the “Board of Education”

electrical power
(Vdd' \ Vss)

in?

breadboard

(for building circuits)
Voltage regulator

power jack \

digital input / output pins 0 to 15
reset button

Three-position switch
0 = OFF
1 = ON / wheels OFF
2 = ON / wheels ON

connection to computer BASIC stamp module
(the brain)

image credit: 1
www.turbosquid.com/3d-models/parallax-board-education-3d-model/705602

hooking up servo motors

servo ports red & black color labels

image credit:
www.turbosquid.com/3d-models/parallax-board-education-3d-model/705602

install software to “program”

https://www.parallax.com/downloads/basic-stamp-editor-software
PARALLAX 7

Wk paalaEE T Micracontrollers Robots Teach Company News

Equip your genius ®
Downloads ~OpenSourceDesigns Authorized Consultants Translations USB Drivers Propeller Tool

[Q Soarch]Hnme » Support > BASIC Stamp Editor Software

Shop
P BASIC Stamp Editor Software
Sale

Download Summary

Windows and Mac-based editor software for the BASIC Stamp microcontrollers. Windows: Latest version supports Windows XP/Vista/7/8/8.1
{not RT). (Do not download the old v2.3.9 unless you need it for Win 98 /ME/NT4). Mac: See "For Mac 0S:" version notes below.

Microcontrollers +
Robotics +

File Name Size Upload Date
Sensors

BS-Setup-Stamp-Editor-v2.5.3-[r2}).exe 18.4 MB Wed, 2014-07-02 13:58
Boards

‘Wed, 2014-07-02 14:02

Books

Cables/Converters +
Components +
T
Data o o o o ‘
N
Displays ﬁ-“
Education + X
Ethernet
Do NOT connect your hardware Step 1: Download the software Step 2: Run the Installer and Step 3: Connect your hardware
GPS to USB or Serial port until AFTER to your computer follow the prompts to USB or serial port
you have installed the software.
Hardware

Human Input Devices Version 2.5.3 (er

Identification

Integrated Circuits 4 [Supports Windows XP/Vista/7/8/8.1, not RT)

Just copy 18MB file off the thumb drive to speed things up.

car

once installed, an icon like
this should be available on
your computer

click here

write a simple program

2. click here

4. click here 1. click here

#2+ BASIC Stamp - Untitled]

Fil= ENit Directive Run Help
D\ | | & & [oA o) & v & o
@ aa) = 2 FE X BK
Fe- - ntitled l
+-{L7) MSECache -~ T -~
A= D {$STAMF BS2) D
+-0=) MSH Gaming Zorne T 1 $ FPEASTC 2.5 1 3 h'
+-C7) MSH Messenger
) MS»ML 4.0 — / . type this
+-{C=) MS¥ML 6.0 " nl
+-I=) Mational Instrumenl <\ DEBUG Hello wWorld
+-{7) netbeans-5.0 B ~
I Mettdeeting
+-I) Metwork Associate
+- {0 Mwu
+ 07 Nficel Indate11 ™
<5 | >
Connect. b2
CyberDayl b2
Hello “arld. bs2
IRexample.bs2
b
BASIC Stamp files [*.bs1:% = ||| € >
4: 20 Modified | IN5S

“Hello World” program output

#3 BASIC Stamp - Untitled1
File Edit Directive Run Help

ODEeomH 8O & % 2@ #M
s mREe R S S &

mELEI D

+-{) MSECache

+-) MSH

+-{) MSK Gaming Zone

+-i) MSM Messenger
) ME=ML 4.0

+-) MSHMLB.O

+-{) Mational Instrumenl

I netbeans-5.0

I MetMeeting

I Metwork Aszsociate

I Mwu
= Nfficel Indate11 ™
>

+

A [

Connect.bz2
CyberD ayl. bsz
Hello wiorld. be2
IR example. bz

BASIC Stamp files [*.bsl ;"_j <

E = Uniitied?]

T

T

[{$SSTAMP BSZ2}
[SPBASIC 2.5}

DEBUG "Hello World"|

The debug (or print) window will
automatically open

pd

7

@ Debug Terminal

=B |

Com Port:

@ T< [DTR [T RTS

[coms ~|

EEE |

|N|:|ne J

B

=l Jof =l emx DSk ecrs

4: 20 Modified | NS

Macroz... |

Pauze ‘

e

oy ‘ e | [EcholOf

the motors are called servos

David Hall

&

white = signal e——__
red = 5V

black = Gnd

——

AN

output shaft

types of servos
|

continuous rotation standard
can only rotate 180 degrees

can rotate all the way around in either direction

white wire tells servo
which position to hold

white wire tells servo
which way to spin & how fast to spin

servo components

1. small DC motor
2. gearbox with small plastic gears to reduce the RPM and increase output torque
3. special electronics to interpret a pulse signal and deliver power to the motor

making a wheel rotate continuously

' {$STAMP BS2}
' {$PBASIC 2.5}

DO
PULSOUT 13,
PAUSE 20
LOOP

650

' {$STAMP BS2}

' {$PBASIC 2.5}

DO
PULSOUT 13,
PAUSE 20
LOOP

750

' {$STAMP BS2}

' {$PBASIC 2.5}

DO
PULSOUT 13, 850
PAUSE 20

LOOP

10

Tuning ad Servo (also known as “centering” a servo)

-

' {$STAMP BS2}
' {$PBASIC 2.5}

DO
PULSOUT 13,
PAUSE 20
LOOP

g

750

If you have the code shown running,

the servo connected to port 13

should not be turning.

If the servo is turning, then adjust the
potentiometer inside the servo as
shown until it stops.

ONLY TINY MOVEMENTS OF THIS
POTENTIOMETER ARE TYPICALLY NEEDED!

how the control works

' {$STAMP BS2}
' {$PBASIC 2.5}

DO
PULSOUT 12,
PAUSE 20
LOOP
full speed
clockwise

pulse width varies between 1.3ms and 1.7ms
\

S iy |—| || counter clockwise
]
e]0]
S
© 20ms
>
ov >

time (milliseconds)

pulse = 650 - 2us = 1300us = 1.3ms
pulse = 750 - 2us = 1500us = 1.5ms

pulse = 850 - 2us = 1700us = 1.7ms

pulse
PULSOUT

argu- width servo action
ment (ps)
650 1300 full speed CW
700 1400 ~% speed CW
750 1500 stopped
800 1600 ~% speed CCW
850 1700 full speed CCW

speed not linear with pulse duration!

subroutines
(GOSUB)

GOSUB forward causes the
program to look ahead to find
and run a subroutine named
“forward”

You must type END at the
end of the main part of
your code so that the
space afterward can be
used to define subroutines

subroutines are named by
typing a colon after the name

RETURN causes the
program to go back to the
line after the instruction
that called the subroutine

subroutines allow a programmer
to reuse the same code multiple
times as a program is executed

" {SSTAMP BS2}
' {SPBASIC 2.5}

counter VAR Word

GOSUB forward
PAUSE 1000
GOSUB backward
PAUSE 500
GOSUB forward
PAUSE 2000
GOSUB backward
END

forward:

FOR counter = 1 TO 100
PULSOUT 12, 650

PAUSE 20

NEXT

RETURN

backward:

FOR counter = 1 TO 100
PULSOUT 12, 850

PAUSE 20

NEXT

RETURN

FOR loops

a FOR loop allows a programmer
to execute a piece of code several
times in a row, and stop after a
specified number of times

in this example, the variable
counter starts at 1 and
increases by 1 each time the
included code is executed, until
counter reaches 100

the word NEXT is used to denote
the end of the code included in
the loop

13

dead reckoning navigation

' {$STAMP BS2}
' {$PBASIC 2.5}

counter VAR Word
loops VAR Word

loops = 20 by setting the number of loops to complete on
_ GOSUB forwa> each type of motion, the amount of time spent
main part of program loops = 13 for each leg of the journey can be controlled
GOSUB turnleft easily (it will take about 20ms per loop)
END
forward:

FOR counter = 1 TO loops
PULSOUT 12, 650 «
PULSOUT 13, 850

turning wheels in the “opposite” direction (i.e.
one clockwise, one counter-clockwise) on each
side actually makes both sides of the bot go

subroutines for
defining different

kinds of motion NEszUSE 20 forward in roughly a straight line. this happens
many more could be because the servo axles face opposite directions.
defined to fully RETURN
customize how you
want to be able to turnleft:
control your bot FOR counter = 1 TO loops turning wheels in the “same” direction (i.e. both
PULSOUT 12, 650 - clockwise) on each side actually makes one side
PULSOUT 13, 650 of the bot go forward and one side go backward.
PAUSE 20 this results in a turn. this happens because the
NEXT servo axles face opposite directions.
RETURN

14

play around with car to make it drive
around an object

object

accepting keyboard input (DEBUGIN command)

' {$SSTAMP BS2}
' {SPBASIC 2.5}

key VAR Word

your program will wait until a
DO / kkey is pressed, then store the

eystroke into the variable key
DEBUGIN key
DEBUG "you just pressed ", key, CR

Your bot will generate the

“vou just pressed” text,
then show the value

stored in key

CR stands for carriage
return...it makes the debug
output start a new line

if this box is not checked, then
each keystroke entered will
automatically be repeated in the

output of the Debug Terminal

LOOP (i.e. the dark blue area)
END

Com Port: Baud Rate: Parity: Data Bits: Flow Control: @ T2 T DR V BTS

[EEYERE I ECTE I TR B E = ot 2 e B @ psr/e c1s

type here

just pre

text generated by the just pre
bot is shown here Just presssd ©

v Echo Off

16

key b O a rd CO n t ro | variable for storing a keystroke

' {$STAMP BS2}))
' {$PBASIC 2.5} variable for counting loops

key VAR Word . .
counter VAR Word variable for setting the number of loops to count

loops VAR Word (the number “10” can be changed to tune performance)

loops = 10 this command takes a keystroke from the Debug

[DO / Terminal and stores it into variable key
DEBUGIN key

main loop for IF key = “w” THEN <_ this line checks the character stored in key to determine

continually accepting GOSUB forward ifitisa “w” ifitis, the forwaxrd subroutine is run
keyboard input and | g1sEIF “a” OR key = “A” THEN
choosing motion | GOSUB tur S~_ this line checks for either a lower or uppercase “a”. this might
be useful to handle accidental “caps lock” keystrokes

L LOOP
END the ELSEIF command is used to check another
condition if none of the earlier conditions were met
forward:
FOR counter = 1 TO loop the ENDIF command is used to end a set of conditions being
PULSOUT 12, 650 checked. many more ELSEIF lines may be used before ENDIF
subroutines for PULSOUT 13, 850
defining different PAUSE 20
kinds of motion NEXT Each time one of these subroutines is run, a set of 10
many more could be RETURN pulses (the value stored in 1loops) is sent to the servos
defined to fully & i
urnleft:

customize how you
want to be able to
control your bot

FOR counter = 1 TO loops
PULSOUT 12, 650
PULSOUT 13, 650
PAUSE 20

NEXT

RETURN

17

keyboa rd tuning (key repeat rate and delay)

€% CIETITIN—C

Keyboard
<
Check keyboard status

Change cursor blink rate

@ Ease of Access Center
Change how your keyboard works
Control the computer without the mouse or keyboard
Turn On-5creen keyboard on or off
Press key combinations one at a time
Turn on easy access keys

3 Region and Language
& Change keyboards or other input methods
Change lecation

./ Devices and Printers
ﬂg View devices and printers
@ Device Manager

@-u System
= @ Device Manager
Administrative Tools

How to add new hardware
Device Manager
@ Update device drivers

0 Search Windows Help and Support for "keyboard”

navigate to control panel, type
“keyboard” in the search bar, and
select “Keyboard”

Speed | Hardware

Character repeat

@_‘ Repeat delay:
Long

U Short I

Repesat rate:
AA

Slow U Fast

Click here and hold down a key to test repeat rate:

Cursor blink rate

None Fast

&

* set the “Repeat delay” all the way to “Short”
® this will minimize the ‘stumble’ when the bot first begins

e set the “Repeat rate” more to the “Slow” end of the scale
* this will make computer lock-ups less likely
* try it at several different settings on the slow end of the scale to find
best performance

* what is going on?
* using slower setting prevents keyboard buffer overruns
* timing between keystroke events and your bot’s brain is better at some
repeat rates than others 18

play with various types of bot motion.
try to find better mapping from keystrokes to bot activity.

ideas:

e define several types of turns
* gentle sweeping turn
* basketball pivot
e zero-turn lawnmower

object
* use caps-lock and/or shift as a “mode” toggle
* slow speed mode for detailed movements, fast speed mode for traveling
* sharp turn mode/sweeping turn mode
* movement control mode/attachment control mode
. etc...

* this is an opportunity to practice using conditional structures in
PBASIC. note that conditional statements can be “nested,” i.e. one
can be placed inside another.

e try having a race between a bot controlled by a person via
keyboard control and one set up for dead reckoning

