
the “Board of Education”

1

Three-position switch
0 = OFF
1 = ON / wheels OFF
2 = ON / wheels ON

breadboard
(for building circuits)

electrical power
(Vdd, Vin, Vss)

digital input / output pins 0 to 15

BASIC stamp module
(the brain)

connection to computer

power jack

image credit:
www.turbosquid.com/3d-models/parallax-board-education-3d-model/705602

reset button

Voltage regulator

hooking up servo motors

2

red & black color labels

image credit:
www.turbosquid.com/3d-models/parallax-board-education-3d-model/705602

servo ports

3

https://www.parallax.com/downloads/basic-stamp-editor-software

install software to “program” car

click here

Just copy 18MB file off the thumb drive to speed things up.

once installed, an icon like
this should be available on

your computer

write a simple program

4

1. click here

3. type this

2. click here
4. click here

“Hello World” program output

5

The debug (or print) window will
automatically open

the motors are called servos

David Hall

wires to power & control servo

7

red = 5V

black = Gnd

white = signal

output shaft

STEM Discovery

types of servos

8

continuous rotation

white wire tells servo
which way to spin & how fast to spin

white wire tells servo
which position to hold

standard
can only rotate 180 degreescan rotate all the way around in either direction

servo components

9

1. small DC motor
2. gearbox with small plastic gears to reduce the RPM and increase output torque
3. special electronics to interpret a pulse signal and deliver power to the motor

making a wheel rotate continuously

10

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

PULSOUT 13, 750

PAUSE 20

LOOP

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

PULSOUT 13, 650

PAUSE 20

LOOP

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

PULSOUT 13, 850

PAUSE 20

LOOP

Tuning a servo (also known as “centering” a servo)

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

PULSOUT 13, 750

PAUSE 20

LOOP

If you have the code shown running,
the servo connected to port 13

should not be turning.

If the servo is turning, then adjust the
potentiometer inside the servo as

shown until it stops.

ONLY TINY MOVEMENTS OF THIS
POTENTIOMETER ARE TYPICALLY NEEDED!

how the control works

12

time (milliseconds)

vo
lt

ag
e

(V
)

5V -

0V -

20ms

full speed
clockwise

full speed
counter clockwise

pulse width varies between 1.3ms and 1.7ms

PULSOUT

argu-
ment

pulse
width
(μs)

servo action

650 1300 full speed CW

700 1400 ~½ speed CW

750 1500 stopped

800 1600 ~½ speed CCW

850 1700 full speed CCW

speed not linear with pulse duration!

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

PULSOUT 12, 650

PAUSE 20

LOOP

𝑝𝑢𝑙𝑠𝑒 = 850 ∙ 2𝜇𝑠 = 1700𝜇𝑠 = 1.7𝑚𝑠

𝑝𝑢𝑙𝑠𝑒 = 750 ∙ 2𝜇𝑠 = 1500𝜇𝑠 = 1.5𝑚𝑠

𝑝𝑢𝑙𝑠𝑒 = 650 ∙ 2𝜇𝑠 = 1300𝜇𝑠 = 1.3𝑚𝑠

subroutines
(GOSUB)

13

RETURN causes the
program to go back to the

line after the instruction
that called the subroutine

subroutines are named by
typing a colon after the name

FOR loops

You must type END at the
end of the main part of

your code so that the
space afterward can be

used to define subroutines

GOSUB forward causes the
program to look ahead to find

and run a subroutine named
“forward”

subroutines allow a programmer
to reuse the same code multiple
times as a program is executed

a FOR loop allows a programmer
to execute a piece of code several
times in a row, and stop after a
specified number of times

in this example, the variable
counter starts at 1 and
increases by 1 each time the
included code is executed, until
counter reaches 100

the word NEXT is used to denote
the end of the code included in
the loop

dead reckoning navigation

14

' {$STAMP BS2}

' {$PBASIC 2.5}

counter VAR Word

loops VAR Word

loops = 20

GOSUB forward

loops = 13

GOSUB turnleft

END

forward:

FOR counter = 1 TO loops

PULSOUT 12, 650

PULSOUT 13, 850

PAUSE 20

NEXT

RETURN

turnleft:

FOR counter = 1 TO loops

PULSOUT 12, 650

PULSOUT 13, 650

PAUSE 20

NEXT

RETURN

subroutines for
defining different

kinds of motion
many more could be

defined to fully
customize how you
want to be able to

control your bot

main part of program

by setting the number of loops to complete on
each type of motion, the amount of time spent
for each leg of the journey can be controlled
easily (it will take about 20ms per loop)

turning wheels in the “same” direction (i.e. both
clockwise) on each side actually makes one side
of the bot go forward and one side go backward.
this results in a turn. this happens because the
servo axles face opposite directions.

turning wheels in the “opposite” direction (i.e.
one clockwise, one counter-clockwise) on each
side actually makes both sides of the bot go
forward in roughly a straight line. this happens
because the servo axles face opposite directions.

play around with car to make it drive
around an object

object

accepting keyboard input (DEBUGIN command)

16

type here

text generated by the
bot is shown here

if this box is not checked, then
each keystroke entered will

automatically be repeated in the

output of the Debug Terminal

(i.e. the dark blue area)

your program will wait until a
key is pressed, then store the

keystroke into the variable key

Your bot will generate the
“you just pressed” text,

then show the value
stored in key

CR stands for carriage
return…it makes the debug

output start a new line

keyboard control

17

' {$STAMP BS2}

' {$PBASIC 2.5}

key VAR Word

counter VAR Word

loops VAR Word

loops = 10

DO

DEBUGIN key

IF key = “w” THEN

GOSUB forward

ELSEIF key = “a” OR key = “A” THEN

GOSUB turnleft

ENDIF

LOOP

END

forward:

FOR counter = 1 TO loops

PULSOUT 12, 650

PULSOUT 13, 850

PAUSE 20

NEXT

RETURN

turnleft:

FOR counter = 1 TO loops

PULSOUT 12, 650

PULSOUT 13, 650

PAUSE 20

NEXT

RETURN

variable for storing a keystroke

variable for counting loops

variable for setting the number of loops to count
(the number “10” can be changed to tune performance)

this command takes a keystroke from the Debug
Terminal and stores it into variable key

main loop for
continually accepting

keyboard input and
choosing motion

subroutines for
defining different

kinds of motion
many more could be

defined to fully
customize how you
want to be able to

control your bot

this line checks the character stored in key to determine
if it is a “w”. if it is, the forward subroutine is run

this line checks for either a lower or uppercase “a”. this might
be useful to handle accidental “caps lock” keystrokes

the ELSEIF command is used to check another
condition if none of the earlier conditions were met

the ENDIF command is used to end a set of conditions being
checked. many more ELSEIF lines may be used before ENDIF

Each time one of these subroutines is run, a set of 10
pulses (the value stored in loops) is sent to the servos

keyboard tuning (key repeat rate and delay)

18

navigate to control panel, type
“keyboard” in the search bar, and

select “Keyboard”

• set the “Repeat delay” all the way to “Short”
• this will minimize the ‘stumble’ when the bot first begins

• set the “Repeat rate” more to the “Slow” end of the scale
• this will make computer lock-ups less likely
• try it at several different settings on the slow end of the scale to find
best performance

• what is going on?
• using slower setting prevents keyboard buffer overruns
• timing between keystroke events and your bot’s brain is better at some
repeat rates than others

play with various types of bot motion.
try to find better mapping from keystrokes to bot activity.

ideas:

• define several types of turns
• gentle sweeping turn
• basketball pivot
• zero-turn lawnmower

• use caps-lock and/or shift as a “mode” toggle
• slow speed mode for detailed movements, fast speed mode for traveling
• sharp turn mode/sweeping turn mode
• movement control mode/attachment control mode
• etc…

• this is an opportunity to practice using conditional structures in
PBASIC. note that conditional statements can be “nested,” i.e. one
can be placed inside another.

• try having a race between a bot controlled by a person via
keyboard control and one set up for dead reckoning

object

