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Abstract—In this work, we focus on the problem of byzantine
agreement (BA), in which n distributed processors seek to reach
an agreement on an `-bit value, but up to t processors might be
corrupted by a Byzantine adversary and act as dishonest nodes.
In particular, we consider the communication-efficient BA in an
asynchronous setting, where the network communication might
have arbitrarily time delay. The primary challenge of designing
the BA protocol in this setting is that we need to handle both
the message delay from honest nodes and the Byzantine behavior
from dishonest nodes simultaneously. In this work we propose
a new signature-free asynchronous byzantine agreement (ABA)
protocol, which achieves the optimal communication complexity
of O(n`) when ` ≥ t log t, given n ≥ 5t + 1. A protocol is said
to be signature-free if the protocol design does not depend on
the cryptographic machinery such as hashing and signature. To
the best of our knowledge, this is the first signature-free ABA
protocol that achieves the optimal communication complexity of
O(n`) when ` is almost linearly scaled with t.

I. INTRODUCTION

Byzantine agreement (BA), as a 40-year-old distributed
consensus problem (cf. [1], [2]), is one of the fundamental
building blocks for distributed computing and cryptography
(e.g. [1]–[12]). In the BA problem, n distributed processors
seek to reach an agreement on some value, but up to t proces-
sors might be corrupted by a Byzantine adversary and act as
dishonest nodes. The BA problem has been broadly studied
in varying settings, such as authenticated BA (cf. [5]–[12]),
unauthenticated BA (cf. [13]–[16]), BA with synchronous
communication (cf. [17]–[20]), BA with asynchronous com-
munication (cf. [21]–[33]), binary BA (cf. [13]–[15], [30],
[34]), and multi-valued BA (cf. [35]–[45]). In this work, we fo-
cus on the communication-efficient multi-valued asynchronous
BA (ABA) in an unauthenticated (signature-free) setting. A
protocol is said to be signature-free if the protocol design does
not depend on the cryptographic machinery such as hashing
and signature.

In the research line of signature-free multi-valued ABA, the
work of [39] proposed an ABA protocol with communication
complexity O(n`+n5 log n), given n ≥ 3t+1. This result was
recently improved in [45] to the communication complexity
of O(n` + n4 log n). The communication complexity of [39]
and [45] is optimal when ` ≥ n4 log n and ` ≥ n3 log n,
respectively. A recent work of [16] has shown that the optimal
communication complexity O(n`) can be achieved when ` ≥
t log t in the synchronous setting. This inspires us to raise the
following question.

TABLE I
COMPARISON OF DIFFERENT ABA PROTOCOLS

Model Resilience Communication Round Signature
complexity complexity -free

[39] t < n
3

O(n`+ n5 logn) O(1) yes

[45] t < n
3

O(n`+ n4 logn) O(1) yes

Proposed t < n
5

O(max{n`, nt log t}) O(1) yes

Is it possible to achieve the optimal communication com-
plexity O(n`) when ` ≥ t log t in the signature-free asyn-
chronous setting?

In this work, we seek to investigate the above ques-
tion. Specifically, we propose a new signature-free ABA
protocol that achieves the communication complexity of
O(max{n`, nt log t}), given n ≥ 5t + 1. It implies that the
optimal communication complexity of O(n`) can be achieved
when ` ≥ t log t. To the best of our knowledge, this is the
first signature-free ABA protocol that achieves the optimal
communication complexity of O(n`) when ` is almost linearly
scaled with t.

The proposed protocol (called as A-COOL) is extended
from the COOL protocol introduced in the synchronous setting
[16]. Note that, in the asynchronous setting the message trans-
mission might be delayed with arbitrary time. Therefore, we
need to handle both the message delay from honest nodes and
the Byzantine behavior from dishonest nodes simultaneously.
This is the primary challenge of designing the BA protocol in
this asynchronous setting.

We provide some comparison between different ABA pro-
tocols in Table I and Fig. 1. Note that Fig. 1 focuses on the
comparison in the communication complexity exponent, which
is defined in (1) (see Section II), capturing the exponent of
communication complexity performance. As shown in Fig. 1,
compared to the protocols in [39] and [45], A-COOL protocol
provides additive gains up to 3 and 2, respectively, in terms
of communication complexity exponent performance.

This paper is organized as follows. The system model is
provided in Section II, while the main results are presented in
Section III. The proposed A-COOL is detailed in Section IV.
The analysis of A-COOL is provided in Section V. The
conclusion is drawn in Section VI.
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Fig. 1. Communication complexity exponent β vs. message size exponent
α of the proposed A-COOL, the protocols in [39] and [45], focusing on the
case with δ = 1.

II. SYSTEM MODELS

We consider the ABA problem, in which a set of n
distributed processors {P1, P2, · · · , Pn} seek to reach an
agreement on an `-bit value, but up to t processors might
be corrupted by a Byzantine adversary and act as dishon-
est nodes. The processors are communicated over an asyn-
chronous network. Each pair of processors is connected via
a reliable and private communication channel. The index of
each processor is available to all other processors. We consider
a static adversary, denoted by At, which selects the set of
corrupted processors before starting the protocol. We assume
that the adversary has complete knowledge of the state of the
other processors. The processors that are not corrupted by
the adversary are honest processors. We provide the formal
definition of ABA as below.

Definition 1 (ABA). A protocol for a set of processors
{P1, P2, · · · , Pn}, where Pi holds an initial `-bit input value
wi, i ∈ [1 : n], is said to be an ABA protocol tolerating an
adversary At, if the following properties hold

• Termination: Every honest processor eventually almost-
surely1 terminates.

• Consistency: All of the honest processors eventually decide
on the same value.

• Validity: If every honest processor holds an initial value w,
then all of the honest processors eventually decide on this
initial value w.

In this work we use the following three parameters to
measure the quality of a BA protocol:

• Resilience: the maximum number of dishonest nodes al-
lowed in the protocol, denoted by t.

• Communication complexity: the total number of communi-
cation bits during the protocol execution, denoted by b.

• Round complexity: the expected number of rounds taken by
the protocol to terminate, denoted by r.

1The probability that an honest processor is undecided after r rounds
approaches 0 as r grows to infinity [46].

We define the notion of communication complexity exponent
of the ABA protocol as

β(α, δ), lim
n→∞

log b(n, δ, α)

log n
(1)

where α is the message size exponent, defined as
α, limn→∞

log `
logn , and δ is the faulty size exponent, defined

as δ, limn→∞
log t
logn . β, α and δ capture the exponents of

communication complexity b, the message size ` and faulty
size t respectively with n as the base, when n is large.

Recall that a protocol is said to be signature-free if the
protocol design does not depend on the cryptographic ma-
chinery such as hashing and signature. A protocol is said to
be information-theoretic secure if the protocol can tolerate the
computationally unbounded adversary.

III. MAIN RESULTS

In this section we will provide the main results of this work.

Theorem 1 (ABA). For the ABA problem, the proposed A-
COOL is a signature-free multi-valued ABA protocol that
reaches an agreement on an `-bit value with communication
complexity O(max{n`, nt log t}), given n ≥ 5t+ 1.

Proof. The proposed A-COOL protocol is provided in Sec-
tion IV.

Theorem 1 implies that the proposed A-COOL protocol
achieves the optimal communication complexity O(n`) when
` ≥ t log t. The following result is directly derived from
Theorem 1.

Corollary 1 (Communication complexity exponent). For the
proposed A-COOL protocol, when n ≥ 5t+ 1, the communi-
cation complexity exponent is

β(α, δ) = max{1 + α, 1 + δ}. (2)

The proposed A-COOL protocol does not assume the cryp-
tographic machinery such as hashing and signature (signature
free). Also, the proposed protocol can tolerate the computa-
tionally unbounded adversary (information-theoretic secure).

IV. THE PROPOSED A-COOL PROTOCOL

In this section, we will provide the proposed A-COOL
protocol. This proposed A-COOL protocol seeks to reach an
agreement on an `-bit value w over n distributed processors
{Pi}ni=1 under asynchronous communication. In the design of
the A-COOL protocol, coding scheme is used to reduce the
communication complexity during the information exchange
steps. Specifically, the (n, k) Reed-Solomon error correction
code will be used in the protocol design. We will show
that the proposed A-COOL is a signature-free multi-valued
ABA protocol that reaches an agreement on an `-bit value
with communication complexity O(max{n`, nt log t}), when
n ≥ 5t+ 1. This result serves as the proof of Theorem 1.

The proposed A-COOL protocol is composed of at most
four phases, as shown in Algorithm 1. The proposed protocol
is guaranteed to satisfy the termination, consistency, and



validity conditions. In what follows, we will describe the four
phases in detail. In the description of the proposed A-COOL,
we will first consider the case of t ≤ n−1

5 and t = Ω(n).
Later on we will also discuss the case of relatively small t,
compared to n.

We first define some notations that will be used in the pro-
tocol design. Let w(i) be the updated value at Pi, i ∈ [1 : n].
Let u

[p]
i (j) be the binary link indicator for Pi and Pj , for

p ∈ [1 : 3] and i, j ∈ [1 : n]. Let s
[p]
i be the binary success

indicator at Pi, for p ∈ [1 : 3] and i ∈ [1 : n]. In our design the
initial value of w(i) is set as w(i) = wi, i ∈ [1 : n]. The binary
link indicator is initially set as u

[1]
i (j) = 0, i, j ∈ [1 : n].

A. Phase 1: exchange symbols and update information

The main idea of Phase 1 is to exchange coded symbols
and update information.

1) Encode and exchange symbols: By applying Reed-
Solomon error correction code, Pi, i ∈ [1 : n], first encodes
its `-bit initial value wi into `/k-bit symbols as

y
(i)
j ,hT

jwi, j ∈ [1 : n] (3)

where hj is defined as hj ,[hj,1, hj,2, · · · , hj,k]T, for

hj,m,
k∏
p=1
p 6=m

j − p
m− p

, j ∈ [1 : n], m ∈ [1 : k]. (4)

In our protocol design, the parameter k is designed as
k,b t5c + 1. Note that for the (n, k) Reed-Solomon error
correction code constructed in the Galois Field GF (2c), the
condition of n ≤ 2c−1 needs to be satisfied (cf. [47]). In this
protocol, the parameter c is designed as

c,
⌈max{`, (t/5 + 1) · log(n+ 1)}

k

⌉
. (5)

It can be verified that the condition of n ≤ 2c − 1 is satisfied
with the designed parameters k and c. In this protocol, each
coded symbol y(i)j has c bits. After this encoding process, Pi,
i ∈ [1 : n], sends a pair of coded symbols (y

(i)
j , y

(i)
i ) to Pj

for j ∈ [1 : n] \ i.
2) Update information: Upon receiving n − t pairs of

symbols {(y(j)i , y
(j)
j )}j , Pi compares the received (y

(j)
i , y

(j)
j )

with its symbol pair (y
(i)
i , y

(i)
j ) and sets a link indicator u

[1]
i (j)

as

u
[1]
i (j) =

{
1 if (y

(j)
i , y

(j)
j ) = (y

(i)
i , y

(i)
j ) (6)

0 else

for i ∈ [1 : n]. The value of u
[1]
i (j) = 0 implies that Pi

and Pj might have mismatched value, i.e., w(i) 6= w(j). If
u
[1]
i (j) = 0, we consider the pair of (y

(j)
i , y

(j)
j ) from Pj as

a mismatched symbol pair at Pi. By counting the number of
mismatched symbol pairs, Pi sets a success indicator s

[1]
i as

s
[1]
i =

{
1 if

∑n
j=1 u

[1]
i (j) ≥ n− 2t (7)

0 else

for i ∈ [1 : n]. The event of s
[1]
i = 0 means that the number

of mismatched symbol pairs is more than 2t, which implies
that the initial value of Pi does not match the majority of
other processors’ initial values. If s

[1]
i = 0, Pi updates w(i)

as w(i) = φ (a default value), else keeps the original value of
w(i).

3) Exchange success indicators: Pi, i ∈ [1 : n], sends the
value of success indicator s

[1]
i to Pj , j ∈ [1 : n] \ i. Upon

receiving n− t success indicators {s[1]j }j , Pi creates the sets:

S1 ,{i : s
[1]
j = 1, j ∈ [1 : n]}, S0 ,[1 : n] \ S1 (8)

based on {s[1]j }j . In this step, different processors might have
different views on S0 and S1, due to the inconsistent value
possibly sent from dishonest processors.

Remark 1. In Phase 1, since y(i)j defined in (3) has c bits,
the communication complexity of exchanging coded data (see
Line 3 in Algorithm 1), denoted by b1, is b1 = 2cn(n −
1) bits. Since the success indicator s

[1]
i has only 1 bit, the

communication complexity of exchanging success indicators
(see Line 14), denoted by b2, is b2 = n(n− 1) bits.

Remark 2. Note that dishonest processors could send arbitrary
(inconsistent) value to different honest processors, which could
make honest processors output their updated values differently
in this phase. Phase 2 will further handle the issue of incon-
sistent updated values among honest processors.

B. Phase 2: mask errors, and update success indicator

In this phase, the main goal is to mask errors from honest
processors, based on the result of Phase 1.

1) Mask errors: If s
[1]
i = 1, Pi sets u

[2]
i (j) = u

[1]
i (j),∀j ∈

S1 and u
[2]
i (j) = 0, ∀j ∈ S0.

2) Exchange success indicators: If s
[1]
i = 1, Pi updates

s
[2]
i as in (7) using updated values of {u[2]

i (j)}nj=1, else sets
s
[2]
i = 0. Then Pi sends s

[2]
i to Pj , j ∈ [1 : n] \ i. If s

[2]
i = 0,

Pi updates w(i) as w(i) = φ, else keeps the original value of
w(i).

3) Update S0 and S1: Upon receiving n − t success
indicators {s[2]j }j , Pi updates the sets of S0 and S1 as in (8)
for i ∈ [1 : n].

Remark 3. Since the success indicator s
[2]
i has 1 bit, the

communication complexity of exchanging success indicators
in Phase 2 (see Line 26 in Algorithm 1), denoted by b3, is
b3 = n(n− 1) bits.

C. Phase 3: mask errors, update information, and vote

In Phase 3, the main goal is to mask the rest of the errors
from the honest processors, and then vote for stopping in this
phase or going to Phase 4.

1) Mask errors: If s
[2]
i = 1, Pi sets u

[3]
i (j) = u

[2]
i (j),∀j ∈

S1 and u
[3]
i (j) = 0, ∀j ∈ S0.

2) Exchange success indicator: If s
[2]
i = 1, Pi updates s

[3]
i as

in (7) using updated values of {u[3]
i (j)}nj=1, else sets s

[3]
i = 0.

Then Pi sends (s
[3]
i , y

(i)
j ) to Pj , j ∈ [1 : n] \ i. If s

[3]
i = 0,



Algorithm 1 : A-COOL protocol, code for Pi, i ∈ [1 : n]

1: Set w(i) = wi; u
[1]
i (j) = 0, j ∈ [1 : n].

Phase 1

2: Pi encodes wi into n symbols as y(i)j ,hT
jwi, j ∈ [1 : n].

3: Pi sends (y
(i)
j , y

(i)
i ) to Pj , ∀j ∈ [1 : n] \ i.

4: upon receiving n− t pairs of symbols {(y(j)i , y
(j)
j )}j

5: for each received (y
(j)
i , y

(j)
j ) do

6: if
(
(y

(j)
i , y

(j)
j ) == (y

(i)
i , y

(i)
j )
)

then
7: Pi sets u

[1]
i (j) = 1.

8: else
9: Pi sets u

[1]
i (j) = 0.

10: if
(∑n

j=1 u
[1]
i (j) >= n− 2t

)
then

11: Pi sets s
[1]
i = 1.

12: else
13: Pi sets s

[1]
i = 0 and w(i) = φ.

14: Pi sends s
[1]
i to Pj , j ∈ [1 : n] \ i.

15: upon receiving n− t success indicators {s[1]j }j
16: Pi sets S1 = {i : s

[1]
j = 1, j ∈ [1 : n]},

S0 = [1 : n] \ S1.

Phase 2

17: if (s
[1]
i == 1) then

18: Pi sets u
[2]
i (j) = u

[1]
i (j),∀j ∈ S1.

19: Pi sets u
[2]
i (j) = 0,∀j ∈ S0.

20: if
(∑n

j=1 u
[2]
i (j) >= n− 2t

)
then

21: Pi sets s
[2]
i = 1.

22: else
23: Pi sets s

[2]
i = 0 and w(i) = φ.

24: else
25: Pi sets s

[2]
i = 0.

26: Pi sends s
[2]
i to Pj , j ∈ [1 : n] \ i.

27: upon receiving n− t success indicators {s[2]j }j
28: Pi updates S0 and S1, based on {s[2]j }j .

Phase 3

29: if (s
[2]
i == 1) then

30: Pi sets u
[3]
i (j) = u

[2]
i (j),∀j ∈ S1.

31: Pi sets u
[3]
i (j) = 0,∀j ∈ S0.

32: if
(∑n

j=1 u
[3]
i (j) >= n− 2t

)
then

33: Pi sets s
[3]
i = 1.

34: else
35: Pi sets s

[3]
i = 0 and w(i) = φ.

36: else
37: Pi sets s

[3]
i = 0.

38: Pi sends (s[3]i , y
(i)
j ) to Pj , j ∈ [1 : n] \ i.

39: upon receiving n− t success indicators {s[3]j }j
40: Pi updates S0 and S1, based on {s[3]j }j .
41: if (

∑
j s

[3]
j >= n− 2t) then

42: Pi sets vi = 1.
43: else
44: Pi sets vi = 0.
45: Pi runs the one-bit consensus with all other processors

on the n votes {vi}ni=1, by using the one-bit consensus
protocol from [30].

46: if (the consensus of the votes {vi}ni=1 is 1) then
47: Pi goes to next phase.
48: else
49: Pi outputs w(i) = φ as a final consensus and stops.

Phase 4

50: if (s[3]i == 0) then
51: y

(i)
i ← Majority({y(j)i : j ∈ S1}).

52: Pi sends y(i)i to Pj , ∀j ∈ [1 : n] \ i.
53: if (s[3]i == 0) then
54: upon receiving n− t symbols {y(j)j }j
55: Pi decodes message and updates it into w(i) based

on the received symbols.
56: Pi outputs w(i) as the final consensus and stops.

Pi updates w(i) as w(i) = φ, else keeps the original value of
w(i).

3) Update S0 and S1: Upon receiving n − t success
indicators {s[3]j }j , Pi updates the sets of S0 and S1 as in (8)
for i ∈ [1 : n].

4) Vote: Pi, i ∈ [1 : n], sets a binary vote as

vi =

{
1 if

∑
j s

[3]
j ≥ n− 2t (9)

0 else

based on the n − t received success indicators {s[3]j }j . vi
denotes a vote from Pi for stopping in this phase or going
to Phase 4.

5) One-bit consensus on the n votes: Pi, i ∈ [1, n], runs
the one-bit consensus with all other processors on the n votes

{vi}ni=1, by using the one-bit consensus protocol from [30].
The consensus can be reached with O(n2) bits of communi-
cation complexity, and O(1) rounds of round complexity, for
t < n/5. If the consensus of the votes {vi}ni=1 is 0, then every
honest processor Pi outputs w(i) = φ as a final consensus and
stops, else every honest processor goes to Phase 4.

Remark 4. In Phase 3, since s
[3]
i and y

(i)
j has 1 bit and c

bits respectively, the communication complexity of exchanging
pairs of (s[3]i , y

(i)
j ), i ∈ [1 : n], j ∈ [1 : n] \ i (see Line 38 in

Algorithm 1), denoted by b4, is b4 = (1 + c)n(n− 1) bits.

Remark 5. The work of [30] provides the most efficient
unauthenticated binary ABA protocol that achieves the com-
munication complexity O(n2) and round complexity O(1),



assuming a common coin oracle. Since we run the one-
bit consensus from [30], the communication complexity of
invoking one-bit consensus (see Line 45 in Algorithm 1),
denoted by b5, is b5 = O(n2) bits. Since the round complexity
of this step is constant (i.e., O(1)) and the round complexity of
other steps is also constant, it gives that the round complexity
of the proposed protocol is constant, i.e., O(1).

Remark 6. It can be proved that at the end of this phase,
there exists at most 1 group of honest processors, where the
honest processors within this group have the same non-empty
updated value (w(i) 6= φ), and the honest processors outside
this group have the same empty updated value (w(i) = φ) (see
Lemma 6 in Section V-B).

D. Phase 4: exchange coded symbols and make consensus

The idea of this phase is to calibrate and update the final
value of the honest processors in the set of S0 such that every
honest processor outputs the same value as the final consensus.

1) Update symbols with majority rule: Pi, i ∈ S0, updates
the value of y

(i)
i as y

(i)
i ← Majority({y(j)i : j ∈ S1}),

where the coded symbols {y(j)i }j∈S1 were received in Phase 3.
Majority(•) is a function defined to return the most frequent
value in the list, based on the majority rule. Note that Pi,
i ∈ S1 keeps its previous value of y(i)i .

2) Broadcast updated symbol: Pi, i ∈ [1 : n], sends the
value of y(i)i to Pj , ∀j ∈ [1 : n] \ j.

3) Decode: Upon receiving n − t coded symbols {y(j)j }j ,
Pi decodes message and updates it into w(i) using the n− t
received symbols, for i ∈ S0. For Pi, i ∈ S1, it skips this step.

4) Stop: Pi, i ∈ [1 : n], outputs w(i) as the final consensus
and stops.

Remark 7. In Phase 4, since y(i)i has c bits, the communi-
cation complexity of exchanging the coded symbols (see Line
52 in Algorithm 1), denoted by b6, is b6 = cn(n− 1) bits.

Remark 8. Note that up to bn−k2 c Byzantine errors can be
corrected in the design of an (n, k) error correction code,
using some efficient decoding algorithms [47]–[49]. It can be
verified that in Step 3 of this phase, every honest processor
decodes and outputs the same message, with the parameter
design of k and c in this protocol.

E. Performance analysis of A-COOL

This section provides the performance analysis of the pro-
posed A-COOL protocol, as stated in Lemma 1 and Lemma 2.
Lemmas 3-5 will be used for the proof of Lemma 2.

Lemma 1. A-COOL reaches an agreement on an `-bit value
with the communication complexity of O(max{n`, nt log t})
bits and the round complexity of O(1) rounds, given n ≥
5t+ 1.

Proof. For the proposed A-COOL, it reaches an agreement on
an `-bit value given n ≥ 5t+ 1 (see Lemma 2).

By summing the communication complexity b1, b2, · · · , b6
expressed in Remarks 1, 3, 4, 5 and 7, the total communica-
tion complexity of the proposed A-COOL, denoted by b, is
computed as

b =

6∑
i=1

bi

= O(cn(n− 1) + n2)

= O(max{`/t, log n} · n(n− 1) + n2)

= O(max{`n2/t, n2 log n}) bits (10)

where c is designed as c =
⌈max{`, (t/5+1)·log(n+1)}

k

⌉
for

k =
⌊
t
5

⌋
+ 1. In the description of the proposed A-COOL,

we just considered the case of t ≤ n−1
5 and t = Ω(n). For

this case, the total communication complexity shown in (10)
can be rewritten as b = O(max{n`, nt log t}) bits.

For the case with relatively small t compared to n, the same
communication complexity performance can be achieved. In
this case, n′ = 5t+1 processors are first selected to run the A-
COOL protocol described in Section IV, by replacing n with
n′, and replacing c with c′,dmax{`, (t/5+1)·log(n′+1)}

k e. After
the consensus, the selected n′ processors will send the coded
symbol of the agreed value to the rest of the processors, that
is, each of the selected n′ processors sends a coded symbol
with c′ bits. The communication complexity of this step is
n′(n−n′)c′ bits. By combining the above steps for this case,
it can be computed that the total communication complexity
is b = O(max{`n, nt log t}) bits.

By combining the above two cases, we conclude that
the total communication complexity of A-COOL is b =
O(max{n`, nt log t}) bits.

Given that the round complexity of the one-bit consensus
in Phase 3 is constant, it implies that the round complexity of
the proposed protocol is constant, i.e., O(1).

Lemma 2. The proposed A-COOL is a signature-free ABA
protocol, which satisfies the termination, consistency and
validity conditions, given n ≥ 5t+ 1.

Proof. The proof of Lemma 2 will use tools from coding
theory and graph theory. Lemmas 3-5 will be used for the
proof of Lemma 2.

Lemma 3. Given n ≥ 5t + 1, every honest processor
eventually almost-surely terminates in A-COOL.

Proof. In the proposed A-COOL protocol, given n ≥ 5t+ 1,
it is guaranteed that every honest processor eventually almost-
surely terminates at the end of Phase 3 and outputs φ as a final
consensus, or almost-surely terminates at the end of Phase 4
and outputs updated value w(i) as a final consensus.

Lemma 4. Given n ≥ 5t + 1, all of the honest processors
decide on the same value in A-COOL.

Proof. See Section V-B.



Lemma 5. Given n ≥ 5t+ 1, if every honest processor holds
an initial value w, then at the end of A-COOL all of the honest
processors eventually decide on this initial value w.

Proof. See Section V-C.

From Lemma 3, Lemma 4, and Lemma 5, we can conclude
that given n ≥ 5t+1, the termination, consistency and validity
conditions are satisfied in the proposed A-COOL protocol. At
this point, we complete the proof of Lemma 2.

V. ANALYSIS ON CONSISTENCY AND VALIDITY
PROPERTIES OF A-COOL

This section will provide an analysis of the consistency
and validity properties of the A-COOL protocol. Specifically,
we will prove Lemma 4 and Lemma 5 in Section V-B and
Section V-C, respectively. Let us first define network groups
in Section V-A.

A. Groups

We first define some groups over n distributed processors,
based on the initial values of processors and the values of
success indicators in each phase. We define the indices of all
of the dishonest processors as Group F , with |F| = t. We
also define some groups of honest processors as

Al,{i :wi=w̄l, i /∈ F , i ∈ [1 : n]}, l ∈ [1 : η] (11)

A[p]
l ,{i : s[p]i =1,wi=w̄l, i /∈F , i∈ [1 :n]}, l ∈ [1 :η[p]] (12)

B[p] ,{i : s[p]i =0, i /∈ F , i ∈ [1 : n]} (13)

for p ∈ {1, 2, 3}, where w̄1, w̄2, · · · , w̄η are different non-
empty `-bit values and η, η[1], η[2], η[3] are non-negative inte-
gers with η[3] ≤ η[2] ≤ η[1] ≤ η. Group Al defined in (11)
denotes a subset of honest processors who have the same initial
value for l ∈ [1 : η]. GroupA[p]

l defined in (12) denotes a set of
honest processors who have the same non-empty updated value
at the end of Phase p for l ∈ [1 : η[p]] and p ∈ {1, 2, 3}. Group
B[p] defined in (13) denotes a set of honest processors whose
success indicators are 0 at the end of Phase p for p ∈ {1, 2, 3}.

Based on the definitions of (11)-(13), it holds true that
η∑
l=1

|Al|+ |F| = n (14)

η[p]∑
l=1

|A[p]
l |+ |B

[p]|+ |F| = n, p ∈ {1, 2, 3}. (15)

For some i ∈ Al, if (w̄l − w̄j) is in the null space of hi,
then hT

i w̄l = hT
i w̄j will be satisfied for some different l and

j. Based on this scenario, we further divide Group Al and
Group A[p]

l , p ∈ {1, 2, 3} into some sub-groups defined by

Al,j ,{i : i ∈ Al,hT

i w̄l = hT

i w̄j}, j 6= l, j, l ∈ [1 : η] (16)

Al,l,Al \ {∪ηj=1,j 6=lAl,j}, l ∈ [1 : η] (17)

A[p]
l,j ,{i : i∈A

[p]
l ,h

T

i w̄l=hT

i w̄j}, j 6= l, j, l∈ [1 :η[p]] (18)

A[p]
l,l ,A

[p]
l \ {∪

η[p]

j=1,j 6=lA
[p]
l,j}, l ∈ [1 : η[p]]. (19)

B. Proof of Lemma 4

In this sub-section, we will provide the proof of Lemma 4.
Specifically, given n ≥ 5t + 1, we will prove that all of the
honest processors decide on the same value in A-COOL. We
first provide Lemma 6, which will be used in the proof of
Lemma 4.

Lemma 6. In the A-COOL protocol with n ≥ 5t+1, at the end
of Phase 3 there exists at most 1 group of honest processors,
where the honest processors within this group have the same
non-empty updated value, and the honest processors outside
this group have the same empty updated value.

Proof. Note that proving Lemma 6 is equivalent to proving
η[3] ≤ 1 (see the definition in (12)). We first provide Lemmas 7
and 8, which will be used to prove the inequality of η[3] ≤ 1.

Lemma 7. It is true that η[2] ≤ 2 in A-COOL with n ≥ 5t+1.

Proof. See Appendix A.

Lemma 8. It is true that η[3] ≤ 1 when η[2] = 2, given
n ≥ 5t+ 1 in A-COOL.

Proof. See Appendix B.

The result of Lemma 7 reveals that η[2] ≤ 2 must be
satisfied. It is apparently true that η[3] ≤ 1 when η[2] < 2,
due to the fact that η[3] ≤ η[2] (see (11)-(12)). Moreover, the
result of Lemma 8 reveals that η[3] ≤ 1 also holds true when
η[2] = 2. At this point, it can be concluded that η[3] ≤ 1
in A-COOL with n ≥ 5t + 1, which completes the proof of
Lemma 6.

In the Phase 3 of A-COOL, all processors run the one-
bit consensus on the n votes {vi}ni=1, by using the one-bit
consensus protocol from [30]. Based on the consensus of the
votes, two cases will be considered for proving Lemma 4.

In the first case where the consensus of the votes {vi}ni=1

is 0, each honest processor Pi outputs w(i) = φ as a final
consensus and stops in Phase 3, for i ∈ [1 : n]. It implies that
all of the honest processors decide on the same value.

In the second case where the consensus of the votes {vi}ni=1

is 1, each honest processor Pi goes to Phase 4, for i ∈ [1 : n].
In this case, at least one honest processor Pi votes vi = 1, for
i /∈ F . Otherwise, if all of the honest processors vote 0, the
consensus of the votes {vi}ni=1 should be 0, which contradicts
the condition of this case. For the honest processor Pi who
votes vi = 1, the received success indicators satisfy∑

j

s
[3]
j ≥ n− 2t. (20)

It implies that at least n− 3t honest processors send success
indicators as ones in Phase 3, i.e.,∑

j∈∪η
[3]

l=1A
[3]
l

s
[3]
j ≥ n− 3t. (21)

The results of (21) and Lemma 6 imply that at the end of
Phase 3 there exists exactly 1 group of honest processors with



size at least n − 3t, where the honest processors within this
group have the same non-empty updated value, and the honest
processors outside this group have the same empty updated
value. In other words, in this case, it holds true that

η[3] = 1 (22)

|A[3]
1 | ≥ n− 3t (23)

wi = w̄1, ∀i ∈ A[3]
1 (24)

where (22) and (23) follow from (21) and Lemma 6; (24) is
from the definition of A[3]

l in (12).
Based on the symbols of y(j)i received in Phase 3, Pi, i ∈

S0, updates the value of y(i)i in the first step of Phase 4 as
y
(i)
i ← Majority({y(j)i : j ∈ S1}) using the majority rule. In

this step, it is true that A[3]
1 ⊆ S1 and |A[3]

1 | > |F|, which
guarantees that Pi could update the value of y(i)i as

y
(i)
i ← Majority({y(j)i : j ∈ S1}) = hT

i w̄1,

for i ∈ S0 \ F . At the end of this step, the value y(i)i of Pi
is updated to y

(i)
i = hT

i w̄1, for i /∈ F . In the second step
of Phase 4, Pi, i ∈ [1 : n], sends the updated value of y(i)i
to Pj , ∀j ∈ [1 : n] \ i. In the third step of Phase 4, Pi,
i ∈ S0 decodes its message, with the received n− t symbols
{y(j)j }j . It is guaranteed that n − 2t out of n − t symbols
are expressed as y(j)j = hT

jw̄1,∀j /∈ F . Since the number
of symbols that are not encoded with the message w̄1 is no
more than t, Pi could decode its message and update it as
w(i) = w̄1 in this step, for i ∈ S0. Meanwhile, Pi keeps its
original value and outputs w(i) = w̄1, for i ∈ S1. Therefore,
at the end of Phase 4, all of the honest processors decide on
the same value, i.e., w(i) = w̄1, ∀i /∈ F . At this point, we
complete the proof of Lemma 4.

C. Proof of Lemma 5
In this subsection, we will provide the proof of Lemma 5.

Specifically, we will prove that given n ≥ 5t + 1, if every
honest processor holds an initial value w, then at the end of
A-COOL all of the honest processors eventually decide on this
initial value w.

In the scenario that every honest processor holds an initial
value w, from Phase 1 to Phase 3, all honest processors will
set their success indicators as ones and keep their updated
value exactly the same as the initial value w. In Phase 3, the
consensus of the votes {vi}ni=1 should be 1 and all honest
processors will go to Phase 4. Given the same updated value
w and the same nonzero success indicator as inputs at all of
the honest processors, in Phase 4 all honest processors will
output the values that are exactly the same as the initial value
w. Therefore, for this scenario, all of the honest processors
eventually decide on the initial value w. At this point we
complete the proof of Lemma 5.

VI. CONCLUSION

In this work, we studied the ABA problem and proposed a
new signature-free protocol, i.e., A-COOL, which is commu-
nication efficient. Specifically, the proposed A-COOL protocol

achieves the optimal communication complexity O(n`) when
` ≥ t log t, given n ≥ 5t+1. The proposed A-COOL protocol
can also be extended to the asynchronous Byzantine broadcast
(ABB) problem, by adding one step of broadcasting `-bit
message from the leader to the distributed processors. The
`-bit message sent from the leader will serve as the initial
value at every distributed node in the ABA problem. Then, the
proposed A-COOL can be applied here to achieve the same
performance as in the ABA setting, in terms of resilience,
communication complexity and round complexity.

APPENDIX

A. Proof of Lemma 7

In this sub-section, we will provide the proof of Lemma 7.
Specifically, we will prove that η[2] ≤ 2 holds true in A-COOL
with n ≥ 5t + 1. Before proving Lemma 7, we first provide
Lemma 9 that will be used in the proof.

Lemma 9. When η[2] ≥ 1, it is true that |Al| ≥ n − 29t/9,
for any l ∈ [1 : η[2]].

Proof. See Appendix C.

We will use proof by contradiction technique in the proof
of Lemma 7. Let us first assume

η[2] ≥ 3. (25)

Given this assumption, the result of Lemma 9 reveals that

|Al| ≥ n− 29t/9 ∀l ∈ [1 : η[2]]. (26)

By summing the bounds |Al|,∀l ∈ [1 : η[2]] in (26), it gives

η[2]∑
l=1

|Al| ≥ η[2](n− 29t/9)

≥ 3(n− 29t/9) (27)
= (n− t) + (2n− 26t/3)

> (n− t) (28)

where (27) follows from the assumption of η[2] ≥ 3; and (28)
uses the condition of n ≥ 5t+1, implying that 2n−26t/3 > 0.

The result of (28) reveals that
∑η[2]

l=1 |Al| > n − t, which
contradicts with the identify of

∑η[2]

l=1 |Al| ≤
∑η
l=1 |Al| =

n− t (see (14)), i.e., in total there are n− t honest distributed
processors. Thus, we conclude that the assumption in (25)
leads to a contradiction, which implies that η[2] is bounded by

η[2] ≤ 2.

At this point, we complete the proof of Lemma 7.

B. Proof of Lemma 8

This sub-section provides the proof of Lemma 8. Specifi-
cally, we will prove that η[3] ≤ 1 holds true when η[2] = 2,
given n ≥ 5t+ 1 in A-COOL. This proof will use the results
of Lemmas 10 and 12 provided as below.

Lemma 10. It is true that η[1] = 2 when η[2] = 2, given
n ≥ 5t+ 1 in A-COOL.



Proof. The proof uses the results from Lemma 9 and [16,
Lemma 7] (see its statement in Lemma 11). Proof by contra-
diction technique is also used in this proof.

Lemma 11. [16, Lemma 7] For Al,j and A[1]
l,j defined in (16)

and (18), and for η ≥ η[1] ≥ 2, the following inequalities hold
true

|Al,j |+ |Aj,l| <k, ∀j 6= l, j, l ∈ [1 : η] (29)

|A[1]
l,j |+ |A

[1]
j,l| <k, ∀j 6= l, j, l ∈ [1 : η[1]] (30)

where k is designed as k,b t5c+ 1.

When η[2] = 2, we have η[1] ≥ 2, due to the fact that η[1] ≥
η[2]. To prove η[1] = 2 given η[2] = 2, we will assume η[1] > 2
and prove that this assumption will lead to a contradiction.
When η[2] = 2, it holds true that

η∑
l=3

|Al| = n− |F| −
2∑
l=1

|Al| (31)

≤ n− t− 2(n− 29t/9) (32)
≤ 4t/9− 1 (33)

where (31) is from (14); (32) follows from Lemma 9; and (33)
uses the condition of n ≥ 5t+ 1.

Given the assumption of η[1] > 2, there exists an i? ∈
A[1]
l? ⊆ Al? for l? ≥ 3, such that s

[1]
i? = 1 (see (12)). It implies

that ∑
j∈∪ηl=1Al

u
[1]
i? (j) ≥ n− 2t− t

(see (7)), which can be rewritten as∑
j∈Al?∪{∪ηl=1,l 6=l?Al,l?}

u
[1]
i? (j) ≥ n− 2t− t, (34)

due to the fact that u
[1]
i? (j) = 0, ∀j ∈ {∪ηl=1Al} \ {Al? ∪

{∪ηl=1,l 6=l?Al,l?}}. For i? ∈ A[1]
l? ⊆ Al? and l? ≥ 3, the size

of Al? ∪ {∪ηl=1,l 6=l?Al,l?} can be bounded by

|Al? ∪ {∪ηl=1,l 6=l?Al,l?}| ≤
2∑
l=1

|Al,l? |+
η∑
l=3

|Al| (35)

≤ 2(k − 1) + 4t/9− 1 (36)
= 2bt/5c+ 4t/9− 1 (37)
< n− 3t (38)

where (36) is from the result in Lemma 11 (see (29)) and the
result in (33); (37) is from k =

⌊
t
5

⌋
+ 1. Note that the result

of (38) contradicts the conclusion in (34). Thus, we conclude
that the assumption of η[1] > 2 leads to a contradiction. It
implies that η[1] is bounded by η[1] = 2 when η[2] = 2, which
completes the proof of Lemma 10.

Lemma 12. It is true that η[3] ≤ 1 if η[1] = 2, given n ≥ 5t+1
in A-COOL.

Proof. See Appendix D.

Based on the results of Lemmas 10 and 12, now we can
prove Lemma 8. Given η[2] = 2, Lemma 10 reveals that η[1] =
2. Moreover, given η[1] = 2, Lemma 12 reveals that η[3] ≤ 1.
Therefore, it can be concluded that η[3] ≤ 1 when η[2] = 2.
At this point we complete the proof of Lemma 8.

C. Proof of Lemma 9

In this sub-section we will provide the proof of Lemma 9.
Specifically, when η[2] ≥ 1, we will prove that |Al| ≥
n − 29t/9 holds true, for any l ∈ [1 : η[2]]. Before proving
Lemma 9, we will first prove Lemma 13 (see below), whose
result will be used in the proof of Lemma 9. The proofs of
Lemmas 9 and 13 follow closely from the proofs of Lemmas 9
and 8 in the work of [16] (see Section VI-D and VI-C in [16]),
respectively. The proofs borrow tools from graph theory.

We will consider a graph G = (P, E), where P = [1 : n−t]
is a set of n − t vertices and E is a set of edges. In this
graph, there exists a set C ⊆ P \ {i?} such that the following
conditions are satisfied:

Ei?,i = 1 ∀i ∈ C (39)∑
j∈P

Ei,j ≥ n− 3t ∀i ∈ C (40)

|C| ≥ n− 3t− 1 (41)

for a given vertex i? ∈ P , where Ei,j is defined as Ei,j = 1 if
there is an edge between vertex i and vertex j, else Ei,j = 0.
We define D ⊆ P as the set of vertices, in which each vertex
in D is connected with at least k vertices in C, i.e.,

D,
{
i :
∑
j∈C

Ej,i ≥ k, i ∈ P \ {i?}
}

(42)

for k = b t5c + 1. The following lemma provides a bound on
the size of D.

Lemma 13. For any graph G = (P, E) specified by (39)-
(41) and for the set D ⊆ P defined by (42), it is true that
|D| ≥ n− 29t/9− 1, given n ≥ 5t+ 1.

Proof. For a graph G = (P, E) specified by (39)-(41), the
number of edges connected between C and P\{i?} is bounded
by

me ≥ |C| · (n− 3t− 1). (43)

The idea of bounding the size of D defined as in (42) follows
from the work of [16] (see VI-C in [16]). We consider the same
extreme scenario, as described in [16], that has the minimum
size of D. Let D∗ be the set defined as in (42) of the considered
extreme scenario, with size |D∗|. By considering the extreme
scenario, it holds true that

(k − 1)(n− t− 1− |D∗|) + τ(|D∗| − 1) + τ0 = me (44)



for τ , |C| and for some τ0 such that k ≤ τ0 ≤ τ . Therefore,
from (44) we can bound |D∗| as

|D∗| = me + τ − τ0 − (k − 1)(n− t− 1)

τ − (k − 1)
(45)

≥ me − (k − 1)(n− t− 1)

τ − (k − 1)
(46)

≥ τ(n− 3t− 1)− 2(k − 1)(n− t− 1)

τ − (k − 1)
(47)

= (n− 3t− 1)− 2(k − 1)t

τ − (k − 1)

≥ n− 3t− 1− 2(k − 1)t

n− 3t− 1− (k − 1)

≥ n− 29t/9− 1 (48)

for τ = |C| and k= b t5c + 1, where (46) stems from τ0 ≤ τ ;
(47) is from (43). Since |D∗| is the size of D∗ of the extreme
scenario, we can bound |D| as |D| ≥ |D∗| ≥ n − 29t/9 − 1,
for any other scenario of the graph G = (P, E) that satisfy
the conditions (39)-(41). At this point we complete the proof
of Lemma 13.

Now let us focus on the proof of Lemma 9. This proof
follows from the proof of Lemma 9 in the work of [16] (see
Section VI-D in [16]). The proof includes four steps, which
are provided as below.

Step (a): In this step, we transform the distributed network
into a graph that is within the family of graphs G = (P, E)
specified by (39)-(41). Specifically, when η[2] ≥ 1, considering
a fixed i? for i? ∈ A[2]

l? and l? ∈ [1 : η[2]], we define a subset
of {∪η

[1]

p=1A
[1]
p } \ {i?} of honest processors as

C′,{j : u
[1]
i? (j) = 1, j ∈ {∪η

[1]

p=1A[1]
p } \ {i?}}. (49)

By following the proof idea of Lemma 9 in [16], the following
conclusions hold true:

u
[1]
i? (j) = 1, ∀j ∈ C′ (50)∑

i∈∪ηl=1Al

u
[1]
j (i) ≥ n− 3t, ∀j ∈ C′ (51)

|C′| ≥ n− 3t− 1. (52)

Then we map the distributed network into a graph G =
(P ′, E ′), where P ′ is a set of n−t honest processors (vertices),
and E ′ is a set of edges. In this graph, we have P ′,∪ηl=1Al
and Ei,j = u

[1]
i (j),∀i, j ∈ P ′. In the graph G = (P ′, E ′), for

a given i? ∈ A[2]
l? ⊆ P ′, there exists a set C′ ⊆ P ′ \ {i?} such

that the conditions in (50)-(52) (Similar to the conditions in
(39)-(41)) are satisfied. This graph G = (P ′, E ′) falls into a
family of graphs satisfying (39)-(41).

Step (b): In this step, we will bound the size of D′, which
is defined as

D′,
{
i :

∑
j∈C′

u
[1]
j (i) ≥ k, i ∈ {∪ηl=1Al} \ {i

?}
}

(53)

(similar to the definition of D in (42)), where k is defined as
k,b t5c+ 1. Since the graph G = (P ′, E ′) falls into a family
of graphs satisfying (39)-(41), the result of Lemma 13 reveals
that the size of D′ is bounded by

|D′| ≥ n− 29t/9− 1. (54)

Step (c): In this step, by following the similar argument of
Step (c) in Section VI-D of [16]. It holds true that

wi = wi? ∀i ∈ D′. (55)

That is, every processor in D′ has the same initial value as
Pi? , for i? ∈ A[2]

l? and l? ∈ [1 : η[2]].
Step (d): In this step, we will bound the size of Al? , i.e.,

|Al? |, for l? ∈ [1 : η[2]]. The result of (55) reveals that D′ ∪
{i?} ⊆ Al? , for i? ∈ A[2]

l? and l? ∈ [1 : η[2]]. Therefore, |Al? |
can be bounded by

|Al? | ≥ |D′|+ 1 ≥ n− 29t/9

for l? ∈ [1 : η[2]]. At this point we complete the proof of
Lemma 9.

D. Proof of Lemma 12

In this sub-section we provide the proof of Lemma 12.
Specifically, we will prove that η[3] ≤ 1 holds true if η[1] = 2,
given n ≥ 5t + 1. The proof follows from the proof of
Lemma 10 in the work of [16] (see Section VI-E in [16]).

Given η[1] = 2, let us first focus on the case with two
conditions: |A[1]

1 |+ |B[1]| ≥ 2t+1 and |A[1]
2 |+ |B[1]| < 2t+1.

By following the proof steps of Lemma 10 in [16], in the first
step of Phase 2, it holds true that

u
[2]
i (j) = 0, ∀j ∈ A1 ∪ B[1], i ∈ A[1]

2,2. (56)

Since |A[1]
1 |+ |B[1]| ≥ 2t+ 1, it implies that Pi sets

s
[2]
i = 0, ∀i ∈ A[1]

2,2 (57)

in the second step of Phase 2 (see (7)). Then, after exchanging
the success indicators and updating the sets of S0 and S1, it
is true that

B[1] ∪ A[1]
2,2 ⊆ S0. (58)

At the end of Phase 2, a subset of A[1]
2,1 might be in the list

of S0 (i.e., A[1]
2,1 ∩ {i : s

[2]
i = 0} ⊆ S0), while the rest of A[1]

2,1

is still in list of S1 (i.e., A[1]
2,1 ∩ {i : s

[2]
i = 1} ⊆ S1). We will

show that the complete set A[1]
2,1 ⊆ S0 holds true at the end of

Phase 3. By following the similar argument with proof steps
of Lemma 10 in [16], in the first step of Phase 3, it is true
that

u
[3]
i (j) = 0,∀j ∈ A[1]

1,1 ∪ A
[1]
2,2 ∪ B[1], i ∈ A

[1]
2,1 ∩ {i : s

[2]
i = 1}.

(59)



The size of A[1]
1,1 ∪ A

[1]
2,2 ∪ B[1] can be bounded by

|A[1]
1,1 ∪ A

[1]
2,2 ∪ B[1]| =|A

[1]
1,1|+ |A

[1]
2,2|+ |B[1]| (60)

=n− |F| − |A[1]
1,2| − |A

[1]
2,1| (61)

≥n− |F| − (k − 1) (62)
≥4t+ 1− (k − 1) (63)
≥3t+ 1 (64)

where (60) and (61) use the disjoint property of sets; (62) is
from Lemma 11, which implies that |A[1]

1,2|+ |A
[1]
2,1| ≤ k − 1;

(64) is from the fact that t ≥ k − 1 based on k = b t5c + 1.
The results of (59) and (64) imply that

s
[3]
i = 0, ∀i ∈ A[1]

2,1 ∩ {i : s
[2]
i = 1}, (65)

that is A[1]
2,1 ∩ {i : s

[2]
i = 1} ⊆ S0. Therefore, at this point we

have A[1]
2,1 ⊆ S0. Since we have A[1]

2,1 ⊆ S0 and A[1]
2,2 ⊆ S0

(see (58)), as well as A[1]
2 = A[1]

2,1 ∪ A
[1]
2,2, then it holds true

that

A[1]
2 ⊆ S0 (66)

at the end of Phase 3, which implies that η[3] ≤ 1.
By following the similar proof steps of the above case, one

can prove that η[3] ≤ 1 if η[1] = 2 for the case with (|A[1]
1 |+

|B[1]| < 2t + 1, |A[1]
2 | + |B[1]| ≥ 2t + 1), and the case with

(|A[1]
1 | + |B[1]| ≥ 2t + 1, |A[1]

2 | + |B[1]| ≥ 2t + 1). One can
also prove that the case with (|A[1]

1 |+ |B[1]| < 2t+1, |A[1]
2 |+

|B[1]| < 2t + 1) does not exit. At this point we complete the
proof of Lemma 12.
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