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Motivation

Corrosion in bridge structures is a
global problem.
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Corrosion in bridge structures is a
global problem.

Filling the pores in concrete with solid
materials or nanoparticles improves
the strength signi�cantly.
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Motivation

Corrosion in bridge structures is a
global problem.

Filling the pores in concrete with solid
materials or nanoparticles improves
the strength signi�cantly.

Which sizes of nanoparticles are most
ef�cient or provide a highest density?
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Case 1: Mono-Sized Sphere Regular Packing.

For simplicity, we model nanoparticles as spheres.
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Case 1: Mono-Sized Sphere Regular Packing.

For simplicity, we model nanoparticles as spheres.

Kepler's Conjecture (1611), Proved by
Hales (1998): The highest packing
density of mono-sized spheres in the
3-dim space is

�
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Case 1: Mono-Sized Sphere Regular Packing.

For simplicity, we model nanoparticles as spheres.

Kepler's Conjecture (1611), Proved by
Hales (1998): The highest packing
density of mono-sized spheres in the
3-dim space is

�
p

18
� 0:74048

.

For example, the Face-Centered
Cubic Crystal Structure in the Figure
provides the density.
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Case 2: Multi-Sized Sphere Regular Packing.

If we add smaller spheres to pack the vacancy of the previous
packing, we can increase the density further.

If we increase the ratio of the two
sizes of spheres, then we can reach
to the following density.

1 �
�

1 �
�

p
18

� 2

� 0:93265
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Random Packings

In application, nanoparticles are randomly packed and the
density will be lower than the regular packing.

In literature, there are two distinct random packings when we
pack objects in a container.

Random Close Packing—Shake the container after a
random packing.

Random Loose Packing—No shaking is given to the
container.
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Random Close Packing

In 1969, the approximate density 0.64 of random close packing
of mono-sized spheres was obtained from the experiment
packing steel spheres to a container and shaking the container.
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Random Loose Packing

There are different de�nitions for the random loose packing
according to how you pack spheres randomly.
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Random Loose Packing

There are different de�nitions for the random loose packing
according to how you pack spheres randomly.

Our Packing Method

We place the center of a new sphere
at the point (called pit) whose
z-coordinate is the lowest among the
points where new spheres touch old
three spheres.
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Experiments for Random Loose Packing

We pack spheres of radius 0:02 to a 2 � 2 � 2 container C
having a random shaped base.
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Experiments for Random Loose Packing

We pack spheres of radius 0:02 to a 2 � 2 � 2 container C
having a random shaped base.
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Experiments for Random Loose Packing

We pack spheres of radius 0:02 to a 2 � 2 � 2 container C
having a random shaped base.

The number of packed
spheres: 126856

The average of the packing
densities about the center
of C: 0:604

The in�uence from the
boundary of C: Estimated
about 30% of the radius of
the spheres

Yamada, Kanno, and Miyauchi Multi-Sized Sphere Packing



The In�uence from the boundary of C

The density distribution around @C.

The horizontal scale indicates the
distance from @C (unit=the radius

of sphere)

Yamada, Kanno, and Miyauchi Multi-Sized Sphere Packing



The In�uence from the boundary of C

The density distribution around @C.

The horizontal scale indicates the
distance from @C (unit=the radius

of sphere)

By assuming the average
density to be 0:604,
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The In�uence from the boundary of C

The density distribution around @C.

The horizontal scale indicates the
distance from @C (unit=the radius

of sphere)

By assuming the average
density to be 0:604,

we can calculate how
much we should
consider as a loss
around @C —the
distance range zero to
30% of the radius from
@C can be subtracted.
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Boundary Density

From now on, V is the volume of a container C and B is the
surface area of C.

We call the following the boundary density of C.

� (C) =
B
V
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Boundary Density

From now on, V is the volume of a container C and B is the
surface area of C.

We call the following the boundary density of C.

� (C) =
B
V

If C is a cube with the length of sides
d, then

� (Cube) =
6
d

:

Therefore, � can be any positive real
number.
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Boundary Density

From now on, V is the volume of a container C and B is the
surface area of C.

We call the following the boundary density of C.

� (C) =
B
V

If C is a shpere with radius r , then

� (Sphere) =
3
r

:
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Boundary Density

From now on, V is the volume of a container C and B is the
surface area of C.

We call the following the boundary density of C.

� (C) =
B
V

If C is a shpere with radius r , then

� (Sphere) =
3
r

:

This is the important parameter when we approximate the
packing density into a container C.
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Approximate Density for Mono-Sized Sphere Packing

Suppose we pack a container C with identical spheres of radius
r .
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Approximate Density for Mono-Sized Sphere Packing

Suppose we pack a container C with identical spheres of radius
r .

From the experiment, we can approximate the in�uence of the
@C as a loss of 0:3r neighborhood or 0:3Br volume reduction
and else use the average density 0:604.
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Approximate Density for Mono-Sized Sphere Packing

Suppose we pack a container C with identical spheres of radius
r .

From the experiment, we can approximate the in�uence of the
@C as a loss of 0:3r neighborhood or 0:3Br volume reduction
and else use the average density 0:604.

Therefore, the total density after random loose packing of
spheres with radius r can be approximated by

0:604(V � 0:3Br)
V

= 0:604 � 0:1812� r :
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Two-Sized Sphere Random Loose Packing

We pack a container C with radii r1 > r2 two sized spheres.
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Two-Sized Sphere Random Loose Packing

We pack a container C with radii r1 > r2 two sized spheres.

First, we pack C with large spheres having radius r1.

The total volume of large spheres: (0:604 � 0:1812� r1)V

The total surface area of large spheres:

(0:604 � 0:1812� r1)V
3
r1
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Two-Sized Sphere Random Loose Packing

We pack a container C with radii r1 > r2 two sized spheres.

First, we pack C with large spheres having radius r1.

The total volume of large spheres: (0:604 � 0:1812� r1)V

The total surface area of large spheres:

(0:604 � 0:1812� r1)V
3
r1

Let us consider the remaining space C1 of the container.

The volume: V1 = V � (0:604 � 0:1812� r1)V

The surface area: B1 = B + ( 0:604 � 0:1812� r1)V
3
r1
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Two-Sized Sphere Random Loose Packing

Let us consider the remaining space C1 of the container.

The volume: V1 = V � (0:604 � 0:1812� r1)V

The surface area: B1 = B + ( 0:604 � 0:1812� r1)V
3
r1

Now if we pack small spheres of radius r2 into C1, then the total
volume is.

0:604(V1 � 0:3B1r2):
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Two-Sized Sphere Random Loose Packing

Let us consider the remaining space C1 of the container.

The volume: V1 = V � (0:604 � 0:1812� r1)V

The surface area: B1 = B + ( 0:604 � 0:1812� r1)V
3
r1

Now if we pack small spheres of radius r2 into C1, then the total
volume is.

0:604(V1 � 0:3B1r2):

The total density after randomly packing spheres of radii r1 > r2

is

0:843184 � 0:0717552� r1 � 0:0826997� r2 � 0:328334
r2

r1
:
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Two-Sized Particle Packings

The larger ratio of two sizes is, the higher density can be
obtained.
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Two-Sized Particle Packings

The larger ratio of two sizes is, the higher density can be
obtained.

We may assume that the small size of radius r2 is �xed. Then,
the problem is how large radius r1 can be the best to ful�ll a
highest density in the pores in concrete.
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Two-Sized Particle Packings

The larger ratio of two sizes is, the higher density can be
obtained.

We may assume that the small size of radius r2 is �xed. Then,
the problem is how large radius r1 can be the best to ful�ll a
highest density in the pores in concrete.

Theorem:

r1 = 2:14
r

r2

�
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Computational Experiments

C: a very long cylinder with the square base 2 � 2 � = 2

Spheres: 0:05 < r1 < 0:5, r2 = 0:02 (small �xed)
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Computational Experiments

C: a very long cylinder with the square base 2 � 2 � = 2

Spheres: 0:05 < r1 < 0:5, r2 = 0:02 (small �xed)

The total density is maximized when

r1 = 2:14
q

0:02
2 = 0:214.

205 large spheres
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Computational Experiments

C: a very long cylinder with the square base 2 � 2 � = 2

Spheres: 0:05 < r1 < 0:5, r2 = 0:02 (small �xed)

The total density is maximized when

r1 = 2:14
q

0:02
2 = 0:214.

124393 small spheres
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Computational Experiments

C: a very long cylinder with the square base 2 � 2 � = 2

Spheres: 0:05 < r1 < 0:5, r2 = 0:02 (small �xed)

0.2 0.3 0.4 0.5
r1

0.70

0.72

0.74

0.76

0.78

0.80
density
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Higher Digree Approximations

We may consider the average curvature and Gaussian
curvature of the containers.
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Higher Digree Approximations

We may consider the average curvature and Gaussian
curvature of the containers.


 (C) =
1
V

Z

@C

� 1 + � 2

2

� (C) =
3
V

Z

@C
� 1� 2
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Higher Digree Approximations

We may consider the average curvature and Gaussian
curvature of the containers.


 (C) =
1
V

Z

@C

� 1 + � 2

2

� (C) =
3
V

Z

@C
� 1� 2

Mono-Sized Sphere Case

0:604 � 0:181� r + 0:0544
 r2 � 0:0163� r3
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High Degree Approximations

Two- Sized Sphere Case

0:843 � 0:328 r2
r1

� 0:0985 r2
2

r1
2 � 0:00985 r2

3

r1
3

+ � (� 0:07176r1 � 0:0827r2 + 0:0296 r2
2

r1
+ 0:00296 r2

3

r1
2 )

+ � (� 0:00646r1
3 + 0:00887r1

2r2 + 0:00266r1r2
2 � 0:016r2

3)
+ 
 (0:0215r1

2 � 0:0296r1r2 + 0:0455r2
2 � 0:000887 r2

3

r1
)
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Higher digree Approximations

0.2 0.3 0.4 0.5
r1

0.70

0.72

0.74

0.76

0.78

0.80
density

blue: 1-degree approximation
red: 2-degree and 3-degree approxiation
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Summary and Future Problems

We found a simple approximate relation for the two sizes of
spheres that provide a highest density in the multi-sized shere
packing problem into a container C by using only the parameter
� = B

V where B is the surface area of C and V is the volume of
C.
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Summary and Future Problems

We found a simple approximate relation for the two sizes of
spheres that provide a highest density in the multi-sized shere
packing problem into a container C by using only the parameter
� = B

V where B is the surface area of C and V is the volume of
C.

Find a relationship between the simulation results and compare
with engineering experiments.
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Summary and Future Problems

We found a simple approximate relation for the two sizes of
spheres that provide a highest density in the multi-sized shere
packing problem into a container C by using only the parameter
� = B

V where B is the surface area of C and V is the volume of
C.

Find a relationship between the simulation results and compare
with engineering experiments.

Find suitable models for medical applications, for example,
repairing broken bones. For medical applications, the highest
density is not always the best solution.
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