, we make a modest start on the problem of characteriz-
ing CHT(2) by singling out a class of finite interval algebras that contains
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2 and is closed under the formation of finite Cartesian products, horizontal
sums, and interval-algebra tensor products.

If X is a nonempty set and M < X, the characteristic set function
i X —{0, 1} € Z is defined as usual by x,,(x) =1 if xe M and y,,(x):=0
if xeX\M. If the group Z* is partially ordered by the standard positive
cone (Z*)*, then the interval algebra (Z*)*[0, x,] consists of all the
characteristic set functions x,, for M & X, hence, as a poset, it is isomor-

phic to the power set of X. We refer to y, as the standard unit in the group
zx,

Definition 10.1. An interval algebra A is called a y-algebra over X iff
the universal group of 4 is G :=Z%, the positive cone of G is contained in
(Z*)¥, and the unit is u:=y,.

By the following lemma, every element of a y-algebra over X is a
characteristic set function for a subset of X, so y-algebras are closely
related to the concrete logics of Ptak and Pulmannova (1991, p. 2).

Lemma 10.2. Let X be a nonempty set, let G == Z* be partially ordered
by a positive cone G*, let u = y,€G be the standard unit, and suppose that
G is the universal group with unit u for G*{0,u]. Then G* < (Z*)* iff
G *[0, u] consists only of characteristic set functions.

Proof. If G* <(Z*)*, geG*[0,u], and xeX, then g(x)eZ* and
u(x) ~g(x) =1 —g(x)eZ*, so g(x) is either zero or one. Conversely, if
every function geG*[0, 4] takes on only the values zero and one, then
G*[0,u] =(Z*)¥ and, since every element in G* is a sum of a finite
sequence of elements of G*+[0, u), it follows that G* = (Z*)*. A

If we say that A4 is a y-algebra, we mean that it is (or is isomorphic to)
a y-algebra over some nonempty set X. As an obvious consequence of
Lemma 10.2, a y-algebra cannot contain any isotropic elements, and
therefore every y-algebra is an orthoalgebra.

By Example 4.3, 2 is a y-algebra over X:={1,2,3,...,r} and, by
Example 8.4, MO(n) is a x-algebra over X:={1,2,...,n+ 1}. Since the
universal group of a x-algebra must be torsion-free, the polychains of
height three or more and the diamond in Example 4.7 give examples of
interval algebras that are not x-algebras.

Lemma 10.3. If A and B are y-algebras, so are 4 x B and 4 + B.

Proof. Let A=G*[0,u], B=H*[0,v], G=2Z* H=2Z" G*¢
(ZYYX, and H* < (Z*)Y, with standard units u and v, and suppose that G,
H are the universal groups for A, B, respectively, Without loss of general-
ity, we may assume that X n Y = &, so that, in what follows, we can make
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the canonical identification of G x H =Z* x Z¥ with Z*“¥ by regarding
an ordered pair (g,h)eG x H as the function on XuY defined by
(g, h)(x) = g(x) for xeX and (g, A)(¥) = A(y) for ye Y. Note that (i, v) is
then the standard unit in Z*“" and (g, h)e(Z*)* Y iff ge(Z*)* and
he(Z*)*. Therefore, A x B is a x-algebra by Theorem 7.1.

Let U be the cyclic subgroup of G x H generated by (1, —v) and let
n:Z¥°Y > Q=Z*“¥/U be the canonical epimorphism. Choose and fix
acX, beY, let Z=XuY\{b}, R=Z% and define the epimorphism
®: Z*“Y >R by

_[g@ +hb)  if zeX
O(g, h)(z2) = {g(a) +h(z) if zeY\[b}

Since ker(®) = U, there is an isomorphism ¢: @ — R such that ¢ oy = .
Under this isomorphism, we identify the universal group Q in Theorem 8.1
with R, noting that the unit in R is the standard unit. If either g is a
characteristic set function and A =0 or g =0 and 4 is a characteristic set
function, then ®(g, A) is a characteristic set function; hence, by Lemma
102, R*=¢(Q *) =(Z*)%, and it follows that 4 + B is a y-algebra. H

for all ze”Z

If A4 is a y-algebra over a finite set X = {x,, x,,...,x,}, it is clear
from Lemma 10.2 that 4 can contain at most 2" elements. Conversely, if 4
is a finite y-algebra over X, then the group Z* has a finite set of generators,
namely A; hence, it has finite rank, so X is a finite set.

Lemma 10.4. If A and B are finite x- algebras, then so is the interval-
algebra tensor product 4 ® B.

Proof. We use the same notation as in the proof of Lemma 10.3, but
assume that X and Y are finite sets. Then there is a canonical isomorphism
Y:G®H —S:=7Z">" such that, for geG, heH, xeX and yeY, we have
Y(g ® h)(x, y) = g(x)h{y)eZ. Note that Yy(u @v) is the standard unit in §
and that, if g and 4 are characteristic set functions, so is ¥(g, k). Therefore,
by Theorem 9.1 and Lemma 10.2, S*[0, ¥ ®@v)] is effective as the
universal group for an isomorphic copy of A ® B and §* is contained in
the standard positive cone (Z*)*>**. #

Example 10.5. Let G:=Z* be partially ordered by the cone
Gt={(x,p,z,w)e(Z*)x+y+z2w}. Then the x-algebra A:=
G*[(0,0,0,0),(1,1,1, 1)], which contains exactly 14 elements, is the
smallest proper orthoalgebra, i.e., the smallest orthoalgebra that is not an
orthomodular poset. It is the logic of the Wright triangle (Foulis et al.,
1992, Exampie 2.13) and it does not belong to CHT(2). There are exactly
five elements of 8,(£2(4)), four of which are given by the restrictions to 4
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of the projection mappings =., n,, 7., 7, on Z*, The fifth is the restriction
to 4 of ¥(n, + n, + n, — m,) corresponding to the condition x +y +z = w
that determines G*.

By Lemmas 10.3 and 10.4, every effect algebra in CHT(2) is a finite
r-algebra; hence, it is an orthoalgebra. However, by Example 10.3, there
are finite y-algebras that are not in CHT(2), so the problem of characteriz-
ing CHT(2) remains open.
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