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This paper investigates the applicability of the concepts of classical ergodicity and the results of
semiclassical ergodic theory to quantum mechanical systems that are away from the classical
limit and that do not necessarily become ergodic as #i — 0. To carry out this study, a new quantity,
called the “constancy” F, of classical property 4, is introduced. This constancy is defined in
terms of the autocorrelation function of 4 and its statistical equilibrium value. It measures, on an
absolute scale, the extent to which the dynamics of 4 behave statistically. The F, for a set of
quadratically integrable properties A can be used to define the “degree of ergodicity” of a classical
system with respect to this set. This analysis motivates introduction of the quantum analog of F,
as a means of judging the applicability of classical ergodicity concepts to quantum mechanical
systems. To illustrate these ideas, calculations for the Henon—Heiles system are carried out which
compare the quantum and classical analogs of the constancies and of the “almost
microcanonical” autocorrelation functions from which they are formed. The results indicate that
the quantum and classical systems exhibit similar forms of partial ergodicity at high energy. This
conclusion supports the approach introduced here for identifying the quantum implications of
classical ergodicity. As a consequence of the good quantum-classical agreement, the partially
ergodic nature of the classical behavior is reflected in the distribution of certain quantum-
mechanical matrix elements. At lower energy, the applicability of classical ergodicity concepts to
this system is more limited due to differences in the quantum and classical dynamics. The kinds of

quantum-classical discrepancies that limit the implications of classical ergodicity for quantum

systems are identified.

I. INTRODUCTION

Ergodic theory' provides a mathematical framework
for classifying and studying the statistical behavior of sys-
tems governed by the laws of classical mechanics. Although
only a few classical systems with more than one degree of
freedom can be proven to satisfy the strict conditions for
ergodic behavior as specified by this theory, numerical cal-
culations® show that a much wider variety of classical sys-
tems exhibit some of the symptoms associated with ergodi-
city and can thus be said to be “partially ergodic” in a certain
sense. The explanation for such partial ergodicity can be
traced to the phenomenon of classical chaos* which is re-
sponsible for the statistical behavior in the strictly ergodic
systems and which is present, to varying degrees, in all non-
integrable systems.

To a large extent, recent interest >~ among chemical
physicists in the subject of classical ergodicity is due to its
potential for shedding light on the dynamics of intramolecu-
lar vibrational energy transfer and the mechanism for energy
randomization in excited molecules. However, the applica-
bility of ergodic theory to molecular systems has been the
subject of much controversy. Questions that have provoked
debate include: To what extent can the concepts of ergodic
theory be applied to molecular systems which, of course,
obey the laws of quantum mechanics? When, if ever, can one
say that a quantum system is ergodic in the same sense used
in classical mechanics? And what are the manifestations in a
quantum system of the ergodic behavior found in the corre-
sponding classical system?

In order to resolve some of the issues associated with
this subject, a semiclassical ergodic theory® which systemati-
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cally explores the consequences of classical ergodic behavior
for quantum systems has recently been developed. That
work identifies semiclassical analogs of the various forms of
classical ergodic behavior, namely ergodicity, weak mixing,
mixing, and absolutely continuous spectrum and, further-
more, derives the implications of such forms of behavior for
quantum matrix elements and frequency distributions.
Although the semiclassical ergodic theory yields inter-
esting new results, they are of a rather formal nature and it
may not be clear how they relate to actual systems of phys-
ical interest. The difficulty is that the theory is concerned
only with the limiting behavior of quantum systems as #
approaches zero and considers only systems that become
rigorously ergodic in the classical limit. Thus the theory does
not attempt to describe the behavior of truly quantum sys-
tems that have a fixed, nonzero #, and the theory does not
apply to systems, such as real molecules that are, at best,
only partially ergodic. The purpose of this paper is to explore
numerically the extent to which the ideas of classical ergodic
theory can be carried over to such classically nonergodic,
quantum systems and to investigate the degree to which the
results of the semiclassical theory apply to these cases.
Rather than examine the entire range of ergodic proper-
ties of our systems, we focus attention on the most elemen-
tary form of ergodic behavior, namely, simple ergodicity.
Although our systems do not even fulfill the strict require-
ments for simple ergodicity as fi — O, we are able to define
the degree of ergodicity of our classical systems in a manner
that is relevant for our work. This degree is determined by
certain quantities, F,, called constancies, which are extract-
ed from microcanonical autocorrelation functions of parti-
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cular properties. The quantum analogs of the F; are defined
in such a manner that they become identical to the classical
constancies as #i — 0. Then our criterion for the applicability
of ergodicity concepts to quantum systems is that the quan-
tum and classical constancies be similar, in certain respects,
even for the nonzero values of # characterizing the quantum
system.

To apply this analysis in a physical case, we perform
dynamical calculations for the Henon-Heiles® system. Qur
comparison of quantum and classical correlation functions
and constancies allows us to study how various differences in
the two forms of dynamics affect the ability to apply the
classical concept of ergodicity to the quantum system.

It turns out that the quantum analogs of the constancies
are directly related to the statistical distribution of certain
matrix elements. Semiclassical ergodic theory® shows that
strict classical ergodicity has implications for such distribu-
tions as fi — 0. The present work extends this theory and
shows that even partial classical ergodicity should have cer-
tain consequences for such distributions, provided that # is
sufficiently small. Our calculation of the quantum constan-
cies gives us an opportunity to test the applicability of this
prediction to an actual system.

Our choice of the Henon—Heiles system for these studies
is especially appropriate for two reasons. First, existing evi-
dence suggests that the degree of classical ergodicity of this
system varies over a broad range. At low energies, the system
is known to be highly nonergodic, with most trajectories co-
fined to two-dimensional KAM tori on the three-dimension-
al energy surface.” At high energies, in contrast, this system
seems to become more nearly ergodic in the sense that sever-
al correlation functions appear to approach their statistical
equilibrium values at long times.>* This large range of be-
havior makes the Henon-Heiles system a good candidate for
testing the implications of varying degrees of classical ergo-
dicity for quantum dynamics. The second advantage of the
Henon~Heiles system for our calculations is that some of its
energy levels are degenerate, enabling us to investigate cer-
tain deductions of the semiclassical ergodic theory concern-
ing degeneracies.

It should be noted that many investigations have been
carried out to explore the quantum-classical correspondence
of partially ergodic systems. The Henon-Heiles system has
been an especially popular subject for such studies.'® Our
work differs from previous contributions to this field in that
it is based on the semiclassical ergodic theory of Ref. 5. We
believe that the analysis provided by that theory, concerning
the approach of quantum behavior to classical ergodicity as
#— 0, serves as an appropriate foundation for investigating
the implications of partial ergodic behavior in quantum sys-
tems.

The remainder of the paper is based on the following
plan. In Sec. II we review the relevant parts of the semiclassi-
cal ergodic theory and show how they lead to the introduc-
tion of the classical and quantum constancies. Also, in that
section, we discuss the expected consequences of partial er-
godic behavior for quantum systems and present our tests for
the relevance of classical ergodicity concepts for such sys-
tems. In Sec. III we describe details of our classical and

quantum calculations on the Henon—Heiles system. In Sec.
IV we present and discuss the results of these calculations.
Finally, in Sec. V we summarize our work and make con-
cluding remarks.

Il. CLASSICAL ERGODICITY AND ITS SEMICLASSICAL
ANALOG

A. Classical aspects

Let us consider a function 4 (p,q) of momenta p and co-
ordinates q, describing a classical property of a system. This
property evolves in time as the momenta and coordinates of
the system change from their initial values of p(0) and q(0) at
time zero to p( ) and q(¢ ) at time ¢. The microcanonical auto-
correlation function of 4 is defined as

Calt)=(A(t)|4)/(4 |4), (1)

where 4 (t) = A4 [p(t),q(t )], 4 (0) = A4 (p,q), and the brackets
denote integrals over phase space:

(41B) = f dp f da 8(E — H)4 (p.q)*B (p.a),

(A(1)B) = f dp f dq8(E — H)A (p,01)*B(pa). (2)

The factor §(E — H ) restricts the integral to the energy sur-
face E = H (p,q). Although we use the notation of ordinary
Riemann integrals in Eq. (2) to facilitate the quantum me-
chanical analogy presented below, we note that these phase
space integrals are more properly expressed as Lebesgue in-
tegrals over the energy surface. To ensure that these inte-
grals exist under all relevant conditions, we assume that A is
quadratically integrable (i.e., 4 €L?) in the sense that
{4 |4 ) < . For simplicity, we will henceforth also assume
that A is real.

The condition for ergodicity’ is defined as the require-
ment that

T
Tlim(l/T) dtC,(t)=C,, (3)
—r 00 0

for all quadratically integrable 4, where

Cuea = (1A ?/[€4 |4) (1ID)]. 4)
An alternative form® of this condition is

Cyl0) = Cpeq =0 (5)
for all quadratically integrable A, where

T
?,:(T):(I/T]J dtexp(—t/T)C,(t) (6)
0

and

Cylo) = lim C,(T). 7

These equations imply that, for an ergodic system, the infi-

nite time average of the autocorrelation function C, () is
equal to its statistical average or equilibrium value, i.e.,
Crea-

The normalization that we have adopted for the auto-

correlation functions ensures that C,{0)=1 and

'C, (0) = 1. If the system is nonergodic, and A4 is a constant
of motion, then C, (¢) is constant for all ¢ so that C,(t) and
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'C, (T) remain equal to unity for # and T'> 0. On the other
hand, if the system if rigorously ergodic, and 4 is any qua-
dratically integrable function, then Eq. (5) implies that
'C, () takes on its equlibrium value C4,q Which can be
shown to lie between O and 1.

To measure how closely the autocorrelation function of
A approaches its equilibrium value for a system that may or
may not be ergodic, we introduce the function

FT)=[ CJ(T) = Crea] /11 — Cuy) (8)

which compares the difference between C, (T)and C, A,eq AL
time T to the difference at time 0. Appendix A shows that
F,(T) is a monotonically nonincreasing function of T and
obeys the inequalities

0<F,(T)<1 (&)

for all T. Thus, F,(T), which has the value of 1 at T'= 0,
either remains constant or decreases as T increases. As
T — o, F,(T) approaches the asymptotic value

Fy=F,(w)= lim F,(T), (10)

which lies between 0 and 1.
The condition for ergodicity can be expressed in terms
of F, as

F, =0. (11)

This condition applies to all quadratically integrable 4 ex-
cept functions depending solely on H, since these yield inde-
terminate values of F,(T).

We call the quantity F, the constancy of property A4
because it measures, on the absolute scale of 0 to 1, the extent
to which A is invariant under time evolution. If the system is
nonergodic and 4 is invariant [i.e., 4 () =4 (0)] then F,

= 1. If the system is ergodic and A4 is any quadratically inte-
grable property, then F, = 0. For a general nonergodic sys-
tem and an arbitrary quadratically integrable A4, the value of
F, lies between 1 and 0, depending on how closely the infi-
nite-time averaged correlation function of 4 remains equal
to its initial value or how closely it approaches its statistical
value.

We now use the F, to define the degree of ergodicity of
a classical system that may be only partially ergodic. The
most straightforward definition for this degree would appear
to be the minimum value assumed by (1 — F,) as 4 is varied
over all quadratically integrable functions. However, this
approach fails because, given any nonergodic system, there
always exist quadratically integrable (but, generally, very
complicated and poorly behaved) functions 4 that yield
F, = 1. Thus, the proposed definition yields degrees of ergo-
dicity of O for all nonergodic systems and 1 for all ergodic
systems. Since it never yields intermediate values for the de-
gree of ergodicity, it does not recognize the existence of par-
tial ergodicity.

To overcome this difficulty, we restrict the set of proper-
ties A that are used to test the degree of ergodicity. We re-
quire that these properties obey certain additional condi-
tions beyond quadratic integrability. Then we define a
system’s degree of ergodicity (with respect to the restricted
set of properties) as the minimum value of (1 — F,) as 4 is
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varied over this set. Since this set does not include all quadra-

tically integrable functions, the degree of ergodicity can now
take on intermediate values between zero and one, as is nec-
essary to characterize partially ergodic systems.

Our practice of testing the statistical behavior of a sys-
tem by examining only a limited set of properties can be
justified in a number of ways. First, only a few properties in
physical systems are monitored in actual experiments and
only those properties are of practical interest in judging the
degree of statistical behavior in real systems. For example,
although molecules are nonergodic, the existence of very
complicated invariant properties does not always prevent
them from displaying statistical reaction dynamics. By re-
stricting the set of properties in our theory to those that can
be observed, we can prevent “irrelevant” properties from
unduly influencing our measure of ergodic behavior. Sec-
ond, there are theoretical reasons for restricting the class of
properties to be examined. We will see that the quantum
version of ergodic theory that we will introduce is, as a mat-
ter of principle, concerned with the quantum analogs of only
certain classical properties. To develop a classical theory
that is analogous to the quantum treatment, we must restrict
the properties considered classically to those of interest in
the quantum theory. Finally, we note that, purely as a practi-
cal matter, it is not possible to examine the evolution of all
quadratically integrable functions in numerical calculations
such as the ones we wish to perform. Judgements of statisti-
cal behavior must necessarily be based on the study of a
limited number of properties 4.

In the present work, we are not especially concerned
with the actual calculation of the degree of ergodicity. We
are, however, interested in the F, because they contain in-
formation about this degree. Comparison of the F,’s to their
quantum analogs tests how well the idea of partial classical
ergodicity applies to quantum systems. If the quantum ana-
logs of the F,’s are very close to the corresponding classical
constancies for a variety of properties 4 in a system that is
judged to be classically “almost ergodic”, then the quantum
system displays a form of partial ergodicity that is similar to
that of the classical system. This similarity suggests that the
classical concepts and mechanisms of ergodicity apply, to a
significant extent, to the quantum system as well as the clas-
sical system.

B. Semiclassical analogs

The semiclassical analogs® of the classical quantities de-
fined in the previous subsection are obtained by replacing the
classical phase-space integrals (4 |B) with quantum me-
chanical traces:

(41BY'=Tr[p"(E—~H)4'B],

(4(2)|B)Y =Tr[p?(E—H)4'(t)B], (12)
where p? is a “broadened” delta function (e.g., an appropri-
ately normalized Gaussian or generalized Lorentzian®)
which projects out eigenstates in the energy shell of width &
about the energy E. A4 is the gperator corresponding to the
classical property 4 (p,q) and 4 (¢ ) is 4 propagated for time ¢
in the Heisenberg picture.

The semiclassical analogs of the autocorrelation func-
tion and its statistical equilibrium value are now obtained by
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replacing the (4 |B )’sin Egs. (1) and {4) with the correspond-
ing (4 |B)?’s:
Cilt)=(A(t)|d)/(4]4)", (1)
Clhea = [{1]4)7P/(11)%, (4)
while the semiclassical analogs of the classical quantities

'C,(T)and F,(T) are obtained by placing superscripts g on
all quantities in Eqgs. (6) and (8):

ciyr )=(1/T)f dtexp(—t/T)CY(t) (6")

and
FYT)=[ C4T)—C% ]/(1 — C ) (8")
Reference 5 defines a class of operators called accepta-
ble. Such operators are the quantum analogs of the quadrati-
cally integrable functions 4 (p,q) appearing in the definition

of ergodicity. For these operators, the quantum and classical
autocorrelation functions are related by

lm i, = o .
and

lim lim C%(t) = C,(t). (14)

ag—+0K->0

Thus,

lim lim C4%(T)=

o—-0#-0
and

C4(T) (15)

lim lim F§(T) =

oc—-0#->0
The limits are not interchangable in the above relations.

In direct analogy with the classical condition for ergodi-
city given in Eq. (5), Ref. 5 identifies the semiclassical condi-
tion for ergodicity to be

F(T). (16)

lim lim [C4(T) = C5q] =0 (17)

T w

for all acceptable 4. An equivalent form is

lim lim F4(T)=0 (18)
-0 %0
T—

for all acceptable 4 (except functions of H ).

As in Eqgs. (13){16), the order of the limits in Egs. {17)
and (18) is important: one cannot reverse the (o — 0,
T — oo ) limits. The reason for this restriction is that, when #
is nonzero, the quantum and classical C, (T') resemble each
other only when o is chosen to be sufficiently large
[0> 0ia (Fi)] and, even then, only for a limited time period
[T < T s (f), where o, and T, are discussed below]. If o
and T are allowed to approach their limiting values before #,
C4%(T) does not generally tend to the classical value C, (o).
One symptom of the problems that arise when o is chosen to
be too small is that the quantum C%(T') becomes complex
even when the classical correlation function is real. Refer-
ence 5 determines the minimum energy shell width o,
needed to avoid this difficulty as well as other problems: the
interval o, must be chosen to include many levels around

energy E and to be larger than the energy range |E,, — E, |
for which quantum matrix elements (m|4 |n) between ener-
gy eigenstates is large. For times T'> T, the quantum
function C % (T') will generally also deviate from the classical
C,(T) due to dynamical effects of purely quantum origin,
such as tunneling, nonclassical recurrences, etc. To ensure
that the quantum functions approach their classical values
as fi — 0, and to ensure that the semiclassical definition of
ergodicity is consistent with the classical definition, it is nec-
essary to apply the #i — O limit before taking the other two
limits.

Since the quantum functions do not approach their clas-
sical counterparts unless the various limits are applied in the
proper order we cannot, in general, identify the quantity

Fi(w)= lim F(T) (19)

as the quantum analog of the classical constancy, F,, when #i
is nonzero. In fact, for nonzero #, there is no unique and
precise purely quantum analog of F,. The problem is that a
quantum analog of F, for nonzero # which has the correct
limiting behavior as #i — 0 must be of the form F¢(T') with
certain specific values for o(fi) (> 0) and T'(#i) { < ), but there
is no unique prescription for choosing these parameters.
This difficulty frustrates attempts to develop a purely quan-
tum mechanical definition of ergodicity that has the correct
semiclassical limit.

However, when # is sufficiently small, there does exist a
procedure for choosing o and T that is meaningful and
uniquely consistent with the semiclassical ergodic theory.
This procedure is to select these parameters so as to make
F9(T)and F,(T) as alike as possible for as long as possible.
Clearly, to the extent that this attempt is successful, there
will be no difference between the classical and quantum
F(T)s. It will no longer be meaningful to ask whether the
quantum system displays a purely quantum mechanical
form of ergodicity. The only question that can be asked is
whether the F% (T )’s are indeed close enough to the classical
F(TYs for a long enough period of time to allow the quan-
tum functions F¢(7T'), at some sufficiently late time 7, to be
identified as the analogs of the classical constancies. If the
answer is yes for all relevant properties 4, then we are able
to draw the important conclusion that the quantum system
exhibits a form of behavior that is close to the partially ergo-
dic behavior of the classical system.

These considerations lead us to identify the quantity
F4(T,.x) as the quantum mechanical analog the classical
constancy F, if

F(T)=F,(T) for 0<T< T x> (20)

where T, , the time interval during which the quantum and
classical functions agree, is long enough that

Fy(Toex)=F,. (21)
The o used to calculate F4(T') in Eq. (20) must be greater
than o, , as defined above, and yet small enough that the
appearance of different density functions p?(E — H) and
8(E — H ) in the definitions of F%(T') and F,(T') does not, in
itself, cause significant differences in the quantum and classi-
cal quantities. This condition will be obeyed if the classical
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quantity F, (T') does not change appreciably when the micro-
canonical density function §(E — H ) appearing in its defini-
tion is replaced by p?(E — H ).

When conditions (20) and (21) are obeyed, the quantum
and classical F,(T) curves will be close together until the
classical F, (T) has essentially reached its asymptotic value.
Deviations between the two curves for times greater than
Tax are irrelevant for a semiclassically based analysis of
ergodicity. However, substantial discrepancies between
these curves for shorter times imply that the quantum sys-
tem is not characterized by the same form of partial ergodic
behavior that applies to the classical system.

There is one further subtlety concerning the application
of Egs. (20) and (21) that needs to be discussed. For reasons
similar to those leading to the introduction of parameters
Opmin and T,,.., we must specify some restrictions on the
properties A whose quantum and classical dynamics we
compare. We have already mentioned that only acceptable
properties should be considered when determining the quan-
tum ergodic nature of a system. Among other things, accep-
tability of 4 guarantees that the behavior of the quantum
autocorrelation function will tend to that of the classical
function as i — 0. However, acceptability does not, by itself,
ensure that the quantum autocorrelation function has even a
fair chance of resembling the classical function away from
the classical limit. Indeed, given an arbitrary, nonzero #, it is
possible to identify a class of properties which, although ac-
ceptable, are expected to yield very different classical and
quantum behavior and to lead to violation of conditions (20)
and (21). Such properties correspond to classical functions
that are localized in phase space regions of volume =#°*
{(where s is the number of degrees of freedom) or to quantum
operators that have only a few eigenstates in the energy
shell.!! If we insist on including such properties in our study
of quantum ergodicity, we will always find that the quantum
system fails to exhibit the form of ergodic behavior found in
the corresponding classical system. To avoid the uncon-
structive conclusion that a quantum multidimensional sys-
tem can never display behavior analogous to classical ergodi-
city, we deliberately exclude from our comparisons of
quantum and classical dynamics those properties that pre-
dictably lead to disagreements. Thus, for purposes of judging
whether classical ergodic concepts apply to quantum sys-
tems, we limit our examination to those properties 4 that are
not strongly localized in phase space, in the sense described
above.

We mention that the criterion used here to select 7,
differs from that discussed in Ref. 5. In the earlier work, this
parameter was chosen so that the instantaneous correlation
functions C ¢ (¢)and C, (¢) agree for all t < T,,,,, while, in the
present work, it is chosen esentially so that the time-aver-
aged correlation functions C%(T) and C,(T) agree for
T < T ax - Actually, both criteria are defensible for treating
ergodicity but only the criterion used earlier may be used for
treating the stronger ergodic properties such as mixing. We
select the present criterion here because it is easier to apply.
The other choice would modify the quantitative results of
our work somewhat but would not change the qualitative
conclusions.

B. Ramachandran and K. G. Kay: Semiclassical ergodic properties

It is worth pointing out that the function F¢(T') shares
many of the mathematical properties of the corresponding
classical function. Thus, it is easy to prove (see Appendix A)
that, like F,(T'), F4(T') is a nonincreasing function of 7'and
obeys the inequalities

O0<Fi(T)I (22)
forall 7.

Toevaluate C%(z), C4(T), C . ,and F§(T'), we substi-
tute complete sets of energy eigenvectors |n) (obeying

H |n) = E, |n)) into the definitions of these quantities. The
resulting formulas that are needed for our work are

C4 (t) =3 p°(E — E,) 3 [{m|4 |n)|Pexplic’,,t)/D,, (23)

Chea = | S P°IE — E,)(n|4 |n)

/D, S pE—E,),24)

and
Fi(T)=FQP+F?+F(T) {25)

where
FY=B;" 3 pE~E, (A |n)

~ S PE—E,mld|m)/S pE-E ) (28
FP=B;'Sp(E-E,) 3 [(md|n) @27)

m#n
En=E,

FQ(T)=B;'Y p'lE—~E,)

X 3 [(mld [)"/(1 = i, T), (28)
e
E, #E,
D, =3 p°E —E,)(n|4%n), (29)
By =D,(1— Cle) (30)
and
Opym = (En —Em )/ﬁ (31)

Since the condition o > o,,,;, , as described above, causes
C4(t) and F, to be purely real, F{(T') can be expressed as

FQT)=B;'Y p'E—E,)

X 3 [(mld |m)/(1+ @ TP}, (32)
o
E, +E,
Note that F), the only term that depends on T, vanishes as
T~ . Thus,

F4 (T)=FY (o) + FQ(T), (33)
where
Fé (0)=F} +FQ. (34)

If the F¢ (T) resemble the classical F,, as specified by
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Eqgs. (20) and (21), then Eqgs. (26), (27), and (28) relate the
partially ergodic nature of the classical system to the statisti-
cal properties of matrix elements for operators A. Fis the
variance in the scaled diagonal matrix elements
N,(E){n|A4 |n), where the scaling factor is given by

NE)=[SoE-EVE,| " 35)

while F$} and F}' are the averages of the squares of scaled
off-diagonal matrix elements N, (E ){m|4 |n) for states with
E, =E, and E, #E,, respectively.

The implications of Egs. (26), (27), and (28) for the quan-
tum matrix elements in the case of a system that is rigorously
ergodic have been described in Ref. 5. For such a system
F4(T) approaches zero as #, 0, and T tend to their limiting
values in the manner specified by Eq. (18). Since each of the
F's is nonnegative, each F') must individually approach
zero. Thus, Eqgs. (26), (27), and (28) lead to the following three
conditions for the matrix elements of an arbitrary acceptable
operator s

{m|4 [m) = constant, independent of m, '
(m|2 |n) =0, form#n,butE, =E,,
(m|4|ny =0, forE,, +#E, but |E,, — E, | <#/T,(36)

where 7 can take on any value between the “relaxation time”
ofthe F (T)and T,,,,-

These conditions are obeyed strictly only in the classical
limit and only by systems that are classically ergodic. The
importance of the F'D, F'?, and F') is that they measure, on
an absolute scale, the degree to which conditions (36) are still
satisfied by a general, quantum mechanical system. If the
quantum and classical systems exhibit a similar form of par-
tial ergodicity throughout an energy range, and if the classi-
cal constancies decrease in this range (perhaps indicating an
increased degree of ergodicity), then the sum of the three
F'’s must also decrease in this range. This implies that at
least one of these terms decreases and that the distribution of
at least certain matrix elements approaches the semiclassical
ergodic ideal.

lll. CALCULATIONS

In this section we describe the calculations we perform
on the Henon—Heiles system to investigate: (a) whether con-
ditions (20) and (21) for the applicability of classical ergodi-
city concepts to quantum systems are satisfied and (b)
whether the semiclassical predictions for the changing dis-
tribution of quantum matrix elements with increasing classi-
cal ergodicity are obeyed. To study these matters we need to
calculate classical and quantum mechanical autocorrelation
functions [C,(t) and C (¢)], equilibrium statistical values
(C4eq and C% ), the quantities describing the extent of
equilibration as a function of time [ F,(T") and F§ (T')], and
classical constancies F,.

A. The system and properties

The Henon-Heiles® system is described by the Hamil-
tonian

H=}p2 +x%) + }p +1*) + A (xp* — x*/3) (37)

which can be reexpressed in terms of polar coordinates as
H=p? + P + pi/r) — (1/3)4r% cos 36. (38)

We choose the parameter A to have the value0.1118 for all of
our calculations. As a result, the classical dissociation ener-
gy, D, = 1/64 2, has the value 13.333.

Quantum and classical versions of C () and F,(T') are
calculated for the properties 4 listed in Table I. These prop-
erties are quadratically integrable and the corresponding
quantum operators are apparently acceptable. Furthermore,
as required for a valid investigation of quantum ergodicity,
these properties are not strongly localized in particular re-
gions of phase space. In the limit A — 0, all of these proper-
ties are classical constants of motion and the corresponding
quantum mechanical operators commute with the Hamil-
tonian. We recall that the classical behavior of the Henon~
Heiles system is predominantly quasiperiodic and, in many
ways, similar to that of an integrable system at low energies
(E <0.68D,), whileit is predominantly chaotic and presuma-
bly, more nearly ergodic, at higher energies (E > 0.68D,). We
therefore expect the characteristics of correlation functions
and matrix elements to vary with energy from those of a
highly nonergodic system to those of a nearly ergodic one.
More specifically, we anticipate the F, to be close to 1 at low
energies and close to 0 at high energies. No such trend would
be anticipated for properties which fail to become constants
of motion as 4 — 0.

B. Qu_antum mechanical calculations

We perform quantum mechanical calculations for the
system described by Eq. (37) with Planck’s constant # set
equal to 1. The diagonalization of the Hamiltonian is per-
formed using standard EISPAC" routines. For the values of
#i and A used, there are 99 energy eigenstates with energies
below D,. The basis set used here consists of 903 isotropic
harmonic oscillator eigenfunctions |V, ) = f,, ,(rexp(i! °)
satisfying

(Ho—(V+ 11|V, 1) =0, (39)
where H, is defined in Table I. This set is found to yield
satisfactory convergence of our results.

Equations (23)~(32) are used to evaluate the autocorrela-
tion functions C¥4 (¢)and the F¢ (T). These calculations re-
quire, in addition to energy eigenvalues E,,, matrix elements
(mlA |n) over energy eigenstates |m), |n). These are calcu-

TABLE 1. Properties 4 (p,g) that are investigated in this study.

Property Definition Symmetry* Remarks

H, Wi+ +p+38 A4, Total zero-order
energy

L Xpy — YPy A, Angular momentum

L? {xp, — yp, ) A, Square of property L

D W+x*—pi—y) E Difference between
energies in two modes

H, Wk +x3) A+ E Energy in x mode

D? 0 +x—p—y) A4, +E Square of property D

*Irreducible representation of C;,,.
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lated by using the matrix of eigenvectors to transform matrix
elements (V7|4 [V'l’) over basis functions to the exact
eigenstaterepresentation. The (V7 |4 |V'l’) areevaluated us-
ing expressions derived by Louck and Shaffer.'*

Since the Henon-Heiles potential has C,, symmetry,
each energy eigenstate is labeled by symmetry species 4;, 4,,
or E. Only eigenstates of E symmetry are associated with
degenerate energy levels and contribute to the term 2. Due
to our specific choice of the |V, I) as the basis functions for
the E-symmetry block of the Hamiltonian, pairs of eigen-
states |#(E)) and |n'(E)), associated with the same energy,
turn out to be complex conjugates of each other:
[n'(E)) = |n(E)*) = |n(E))*. We thus calculate F by the
formula

FP=2B7'Y p) (E—Eyz)|(n(E)*|4 |n(E))|*.
(40)

Note that our choice of E eigenstates is not unique; unitary
transformations of |#(£')) and |n(E )*) yield different energy
eigenstates and alter the values of F{{) and of F'7. However,
the combination F}' + F7 is invariant to such transforma-
tions. Although it is only this combination that is physically
meaningful, it is nevertheless interesting to calculate
FQ and F? separately for our choice of the eigenstates and
examine the behavior of the diagonal and off-diagonal ma-
trix elements which, respectively, contribute to these two
terms.

The “broadened delta functions” p°(E — E, ) appearing
in our formulas for C¥ (t)and F¥ (T') are expressed as
Gaussians of the form exp[ — (E — E,)*/20%], where the
width parameter ¢ is itself a function of E given by

o = 1.06 — 0.045E. (41)

Although there is nothing unique about this particular
choice of o, it does yield values that appear to satisfy the
inequalities for this parameter described in Sec. II. Thus, the
classical autocorrelation functions C,(¢) and the statistical
averages C, ., are found to change only to a small extent
when the §(E — H) in their definitions are replaced by
p°(E — H)and the imaginary parts of the quantum autocor-
relation functions are calculated to be very small. Moreover,
it is observed that the computed quantum autocorrelation
functions are insensitive to moderate variations in o about
the values obtained from this equation. Thus, for our system,
there is no great difficulty in choosing values of o which
allow comparison of our quantum correlation functions to
the microcanonical functions C, (¢ ).

C. Classical calculations

The classical C,(¢) and C,, are calculated using the
expressions given in Egs. (1) and (4). To enhance the analogy
with the quantum calculations, the Dirac delta functions
8(E — H) appearing in these equations is replaced by the
Gaussian function exp[ — (E — H )*/20°] witho given by Eq.
(41). As discussed above, this substitution of broadened delta
functions for the microcanonical density functions does not
alter the calculated classical correlation functions signifi-
cantly. The classical calculations are performed at two ener-
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gies £ = 5.70 and 12.67 to examine behavior typical of the
quasiperiodic and chaotic regimes, respectively.

The C, ., are calculated by Monte Carlo evaluation of
the phase integrals in Eq. (4), using about 10° points at each
of the two energies. The correlation functions C,, (¢ ) are also
calculated by the Monte Carlo procedure, which effectively
specifies initial (£ = 0) values for x, p,, y, p,, and the various
properties 4. Integration of Hamilton’s equations then
yields values for these coordinates, momenta and properties
A at future times ¢ and allows final evaluation of Eq. (1). 6000
trajectories are run at each of the two energies selected for
study. The maximum integration times are 400 units (about
64 vibrational periods) at £ = 5.70 and 120 units (about 20
periods) at £ = 12.67. The integration step sizes are chosen
to ensure accurate backintegration of the trajectories.

For the case £ = 12.67, some trajectories have energies
greater than D, and a few such trajectories lead to *‘dissocia-
tions” of the Henon-Heiles system (characterized by
x? + y*> A ~?) on the time scale investigated. Such trajector-
ies are removed from the ensemble averages after dissocia-
tion occurs.

The C, (), required for evaluation of the F,, are ap-
proximated by averaging correlation functions C(¢) over
the finite time intervals 80 < ¢ <400 in the low energy case
and 60 <7 < 120 in the high energy case. The reason for ex-
cluding early times from the averages is that the C, (¢} are
uncharacteristically large for small ¢ [recall that C,(0) = 1].
Restricting the time averages to late times appears to sample
values of C () that are more typical of the infinite-time be-
havior. This procedure for estimating the C () is, of
course, dictated by practical considerations which prevent
us from integrating trajectories for infinite time periods. Al-
though one can never completely rule out the possibility that
increasing the integration times will noticeably affect the cal-
culated results, the behavior we observe for our computed
C,(T) at large T (see Sec. IV below) suggests that the time
averaged correlation functions have essentially converged to
their limiting values at the maximum integration times used
in our calculations.

IV. NUMERICAL RESULTS

A. Autocorrelation functions

Figure 1 shows, as dashed curves, the classical autocor-
relation functions C,(¢) for various properties 4 at the two
energies selected for investigation. The correlation functions
for Hy and H, closely resemble the microcanonical correla-
tion functions for these properties previously computed by
Koszykowski, Noid, Tabor, and Marcus.?

Figure 1 also displays, as solid curves, the quantum au-
tocorrelation functions C¢ (¢) for the same 4 and the same
energies examined in the classical calculations. At the higher
energy, there is generally good qualitative agreement
between the quantum and classical curves, especially at
short times. At the lower energy, however, there are impor-
tant discrepancies between these two curves. We now at-
tempt to identify the sources of some of these disagreements.
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1. Property D

The most obvious case of classical-quantum disagree-
ment occurs for property D at low energy. The two curves
begin to deviate from each other almost immediately, with
the quantum curve lying below the classical curve for all

{a}
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O
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i.
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O
0.9 L 1 . i : { i { 1 i L i
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TIME
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(b}
1.
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O
Q.
1.
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O
oob—a— 11 b L L ]
0 20 40 60 80 100 120
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L

t> 0. The difference between the curves becomes quite large
for t > 40.

To understand why this discrepancy occurs we note
that, in a rough sense, C;, measures how much of the classi-
cal energy shell is occupied by KAM tori on which D is
approximately conserved. The consistently small values for

(c)

0.5 L 1 L L L { L { L i s J
0 20 40 60 g0 100 120
TIME
2
L
{d)

FIG. 1. Quantum autocorrelation functions C % (¢ ) (solid curves} and classical autocorrelation functions C, {t} (broken curves) for the following properties 4:
{a) H,, (b} L, (¢} L 2, {d) D, (e} H,,, and {f) D The top panel of each subfigure, labeled (i) shows results for E = 12.67, while the lower panel, labeled (i) shows

results for £ = 5.70.
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FIG. 1. (continued ).

the quantum autocorrelation function imply that a smaller
portion of the quantum energy shell is occupied by the quan-
tum analog of such tori than is true of the classical case.

For the Henon-Heiles system in the regular region, clas-
sical tori on which D is approximately constant are indeed
known to exist.'> These tori are associated with librating (or
pendular) trajectories that are mostly confined to the region
around the x axis. Due to the symmetry of the Henon—Heiles
potential, such tori actually occur in sets of three: for each
torus associated with motion along the x axis there are two
others that are obtained by rotating the trajectories through
angles of 120 and 240 deg, respectively. D is not accurately
conserved on the latter two tori. The quantum analogs of
these three tori are states localized near the same portions of
configuration space as the trajectories. However, since the
energy eigenstates transform as C;, symmetry species, they
are not well localized on individual librating tori. Instead,
quantization of these tori generates sets of eigenstates of 4,
and E symmetry with nearly equal energy, each such eigen-
state being delocalized over all three tori. Thus, the analogs
of the individual librating tori are not energy eigenstates, but
specific linear combinations of the E and A4, eigenstates that
are obtained by quantization of these tori. The formation of
these localized states from states of definite symmetry paral-
lels the formation of the three equivalent sp? hybrid orbitals
from p and s orbitals.

If we examine the eigenstates of the Henon—Heiles sys-
tem, we find that there are only two states lying in the energy
shell about E = 5.70 that are obtained by quantization of
librating tori.!> These are a pair of states of E symmetry
associated with the doubly degenerate level at the energy
5.8170. The state of A, symmetry closest in energy is ob-

(f)

<
O
AN
v \u/ \/ v
2
0.4 | L ) L - L L L L l 1 ]
0 20 40 60 80 100 120
TIME
2
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tained by semiclassical quantization of a precessing torus.
We cannot form states for which (D ) remains constant, even
for short time periods, from linear combinations of such
states.

The difference between the quantum and classical be-
havior for Cp(t) is thus explained by the small number of
quantum states that correspond to librating tori in the ener-
gy range considered. There are too few such states to form
the analog of a torus on which D is constant. The number of
librating tori in a particular energy range depends, however,
on the value of #i. If we decrease #, we expect to find a larger
number of states associated with librating tori in the energy
shell and the quantum autocorrelation function should agree
with the classical function for longer periods of time. Never-
theless, we expect significant differences to develop between
the two functions at sufficiently long times even when # is
small. These will arise because the quantum system can tun-
nel between distinct equivalent librating tori. The time scale
for this process will be the inverse separation between ener-
gies of E and A, states that are formed from the same set of
librating tori.

2. Property L

Figure 1 gives the impression that the classical and
quantum autocorrelation functions of L are in good agree-
ment for E = 5.70. Actually, as shown in Fig. 2, the agree-
ment breaks down at late times. The quantum function even-
tually develops oscillations that do not occur in the classical
case and, on the average, drops well below the classical long-
time values.

The differences in the two autocorrelation functions can
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FIG. 2. The quantum autocorrelation function C ¥ (¢) {solid curve) and the
classical autocorrelation function C,(¢) (broken curve) for property L for
times up to 400 units at E = 5.70. The resolution used to display the classi-
cal function is not as high as that used for the quantum function. For times
greater than 400 units, the slow oscillation that appears in the quantum
function here is superimposed with additional oscillations of even longer
period.

be traced to tunneling between clockwise and counterclock-
wise motions in the quantum system. This statement is sup-
ported by the observation that the frequencies of the quan-
tum oscillations are accurately given by AE(4,, 4,)/27,
where AE are the differences in the energy levels of certain
pairs of nearby A, and 4, states. As can be deduced from the
perturbative treatment of Ramaswamy and Marcus,!® one
member of each such pair is, to zero order, given by the
(unnormalized)linear combination[|¥, /) + |V, — I )] while
theotheris givenby [|V, I) — |V, — ! )] with the same ¥"and
1. Although primitive semiclassical methods'’ yield a single
energy level for these two states, a uniform semiclassical
treatment!” is able to reproduce the small observed, energy
difference between such pairs and identifies the sourse of the
energy splitting at tunneling. Roughly speaking, then, oscil-
lations with the frequencies AE /27 represent tunneling
transitions between states with positive and negative angular
momentum quantum numbers 1. Similar tunneling phenom-
ena have been described for other systems.'®

There is evidence that some tunneling between circulat-
ing motion persists, albeit to a lesser extent, even at high
energy. A plot of the quantum autocorrelation function of L
at E = 12.67 on a time scale of 0—400 (not shown) also exhib-
its strong late-time oscillations. Although these oscillations
are more irregular than those found at low energy, some of
the prominent recurrence frequencies can be identified with
the same types of 4,~4, state pairs discussed above. These
oscillations again cause the quantum correlation function to
lie below the extrapolated classical function at long times,
but not to such a dramatic extent as at low energy.

We observe oscillations of this sort, causing a large dis-
crepancy between the long-time average of the classical and
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quantum correlation function, only for property L. We note
that L is the only operator we treat that couples states of 4,
and 4, symmetry, such as those involved in the tunneling
process.

Tunneling implies the existence of motion that is classi-
cally forbidden but quantum mechanically allowed. In mul-
tidimensional systems having no obvious barriers in the po-
tential energy surface, forbidden classical motion indicates
the presence of dynamical barriers. Such barriers are often
associated with the presence of tori—real or “vague.”'®
Thus, it is possible that, just as in the case of property D, the
discrepancies between the quantum and classical behavior
for property L can be associated with the existence of tori. If
this is true, then the improved quantum-classical agreement
at higher energy for both D and L may be understood tobe a
consequence of the scarcity of tori near the dissociation limit
of the Henon—Heiles system. The persistence of some tunnel-
ing at high energy may be due to the continued presence of
some tori or vague tori in this region.

B. Quantum and classical F,,(7)

We now compare the functions F4(T) and F,(T}) to
determine whether conditions (20) and (21) are obeyed. Re-
call that, if these conditions are satisfied for all 4, the quan-
tum system can be described by the same constancies F, as
the classical system and classical ergodicity concepts apply
equally to both systems.

Figure 3 shows the quantum and classical F,(T'). In the
high energy case, the quantum and classical functions are in
good agreement for all properties 4 treated and for the full
range of T examined. Thus, conditions (20) and (21) are
obeyed, and the behavior of the quantum system can be char-
acterized by the same constancies F, that apply to the classi-
cal system. Since this result holds for all of the properties we
have examined, it appears that the quantum system displays
a form of partial ergodicity similar to that of the classical
system. Thus, when the energy is high, our evidence indi-
cates that classical ergodicity concepts may be applied to the
quantum system.

Asis apparent from Fig. 3, however, the situation at low
energy is different. For E = 5.70, there are instances of sub-
stantial disagreement between the quantum and classical
curves and we now discuss these discrepancies.

1. Property L

The low-energy quantum and classical curves for F, (T')
are in reasonably good agreement up to about T = 30. At
later times, the quantum curve dips substantially below the
classical curve as the tunneling described in Sec. III A takes
effect. The disagreement between the functions grows with T’
and, in the limit as T becomes infinite, the function F¢(T")
approaches the value F§(cw)=0.54 which differs greatly
from the apparent classical limiting value of F, = 0.76 (see
Table II). Despite this long-time disagreement, however,
conditions (20) and (21) are obeyed in this case since the clas-
sical function essentially reaches its infinite time limit before
the differences set in. We can identify the time T, in Egs.
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FIG. 3. Quantum functions F ¢ (T') (solid curves) and classical functions F,, (T') (broken curves) for the following properties 4: (a) Hy, (b) L, (c) L %, (d) D, (¢) H,,
and (f) D 2. The top panel of each subfigure, labeled (i) shows results for E = 12.67, while the lower panel, labeled (ii) shows results for E = 5.70. Note that
different time scales are used for the two different values of E.

(20) and (21) with approximately 30 time units and, since It is appropriate to review the reasoning that leads to the
F1(30)=F,(30)=F. () =0.76, we conclude that classical interpretation presented above. By restricting the time peri-
value 0.76 can be used to describe the constancy of the quan- od for comparison of the quantum and classical F,(7T") to 30
tum system. units we deliberately exclude the effects of quantum me-
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FIG. 3. (continued ).

chanical tunneling from our identification of the semiclassi-
cal analog of the constancy. This restriction is essential since
the differences between F % (o) and F,( 0 ) caused by the tun-
neling do not tend to zero in the classical limit. As we will
support with further analysis in Appendix B and Sec. IVC
below, the effect of tunneling on the infinite-time average of
the quantum correlation function does not vanish as #— 0
even though the time scale for the onset of tunneling tends to
infinity in that case. We cannot, therefore, obtain a quantum
analog F; that tends to the classical constancy as fi — 0 un-
less we restrict the observation time as we have done. Fur-
thermore, unless the quantum version of F; has the proper
classical limiting behavior, it will not reliably reflect the con-
sequences of partial classical ergodicity for the quantum sys-
tem, as we require.

2 Property D

The low energy curves for F§(7T") and F (T') begin to di-
verge from one another at very early times and the disagree-
ment between the two functions becomes very large before
the classical function F,(T') reaches its apparent asymptotic
value at 7'~ 80. The source of this discrepancy is the same as
that causing the disagreement between the low energy curves
for C,, and C4, in Fig. 1, namely, the small number of librat-
ing tori in the energy range considered. Inspection of Fig. 3
for property D in the low energy case shows that there is no
value of T, that satisfies both conditions (20) and (21).
Thus, we are unable to identify a semiclassical analog of the
constancy F,, when the energy is low.
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3. Remaining properties

The low energy discrepancies between classical and
quantum functions for properties H, and D > may be, in part,
due to the same phenomenon causing the deviations for
property D. As for property D, conditions (20) and (21) are
not obeyed at low energy for H, and D ? and a semiclassical
analog of the constancies cannot be identified.

For the sake of completeness, Fig. 3 presents the F%(T)
and F,(T') in the case A = H,, for both values of E, although
the reliability of the classical results is uncertain, especially
in the low energy case. We note, from Table II, that the
classical quantities C () and C,, for 4 = H, have very
similar values and that C, . is close to 1 when E = 5.70. As
is clear from Eq. (8), small statistical errors in the Monte
Carlo evaluation of the classical phase space integrals can
lead to large inaccuracies in the computed values of F,(T') in
such cases. Thus, the large apparent disagreement between
the classical and quantum mechanical curves for low energy
may be an artifact of small (% 0.005) numerical uncertainties
in C,, and C,(T). The relative statistical error in F,(T') at
high energy is even greater than at low energy. Nevertheless,
due to the larger value of 1 — C,, at E = 12.67, the abso-
lute uncertainty is too small to affect the qualitative similar-
ity between the classical and quantum curves in this case.
Thus, the high energy results may be regarded as qualitative-
ly reliable.

We conclude from our examination of Fig. 3 that, in
contrast to the situation at high energy, it is not always possi-
ble to assign semiclassical constancies to the quantum be-
havior at low energy. Although we are able to characterize
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the evolution of the property L (and, perhaps, some others)
by such a constancy, we are not able to do so for all of the
properties we have considered. Our results thus indicate a
strong qualitative change in the ability to apply the language
and concepts of classical ergodicity to the quantum system
as the energy is lowered.

C. Classical constancies and quantum matrix elements

The circles in Fig. 4 show how the classical constancies
F, vary with energy for the properties we have examined.
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The quantities C,(c0) and C.q that are used to calculate
these constancies are listed in Table II. In all cases, the F,
decrease with energy, indicating that the classical system
becomes more nearly ergodic as the energy is raised. These
results are in qualitative agreement with those of Koszy-
kowski, Noid, Tabor, and Marcus® and of Hamilton and
Brumer* who showed that certain classical correlation func-
tions of the Henon-Heiles system relax to values close to
those expected statistically, when the energy is high. How-
ever, we note that some of the F, (especially F; ) are rather
far from zero even at high energy. This shows that the classi-
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FIG. 4. Classical constancies F,, (circles) and quantum F'? (curves) for the following properties 4: (a) Hy, (b) L, (c) L 2, (d) D, (e) H,, and (f) D> The numbers
which label the individual quantum curves are the (i) superscripts of the FY. Curves labeled by "1+2” or "1+ 3" show the sums
FQ 4+ FP = F4(w)or FY}) + FQ(T,..). For property D, F'} vanishes by symmetry so that the curve labeled “2" represents F4 (). For properties H, L,
and L?, F'? vanishes by symmetry so that the curves labeled ”1” represent F% (o) and the curve labeled “1 + 3” for property L represents F§(7....).
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FIG. 4. (continued ).

cal system never really comes very close to attaining com-
plete ergodicity. It is likely that, to a large extent, the noner-
godic behavior at high energy is associated with residual tori
and vague tori.

Since it is not possible to identify a quantum analog of
F, for all properties at all energies, Fig. 4 compares the clas-
sical constancies to the quantum mechanical F{J, F%, and

TABLE I1. Comparison of quantum and classical long-time behavior.

Energy" _ _
Property range C5(w)® Cul0) Chu® Cieq Filw)f F,f
H, Low 0987 0981 0969 0970 0592 0.354
High 0.943 0935 0.936 0932 0.107 0.047
L Low 0535 0756 O 0 0.535 0.756
High 0.211 0290 O 0 0.211  0.290
L? Low 0763 0722 0507 0505 0.534 0.540
High 0.592 0603 0515 0522 0159 0.169
D Low 0.136 0264 O 0 0.136 0.264
High 0.136 0131 © 0 0.136  0.131
H, Low 0775 0802 0728 0722 0.173 0.285
High 0.727 0741 0.686 0.688 0.131 0.169
D? Low 0.648 0617 0488 0473 0313 0273
High 0460 0453 0373 0364 0.138 0.139

*Low energy: E = 5.70. High energy: E = 12.67.
® lim C4(T).

T—

¢ Calculated as described in Sec. III C.

9 Evaluated using Eq. (24).

¢ Calculated from C%(c0) and C¥,
(34).

fCalculated using Eq. (8).

using Eq. (8') with 7> 0. Also see Eq.

2
D
‘I'O TTT]TTT[[]T[T]T]I[I

F%(w)=F'" + F?. Note that F%(c) omits the contribu-
tion of F(T,,,,), which should be included for a proper
comparison of the classical and quantum results, but which
is undefined when it is impossible to find a T, satisfying
conditions {20} and (21). Table II lists values for the quanti-
ties C%(o0) and C¥, e Tequired for the evaluation of F ()
at E=5.70 andE— 12.67.

As might be expected from Fig. 3, the agreement
between the F4 (o) and F,, usually improves as the energy
increases. The sources of the especially large low-energy dis-
crepancies for properties H,, D, and L have been discussed in
Sec. III B. The pronounced oscillations in F§ (o) = F ) will
be discussed below. An interesting point to emerge from Fig.
4 is that, even with the omission of the F¥ contribution, the
F9(w) are in fairly good agreement with the F, at
E = 12.67. This implies that the F$(T,,, ), which are well
defined for all 4 in the high energy case, are relatively small
at such high energies. However, as Table II makes clear,
these quantities still make significant contributions to cer-
tain of the F 4 (T, ), even at the highest energies considered,
and should not be neglected.

We recall that the energy dependences of F!{ and F%
reveal how the distributions of matrix elements of 4 change
as the system becomes more classically ergodic. The quanti-
ty F'} measures the dispersion of the individual scaled diag-
onal matrix elements N,(E){n |A |n) about their mean,
while the quantity F §' measures the magnitude of the scaled
off-diagonal matrix elements N, (E){(m IA |[n) between
states n and m of equal energy. For ergodic systems in the
classical limit, these deviations and these off-diagonal matrix
elements should be vanishingly small.

Figure 4 shows to what extent this behavior is achieved
for our partially ergodic quantum system. The F{ for H,
L? H,, and D? decrease monotonically as the energy is
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raised, while the oscillatory F'} for L decreases on the aver-
age as the energy is increased. These results indicate a ten-
dency for the scaled diagonal matrix elements of these prop-
erties to become more uniform as the classical system
becomes more ergodic. F 2 for D 2 also decreases monotoni-
cally as the energy is increased. This implies that the scaled
off-diagonal matrix elments of D? between states of equal
energy tend to become smaller as the system becomes more
classically ergodic. However, we note that the F'3 for prop-
erties D and H, do not show a similar, uniform tendency to
decrease with energy in the range of 0.4 D, < E < D,. Thus,
the scaled off-diagonal matrix elements of these operators do
not monotonically decrease in this range.

The results just described for D and H, are contrary to
the naive predictions based on the classical limit for ergodic
systems. However, they are not inconsistent with the theory
presented in Sec. II. Recall that the treatment of Sec. II pre-
dicts only that the sum F4(T, ) =F} + F? + FO(T,..)
should decrease as the energy is varied over a range in which
the classical F, decreases, and that this prediction is subject
to the requirement that F9 (T, ) exists at all energies in this
range. First, note that there is actually no reason to expect
the individual F to decrease or the distribution of each type
of matrix element to behave more “ergodically” as the ener-
gy of the system is raised. It is only necessary that one of the
three FY decrease and that the distribution of only one kind
of matrix element come closer to the ergodic ideal as the
energy increases. Failure of F'? to decrease with energy for
properties D and H, is, therefore, not inconsistent with these
predictions. Second, note that the matrix elements are pre-
dicted to behave more ergodically as the energy is increased
only if the quantum analog of the constancy, F%(T,,,), ex-
ists for all energies in the relevant range. This requirement is
strongly violated by properties D and H,, for which quantum
analogs of the constancies certainly do not exist at low ener-
gy. Thus, the behavior observed for these two properties
should not occasion any surprise. It may, in fact, be some-
what more surprising that the terms F ) and F'? do, so often,
individually decrease with energy, even when F§(T,,,) is
not very well defined at low energy. We could not completely
anticipate such behavior on the basis of the theory presented
in Sec. II.

While the distributions of the scaled matrix elements are
generally found to come closer to the statistical ideal as the
system becomes more classically ergodic, the unscaled ma-
trix elements do not necessarily follow this trend. The energy
dependence of N {E ) is important in causing the matrix ele-
ment distributions to change in the expected manner. Al-
though it is true that even the unscaled matrix elements will
obey the predictions of semiclassical ergodic theory [Eqgs.
(36)] for the case of an ergodic system in the classical limit,
only the scaled matrix elements can be expected to show the
effects of an increased degree of classical ergodicity under
the more general circumstances that apply here.

We now discuss the oscillatory energy dependence of
the function F{ () exhibited in Fig. 4. The oscillations in
this function can be traced to a purely quantum mechanical
source: the selective omission from F () of contributions
from particular states. We note that there are certain energy

B. Ramachandran and K. G. Kay: Semiclassical ergodic properties

eigenstates of the Henon—Heiles system that can be accurate-
ly approximated by those zero-order states |V, /) that have
extreme values (/ = + V) for the quantum number /.%° Since
such states lead to large diagonal matrix elements of L, they
can make especially large contributions to F { («c ). However,
only states of E (and not A, or 4,) symmetry can contribute
tothis function. Thus states with |/ | = V' = 2,4,5,7,..., which
have E symmetry, indeed make large contributions to
4 (o0) and are mainly responsible for the local maxima ob-
served in this function in Fig. 4. However, states with
|| =V = 3,6,and 9, which have 4, and 4, symmetry, do not
contribute to 2 (). This omission causes the minima that
are observed in this function near the zero-order energies of
these states at £ = 4,7, and 10. By demonstrating that the
oscillatory behavior of the function is associated with a cer-
tain set of periodically occurring V (i.e., values divisible by 3),
we prove that these oscillations have a nonclassical origin.

Since states of all symmetries contribute to F (T,,,,. ),
we may anticipate that the nonclassical oscillations can be
removed by properly including this term. Fortunately, for
the case of property L, T, can be defined at both low and
high energies so that we can indeed evaluate F® (T,,,) as a
function of energy. Figure 4 displays F (T, ) [calculated
using Eq. (32)] and F$(T,,.,) vs E. For the sake of simplicity,
T,.. is chosen to be 30 for all energies. It is seen that
F$\T..,) contain maxima and minima that complement
those of F%(o0) so that the sum of these terms, F{ (T, ), isa
nonoscillatory function, as expected classically.

Including the term F{ (T,..) greatly improves the
agreement between the quantum and classical constancies at
low energy. The agreement between F¢ (T,,,) and F, at
high energy is only fair, but can be substantially improved by
choosing a larger value of 7, for that case. Although the
oscillatory contribution F $) (T, ) does not show a generally
decreasing trend for all energies <D,, the total function
F4(T,..) does decrease monotonically with energy, as re-
quired by the semiclassical theory.

As could be anticipated by our discussion, the dominant
contribution to F) (T,,,, ) is found to come from the pairs of
states of 4, and A, states of nearly equal energy that are
involved in the tunneling process previously described.
Thus, denoting these pairs of states by |n(4,)) and |n(4,)),
and recognizing that the spacing between the corresponding
levels is smaller than 1/7,,,, we can write

FOT,)~B; [ S P7E — Eyge, [ {nid)|A [nid,) ]

n{4,)

+ 3 PN = Byl ) A ) “2)

ndy)

The similarity to Eq. (40) for F ?' should be noted. In essence,
by including the term F ) (T,,,, ) in our calculation, we treat
the “almost degenerate” levels associated with states of 4,
and 4, symmetry on the same footing as the truly degenerate
levels associated with states of E symmetry. This procedure
is appropriate for our semiclassically based theory since, as
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in the case of E states, both members of an 4,-4, pair arise
from a single torus."’

The case of property L illustrates the general rule that it
is important to include the term F' (T,,,,) in calculations of
the quantum constancies. The analysis of F§' (T,,., ) present-
ed in Appendix B demonstrates that this term does not al-
ways vanish in the classical limit and Fig. 4 illustrates that, in
practice, this term is sometimes quite large. Thus, the func-
tion F9% (o), obtained by omitting this term, need not bear
any relationship to the classical constancy, even as #—0.
Only by incorporating this contribution in the proper man-
ner does one obtain the correct analog to F,.

V. SUMMARY AND CONCLUSIONS

The goal of our work has been to determine how, and to
what extent, classical partial ergodicity is reflected in the
dynamics of quantum mechanical systems. To achieve this
objective, we have identified quantum analogs of quantities
that determine the ergodic nature of classical systems. Based
on an analysis of these quantities, we have developed criteria
for judging whether quantum systems behave in a classically
ergodic manner. We have illustrated our theoretical treat-
ment by numerical calculations on the Henon-Heiles sys-
tem.

To clarify the physical basis of our work, we briefly re-
view our approach and the principles that underlie it.

Our procedure for identifying (partially) ergodic dy-
namics in a quantum system (%> 0) can be summarized as
follows. We examine the features of quantum dynamics [i.e.,
those described by F¢ (¢)] that signal the presence of ergodic
behavior as %—0. If, to the extent possible for quantum me-
chanics, these dynamical features are already identifiably
close to their classical limits under conditions that these lim-
its imply ergodicity, then we identify the quantum dynamics
as ergodic.

We specifically examine the features of quantum dy-
namics that correspond to ergodicity as #i—0 because we
wish to study the form of quantum behavior that is a conse-
quence of classical ergodic behavior. The relevant quantum
dynamical features are identified by the semiclassical ergo-
dic theory of Ref. 5, which describes how quantum mechani-
cal time evolution becomes classical ergodic dynamics in the
classical limit. We base our treatment on this theory because
this practice appears to be the only consistent way of ensur-
ing that the behavior we identify as ergodic in quantum sys-
tems is directly related to classical ergodic behavior.

We determine the presence of ergodicity in quantum
systems by comparing the quantum behavior to the classical-
ly limiting behavior because this procedure is the only one
that is really compatible with the semiclassical ergodic the-
ory. Although adopting this approach means abandoning all
attempts toward identifying purely quantum forms of ergo-
dic behavior, there appear to be no logically consistent alter-
natives. As discussed in Sec. II, there are no guidelines for
detecting the analog of classical ergodic behavior in a quan-
tum system that is too far away from the classical limit. The
only guideline for identifying ergodic behavior in a system

that is near the classical limit is the similarity of the relevant
quantum and classical dynamics.

We have formulated our definition of partial classical
ergodicity in such a way that it provides a useful measure of
what is normally called “statistical” behavior in systems that
are not truly ergodic. We therefore define partial ergodicity
by reference to the dynamics on the full energy surface, as is
customary in the usual statistical theories of chemical kinet-
ics. Our definition is appropriate in typical physical situa-
tions where the evolution of a limited number of properties is
monitored.

The physical basis of our work is, thus, straightforward.
The essence of our resulting procedure for examining the
ergodic nature of quantum systems is also simple and direct:
it is to compare quantum dynamics, as reflected in the func-
tions F4(T), to classical dynamics, as reflected in the func-
tions F,(T'). The interpretation of the resulting form of sta-
tistical behavior is physically clear because it is as close as
possible to the statistical behavior of classical systems. Con-
sequently, our work treats the quantum implications of clas-
sical ergodicity in a physically oriented manner.

Let us now consider the results of the numerical studies
of the Henon-Heiles system.

The most important numerical result of our work is the
observation of close agreement between the F9(T') and
F ,(T) at high energy. This agreement supports our identifi-
cation of the function F%(T) as the quantum analog of
F ,(T). It thus confirms our analysis of how classical ergodi-
city influences quantum dynamics and suggests that the the-
ory of Sec. II has been formulated in an appropriate and
meaningful way. It, furthermore, provides evidence for the
validity of the semiclassical ergodic theory of Ref. 5 which
underlies the present work.

The close quantum-classical agreement found at high
energy implies that the quantum Henon-Heiles system ex-
hibits a form of partial ergodicity that is similar to that of the
classical system. This shows that this quantum system
(which is sometimes taken as a model for a vibrating mole-
cule) can exhibit statistical behavior as a result of the classi-
cal evolution. The statistical behavior which the quantum
system obeys is explicitly defined in Sec. IL. Apart from its
relationship to ergodicity, as opposed to mixing, this behav-
ior is of a form that is directly relevant for the usual statisti-
cal formulations of chemical kinetics.

Another interesting consequence of the high-energy
agreement is that the partially ergodic nature of the classical
system is reflected in the matrix element distribution for the
quantum mechanical system. The implications of the classi-
cal behavior for the quantum matrix elements, in this case,
follow immediately from the definition of F¢ (T '), as present-
ed and discussed in Sec. II.

We have seen, however, that the applicability of the clas-
sical concept of ergodicity for quantum systems is subject to
limitations. At low energy, the quantum and classical dy-
namics of the Henon—Heiles system are generally so differ-
ent that it is difficult to use even the language of classical
ergodicity to characterize the quantum system. In such
cases, the quantum analog of ergodic (or nonergodic) behav-
ior becomes a very imprecise notion and there is no longer
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any practical way to identify such behavior. Under these
circumstances, the ergodic nature of the classical system is
not necessarily reflected in the distribution of the quantum
mechanical matrix elements.

These limitations of the classical ergodicity concept
arise as a result of differences between the classical and quan-
tum time evolution. However, not all forms of disagreement
between classical and quantum dynamics affect the classical
concept of ergodicity. The theory presented in Sec. II identi-
fies the quantum-classical discrepancies that do and do not
limit our ability to apply the classical ergodicity analysis to
quantum systems. The numerical results reported in Sec. IV
provide examples of both kinds of discrepancies.

The dynamical tunneling we have found in the Henon~
Heiles system is an example of an effect which, though it
leads to classical-quantum disagreements, does not prevent
application of classical ergodicity concepts, because the de-
viations appear only after relaxation of the time-averaged
dynamics is essentially complete. We have emphasized the
importance of treating effects of this sort correctly. We have
shown that their presence has implications for the proper
calculation of the quantum constancy and [via F$)(T)] the
distribution of quantum mechanical matrix elements. We
have illustrated these points for the Henon—Heiles system.

The quantum-classical disagreement in the low-energy
Henon-Heiles system, observed in the autocorrelation func-
tion for property D, is an example of an effect that does limit
our ability to detect the influence of classical ergodicity in
quantum systems, because the deviations set in well before
the relaxation of the time-averaged dynamics is complete.
The source of the disagreement between the two forms of
dynamics in this case is interesting: it is the small size of the
phase space region that is occupied by classical, pendular
tori. Similar effects, leading to large quantum-classical dis-
crepancies, are expected to occur in other systems with de-
generate frequencies.?’ The present work, together with pre-
vious investigations,'"?? suggests that classical ergodicity is
frequently rendered irrelevant for quantum systems by ef-
fects that cause the quantum and classical behavior to dis-
agree after short imes.

As a final remark, we mention that the expressions we
have derived for F 4 (T,,.. ) [Eqs. (25}-(28)] describe the quan-
tum analog of the constancy as a sum of contributions from
individual energy eigenstates. It is possible to use these ex-
pressions to identify the quantum mechanical states that are
primarily responsible for the nonergodic behavior of the
Henon—Heiles system. It would be interesting to compare
such states to those classified as “regular” and “irregular”
on the basis of various criteria. Work along these directions
is in progress.
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APPENDIX A: MATHEMATICAL PROPERTIES OF THE
FUNCTIONS F, (N

To begin our analysis of the F,(T'), we orthogonalize 4
to 1 to obtain the new function A ', defined by

A'=A4—1(1}14)/(1]1).
It is easy to verify by direct substitution that
Colt)=(A"(t)|A")/(4"|4")
= [Calt) = Creq1/(1 = Cuy) (A2)
so that [see Egs. (6) and (8)]
F(T)=C,(T)

(A1)

=(1/T) F C,.(t)exp(— t/T)dt. (A3)

Applying Schwarz’s inequality to (4 '(¢)|4 '), in the first
line of Eq. (A2), yields

|Car(t)I<[A"(t)| A (e))(A"|4)]' /{4 |4).  (Ad)
Using the unitarity of the time evolution operator
U(t), however, we can show that (4°(z}|4'(t))
=(U(t)4’'|U(t)d’') = (4'|A’). We therefore obtain the
following bounds for C,.(t ):

|C,.(t)|<1. (AS)

It is then a straightforward matter to combine this result
with Eq. (A3) and standard integral inequalities to obtain

F,(T)<L (A6)

We now use the spectral theorem for unitary operators
to express the autocorrelation function C,,.(t ) as?®

Coolt) =fexp(iwt M o), (A7)

whereu , (w) is a unique, nonnegative, Borel measure. Substi-
tuting this expression in Eq. (A3), and applying the observa-
tion that F, is real, we obtain

FA(T)=f[1—in1-‘duA<w)

= [ 1+ T P10l (A8)
Equation (A8) establishes that F,(T') is a monotone nonin-
creasing function of 7 and that

F,(T)>0. (A9)
We thus prove the inequalities stated in Eq. (9).

Inequalities (22) for the analogous quantum mechanical
function F ¢ (T") are also easy to prove. The result |F4(T')|<1
follows from application of Schwarz’s inequality which es-
tablishes, as in Egs. (A5) and (A6), that |C4(¢)| and |C%(T)|
are < 1. Theinequality F%(T ') >0 and the conclusion that this
function is monotone nonincreasing follow by inspection of
Egs. (25)427) and (32).

APPENDIX B: CLASSICAL LIMIT OF F (T ..x)

Here we demonstrate that the contribution F (T, ) to
the classical constancy F, does not vanish in the classical
limit, when A is small.
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Let A be small enough that the classical constancy F; is
close to 1. Then, recognizing that F ?) vanishes by symmetry,
we obtain

Fi + F (T )1 (B1)

in the limit as #-50. Substituting the definitions for these
terms [see Egs. {28)30) and (40}] into this equation, recog-
nizing that L transforms according to the 4, representation,
using C, ., = O (see Table II), and rearranging the resulting
expression, we obtain

23 p°E ~ Eyp))|{nlE)|L In(E)) 2

n(E)

+ 3 PE=E) 3 [(mL Inid )1/

n(4,)

+ 3 PEE) S |[(mid )| i) 12/

n(4,)

{1 4 (@nm Tnax )}

=23 PE—Ey) 5 [Km(E)|L |n(E)) 2

n(E)

+ 3 PE=Ew) S [<mi(d,)|L (n(,)) 12

n{A,)

+ 3 PE—Eu) 3 [(m,)|L |n(d,)) % (B2)

nd,)

The second and third terms on the left-hand side arise from
the function £ (T7,,,, ). If this function really is zero in the
classical limit, then Eq. (B2) implies that the last two terms
on the right-hand side of this equation must also vanish.
This, however, leads to a contradiction since it implies that

Lin) =0, (B3)

where |n) is any state in the energy shell having 4, or 4,
symmetry. To show that this result cannot be correct, we
consider the action of L on the eigenstate |V, [ ). The result
mustbeequalto! |V, I ). However, if/is evidently divisible by
3, then |V, 1) projects only onto states of 4, and 4, symme-
try. Expansion of |V, /) in terms of states {n) followed by
substitution of Eq. (B3) yields incorrect results for all values
of I except zero. As a result, we conclude that F (T,,,)
cannot vanish in the classical limit when A is small. Note that
we have avoided using ordinary quantum perturbation the-
ory in deriving this result, even though A has been assumed

to be small, since ordinary low order perturbation theory
breaks down when # — 0.
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