certainty calculations often produces poor uncer-
tainty estimations.

A copy of the compiled SDSD program can be
obtained from the author by sending $15 to cover
the costs of handling and mailing (specify 3Y%- or
5V4-in. disk).

i=0
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Examining the Shapes of Atomic Orbitals

USing Mathcad The first hybrid orbital, sp2(1): sp21i=j g || —=— E-px;,j

B. Ramachandran
Louisiana Tech University

Ruston, LA 71272 The second hybrid orbital, sp2(2): sp22i S —Px I F‘Pyi’j

One of the more difficult aspects of atomic
structure theory at the undergraduate level lies

We generate the three sp? hybrid orbitals and represent them graphically.
i :
.30 0, - — j=0.40 ¢j.

The two p orbitals are represented by the corresponding spherical
harmonics. The s orbital can be represented simply by a constant:

= sin{ei;‘vcos(‘q)-) Y - sim(ﬁi)-sin( j)‘

Define the three hybrid orbitals, using the S orbital radius to be 1/3:

2w
40

Y

J

] o
0333 |2

| b

0333 1 1

E. 6 2

in understanding the specific roles played by the ) ) ) _ 23 0333 1 . 'y
radial and angular parts of hydrogenic wave The third hybrid orbital, $0%(3): P22y | T r PX; 3 PY; j
functions in giving the atomic orbitals their B3 W2
three-dimensional shapes. We recently described
a way to generate three-dimensional contour sur-
i&{wes of at‘l)&mfhorblt?_ls usLng Mfltlshematma (6). Define the x, ¥, z coordinates for the parametric plots:

owever, Mathematica is a rather expensive

. . ’ {

package that runs on expensive hardware, and xl, ;- sp21. j-sm<’9i)~005(¢j} xzi,j . SPzzi,j'Sm(ei)'cosk‘bj)
its user interface may seem somewhat intimidat- : R . . \osi \
ing to the first-time user. ylij = sp2l, j'S'n(6i>'Sm(¢j) yzi,j ) sp22i,j-sm(9”-sm(¢j)

This article describes how three-dimensional ' ' \ {

: . .- sp2l. . L) z2. . - sp22. .-cos( 6.

contour plots of spherical harmonics, that is, sur- le,J P24 COS(BU i,j 7 SPeAO08 1)
faces on which | Yim | is constant, may be gener-
ated using Mathcad, versions 4.0 or higher. ; _
Mathcad is relatively inexpensive, runs on inex- X3i,j : Sp23i,j sm(Bi) cos(¢j)
pensive PC’s, and has a very intuitive user inter- ¥3 - sp23; .osin(Bi)-sin(ttoj)
face. Not surprisingly, several applications of 7 53 . \’B\ ‘
Mathcad in teaching Chemistry have appeared ﬁi,j = Sp i,j'c‘)s( i)
in this Journal (7-10).
The Rples of Spherical Harmonics and Radial Now plot (x1, y1, z1) for the first hybrid orbital, (x2, y2, z2) for the second, and
Functions (x3, y3, z3) for the third. By keeping the "tilt" and "rotations” the same for all

The three-dimensional plots of the real spheri- | three, their relative orientations are clearly observable.
cal harmonics (formed by superpositions of the _
complex ones where necessary) are very closely sp2(1) sp%(2) sp?(3)

related to the three-dimensional shapes of
atomic orbitals that do not have radial nodes,
that is, the 1s, 2p, 3d, etc. Therefore, this exercise
will clarify the role of the spherical harmonics in
determining the shapes of the atomic orbitals.
The role of the radial functions can then be intro-
duced (perhaps using Mathematica) to complete

the picture.

Figure 7 shows a typical exercise in graphing a x1,yl1,z1
three-dimensional surface using the absolute
value of the angular part of the 2py orbital, that

x2,y2,22

is,
Figure 9. Use

=1 orbitals.

Yia+¥
2

The notes, which can be placed anywhere in the document,
can make the exercise self-contained and self-explanatory.
The “live document” feature of Mathcad allows one to gen-
erate a different atomic orbital simply by redefining the
array Ylm,; ;. For example, Figure 8 shows the surface on
which | ng[ =1, obtained by redefining YIm, ; in Figure 7.

One may also use the ideas outlined above and in the two
figures to generate the shapes of hybrid atomic orbitals.
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of Mathcad to generate the shapes of the three sp2 hybrid atomic

This is a particularly useful exercise because the role of the
superpositions of atomic orbitals in giving the hybrid orbi-
tals their shapes and orientation is rather nonintuitive.
Figure 9 illustrates one such exercise, where the three sp2
hybrid orbitals are generated using the linear combina-
tions of the 2s, 2py, and 2py orbitals. All three are plotted
at 0° rotation and 45° tilt (see the graph menu of Mathcad)
so that their relative orientations are due to spg(l), sp2(2),



and spX(3), whereas their shapes are due entirely to the
superpositions used to form the constructive and destruc-
tive interference of the spherical harmonics.

In the superpositions, the 2s orbital is represented by the
constant 0.333. Because all contour surfaces are for | Y},
= 1, the maximum radius of the spheroidal surface is 1 in
all cases. However, the shapes of the hybrid orbitals
formed by linear combinations of atomic orbitals depend
crucially on the relative spatial extents of the orbitals,
which are controlled by the radial parts of the wave func-
tions. In forming the sp2 hybrids shown in Figure 9, we
have limited the radius of the 2s orbital to 1/3, whereas the
2p orbitals have a maximum radius of 1. This ratio of the
relative radii was chosen because the ratio of

4mr? ‘ Yoo

g . 2
to 4mr’ ‘ "]sz‘

2
is exactly 1:3 at the radius where 4rcr2J ‘Psz reaches its

maximum value. This choice is, however, rather arbitrary,
and one could choose any other value. For pedagogic rea-
sons, however, it is perhaps better to limit the range of pos-
sible values so that the resulting hybrid orbitals bear some
resemblance to the sketches shown in the textbooks.

There is no provision in Mathcad to display the Carte-
sian axes in parametric surface plots. There also appears
to be no easy way to superimpose two or more parametric
plots so that all three hybrid orbitals may be shown in a
single plot.
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Computation of Vapor Pressure

Ravinder Abrol
Indian Institute of Technology
Kanpur - 208 016 India

Maxwell (11) has suggested a means for determining the
vapor pressures from the isotherms of the analytical cubic
equations of state. A typical isotherm is shown in Figure
10. The vapor pressure is indicated by the dashed line AE.
When 1 mol of the liquid is transformed into its vapor, the
change in the Gibbs free energy (AG) is given by

AG = Gvapur - Gliquid = _[ vap (1)

Here the integration is along ABCDE, the S-shaped
curve. Under the equilibrium conditions, Gyapor equals

Gliquid, so the integral in eq 1 is zero. This requires the
tie-line AF to be chosen so that area I of the region
bounded by the line AC and the curve ABC is equal to area
IT bounded by the line CE and the curve CDE.

A Simple FORTRAN Program for PC’s

We have used the above idea to develop a simple compu-
tational program in FORTRAN 77 that computes the va-
por pressures for any cubic equation of state using the ex-
act Cardan’s solution of a cubic polynomial. Students can
learn a lot about analytical equations of state and phase
equilibrium by doing such computations; they can compare
the accuracy of different cubic equations of state for vari-
ous temperature ranges. The program is very easy to use
and can be run on relatively inexpensive hardware (PC
with a 486SX processor). It requires only the temperature
of interest and the gas constants as inputs. Noggle and
Wood (12) proposed an approach using Mathematica; it
used compiled programs and was just a blackbox to the
student.

Algorithm

First, we take an equation of state, for example, the van
der Waals (VDW) equation,
RT a
~T5 "V ()
We differentiate P in eq 2 with respect to V and equate it
to zero to find the Pmax and Pmin values D and B in Figure
10. So we get the following cubic equation in V.

RTV® - 2aV? + 4abV - 2ab® = 0 (3)

Equation 3 is solved for V using Cardan’s solution of a
cubic polynomial, which gives exact roots. The three com-
puted values of V are used in eq 2 to give three values of
pressure; only the higher two correspond to points D and B
in Figure 10 (i.e., Pmax and Pmin), and the lowest must be
ignored always.

Equation 2 is rewritten as

pVi— (pb+RTW? +aV —ab =0 (4)

Equation 4 is solved for pressures in the range Pmax to
Priin, using Cardan’s solution. The three values of V thus
obtained (i.e., V1, Vo V3) are used to compute area I and
area II (refer to Fig. 10), given by

L= p(Vy—Vy - RTlog |22 | o[L -1 ®)
area I =p(Vy, -V, og Vb aV2 v, i
area Il = RTo; Yo +ai—L - p(Va - V. (6)

= g V,—b Ve Vi P(V3=Va)
ratio:&aII (7)
area [

The pressure for which the ratio becomes very

© FP(max)
|
3
g -P{eam)
[
-
o
L p(min)

close to unity is reported as the equilibrium vapor
pressure at the temperature of the isotherm.

Results and Discussion

For various gases like CO2, Ha, O2, H20, etc.,
treated as VDW gases, the percentage error has
been around 0-4% for the temperatures close to
the critical temperatures (T¢). For example, for Ha
at 32 K the computed value is 1120.8 kPa, and the
experimental value is 1119.7 kPa. This shows that

Volume
Figure 10. Atypical isotherm.

the VDW equation is a good equation of state at
temperatures close to the T¢, and the boiling point
can also be predicted with very good accuracy.
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