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The Newton Variational Principle for the log-derivative matrix (the Y-NVP) is studied in the
context of a collinear exchange problem. In contrast to the integral equation methods that
calculate the K or the 7" matrices directly, the matrix elements of the log-derivative Newton
functional can be made independent of the scattering energy. This promises considerable
savings in computational effort when state to state transition probabilities are calculated at
several energies, since the matrix elements of the functional need be calculated only once.
Green’s functions defined with respect to a reference energy, called the reference energy
Green’s functions (or the REGFs), play a central role in the Y-NVP functional. The REGFs
may be defined with or without reference to asymptotic channel energies. If channel dependent
REGFs are used, the Y-NVP converges at the same rate as the GNVP for the K or T matrices,
when the scattering energy is the same as the reference energy. On the other hand, channel
independent REGFs permit even further reductions in computational effort. We use both types
of REGFs in the present paper, and compare the rates of convergence. These comparisons
show that the convergence rate of the method is not significantly altered by the type of REGF
used. Further, we show that the Y-NVP is able to achieve rapid convergence of reactive
transition probabilities over a large range of scattering energies, even when scattering
resonances are present. An analysis of the computational effort required for each part of the
calculation leads to the conclusion that a Y-NVP calculation using a channel independent
REGF requires essentially only the same amount of computer time as a log-derivative Kohn (Y-
KVP) calculation, while, presumably, offering faster convergence.

I. INTRODUCTION

The last few years have witnessed exciting developments
in the theoretical study of chemical reaction dynamics. The
result of these recent developments has been that several
independent, well-converged calculations of integral and
differential cross sections have been completed for the
H 4+ H, reaction.'”> The methods used for these calcula-
tions may be broadly classified into two categories: L ? vari-
ational methods utilizing Jacobi coordinates in each ar-
rangement channel,’* and those that resort to solution
propagation in hyperspherical coordinates.”> In addition to
these calculations, accurate 3D reactive transition probabili-
ties for the H + H, reaction have also been computed by
methods developed by the research groups of Pack,® Kup-
permann,’ Schatz,® Baer,® Light'® and Lindeberg ez al.!' It
should be noted that any of these approaches are capable of
generating integral and differential cross sections for this
reaction.

Variational methods that have been used in recent years
in various scattering calculations can be further classified
into two categories: one, those derived directly from the
Schrodinger (differential) equation, such as the S-matrix
Kohn method (the S-KVP),">'*'* or the log-derivative
Kohn method (the Y-KVP);*'>'® and two, those derived
from the Lippmann-Schwinger (integral) equation, such as
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the Schwinger variational principle (SVP),'” the L > ampli-
tude density generalized Newton variational principle (L 2
AD-GNVP),'?° and the log-derivative Schwinger (Y-
SVP) and Newton (Y-NVP) methods.?! The Y-NVP func-
tionals for potential and inelastic scattering were derived
and applied to a few model problems in Ref. 21. The present
work derives the Y-NVP functional for reactive scattering,
where the amplitude density is expanded in an L 2 basis set.
Several issues concerning the application of the method are
investigated using the simplest case of reactive scattering,
viz., the collinear H + H, problem, as an example.

The main features of the Y-NVP are the following. In
contrast to the integral equation methods that calculate the
K or the T'matrices directly (such as the GNVP), the matrix
elements of the Y-NVP functional can be made independent
of the scattering energy. Green’s functions defined with re-
spect to a reference energy, called the reference energy
Green’s functions {or the REGFs), play the same role in the
Y-NVP functional as those defined with respect to asympto-
tic channel translational energies in the GNVP. The REGFs
may be defined with or without reference to internal ener-
gies. If channel dependent REGFs are used, the Y-NVP con-
verges at the same rate as the GNVP for the X or T matrices,
when the scattering energy is the same as the reference ener-
gy. On the other hand, channel independent REGFs permit
even further reductions in computational effort.
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These features of the Y-NVP must be considered in the
context of the two main areas where computational effort is
expended in applying L ? variational methods: one, the eval-
uation of matrix elements of the variational functional, and
two, the solution of a (usually large) system of linear alge-
braic equations. The consensus is that if the linear system is
large enough, the latter step will dominate the calculation.
This being the case, integral equation methods, particularly
the GNVP, seem superior to the Kohn methods, since pre-
vious comparisons®>** show that the GNVP converges with
fewer basis functions than the Kohn methods.

However, the computational effort to evaluate the ma-
trix elements of the Kohn and Newton functionals is not the
same. The Kohn functional is very simple, and the only ele-
ments needed are those of the Hamiltonian and the overlap
matrices. The two Kohn methods also have the advantage
that all or almost all matrix elements of the functional are
energy independent. This means that the first part of the
calculation need be performed only once. The GNVP func-
tional on the other hand, is quite a bit more complex, and
contains integral operators involving the Green’s function
for a reference problem. For most choices of the reference
problem, the Green’s functions have to be numerically eval-
vated before the calculation of matrix elements can begin.
Also, the scattering energies are deeply embedded in the
GNVP functional through the Green’s functions. This
makes it necessary to evaluate the Green’s functions and the
matrix elements of the functional at each scattering energy.
The second part of the calculation, i.e., solving the linear
system of equations, remains explicitly energy dependent in
either approach.

Many of the interesting features of scattering events,
such as scattering resonances, become evident only when
transition probabilities are calculated at a number of ener-
gies. Therefore, methods for reactive scattering should strive
to minimize computational time required per energy. This
would mean that the system of linear equations be as small as
possible—which suggests a rapidly convergent integral
equation method such as the GNVP—and the effort expend-
ed in matrix element evaluation at each energy be minimal—
which suggests a method in which the matrix elements are
energy independent, such as the Kohn methods. The topic of
the present paper, viz., the Y-NVP, combines these seeming-
ly irreconcilable features, and is, therefore, a method that
shows much promise for future applications.

The present implementation of the Y-NVP differs from
that of Ref. 21 in two important ways. One, the basis set used
to expand the amplitude densities now includes a function
that satisfies the log-derivative boundary conditions. While
the method still achieves rapid convergence in the absence of
this function for energies fairly close to the reference energy
(for reasons to be explained in Sec. II D), its presence signif-
icantly increases the range of energies over which the
REGFs are effective. Two, as a result of this addition to this
basis, we find that it is no longer necessary to define the
REGFs with reference to the asymptotic channel energies,
as done in Ref. 21. This has important consequences, one of
which is that it is now possible to perform a Y-NVP calcula-
tion using essentially only the same amount of computer time

required for a Y-KVP calculation. These ideas are illustrated
using the collinear H 4+ H, system on the PK2 potential sur-

~ face®® as an example. A number of exact quantum mechani-

cal results are available for this system.’®?’ The energy
range we examine contains a number of scattering reson-
ances, and the number of open chanriels increase from one at
the bottom of the range to three near the top.

The remainder of this paper is organized as follows: in
Sec. I1, we present the theory of the log-derivative Newton
method as applied to a multi-arrangement scattering prob-
lem. Our formulation is based on Miller’s approach to reac-
tive scattering’”® which has been used by many
workers.!™!13202¢ Section III describes the details of our
numerical calculations, and presents the results. Section IV
summarizes the present work and presents typical CPU
times for the Y-NVP calculations. Two Appendices are pre-
sented at the end of the paper. Appendix A establishes the
explicit mathematical relationships between the Kohn,
Schwinger and Newton variational functionals for the log-
derivative. Appendix B discusses a topic of considerable im-
portance: the possibility of encountering anomalous singu-
larities in the Y-NVP.

i. THE LOG-DERIVATIVE NEWTON METHOD FOR
REACTIVE SCATTERING

A. Boundary conditions and the reference energy
Green’s functions

Consider the one-dimensional problem

—d?

+UR) - ko) =0, )
[ dR* ¥

where U(R) = 2uV(R)/# and k2 = 2uE /#. It is easy to

show, by requiring that ¢(0) =0, that the log-derivative

Y(a) =@ '(R)/@(R)|g -, satisfies

f dR(d¢/dR)2+f dR @(R)
o 0

X [U(R) — k*]@(R) = Y(a)p(a)’. 2)

This of course, is a result from Kohn’s celebrated paper of
1948.%° By requiring that @ (a) = 1, Eq. (2) can be made to
directly yield the log-derivative at R = g—a fact utilized by
Manolopoulos and Wyatt.'> The boundary conditions im-
posed on the solution are thus, ¢(0) =0and ¢(a) = 1. We
refer to these as the log-derivative or the ““(0,1)”” boundary
conditions. Following this convention, below, we also refer
to functions that satisfy the (0,0) or the (1,0) boundary
conditions in the interval (0,a).
Let us consider the reference problem

2
[ —9 LU, —H]w(R) =0; O<R<a, (3)
dR?
where Up, (R) = 2uV,, (R)/# is a distortion potential, and
K2 = 2uE, . /#, where E, is the reference energy. The solu-
tion @(R) satisfies the (0,1) or the (1,0) boundary condi-
tions depending on whether we solve for the regular or irreg-
ular solution, respectively. The Newton variational
functional requires the Green’s function as well as the regu-
lar solution to the reference problem. Below, we outline a
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method by which these may be generated in a variational
manner.

The distorted wave Green’s function for the reference
problem of Eq. (3) satisfies

2
[de +UD(R>—K2] P(R,R")

= —2u8(R—R")/#. (4)

It follows from the work of Miller and Jansen op de Haar'?
that a variational expression for this Green’s function would
be

GPRR) =3 (R lu)|{ulo +

ij=1

aVR2

—UD<R)lu,->_l]<uth'>, (5)

“where the L 2 basis set {u,}V is such that u; (0) = u,(a) =
fori <N, u,(0) =0and uy (a) = 1. {Itisimportant to note
in Eq. (5) [as well as in Egs. (16) and (36) below], that the
quantity enclosed in square brackets is the (i/)th element of
the matrix inverse, rather than the inverse of the (ij)th ele-
ment. This notation,'> while lacking in rigor, has the advan-
tage of showing the composition of the matrix that is invert-
ed in an explicit and compact manner.} The restriction of the
basis functions in Eq. (5) to the subset {«,}V ~ ' is due to the
fact that the kernel of the Green’s function vanishes at both
ends of the interval (0, @).>® The function u, serves to en-

force the (0,1) boundary conditions in the regular solution.

Expanding ¢ (R) in the basis {;}{, the reference prob-
lem of Eq. (3) is written as

Z [ dez + U, (R) —Kz]u (R)C; =0 O<R<a.

i=1

(6)
Since all basis functions except u#, vanish at R = a, and since
both the solution @ (R ) and u, (R) satisfy the same bound-
ary condition at R = a, it is obvious that ¢(a) = u, (a).
Therefore, C, = 1. We now rearrange Eq. (6) to give

N—-1
D {—w + [Up(R) — ]y, }C;

j=1

=uy, — [Up(R) — K uy. €))
Premultiplying both sides with basis functions #;, and inte-
grating, we get

[J (uju})dR +J u,(Up — &*)u; dR ]C]
0

N-—1

—f (ujuy)dR — f u,(Up —Puy dR
0 (4]

i=1,.,N— 1. (8)
The surface terms on the right-hand side of Eq. (8),
— w;uly|R 2§ vanish because of the (0,0) boundary condi-
tions imposed on the ;(R) for i < V. The linear algebraic
problem of Eq. (8), of the type AC = b can now be solved for
the unknown coefficients C as A ~ 'b. Inserting — A ~ ! into

J

G°(RR") = [

—{sin(«R _ ) sin[x(a — R_ )}k sin(ka)] ~!
— {sinh(xR _ ) sinh[x(a — R_ )} [« sinh(ka)] ="' &*<0’
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Eq. (5) yields the kernel of the Green’s function, while the
regular solution ¢ (R) is given by

—1

@(R) =uy(R) + z u,(R)C,. (9)
i=1

Note that the irregular solution, which satisfies the (1,0)
boundary conditions in (0,a) can also be easily generated by
the above treatment, the only change being the addition of a
function u, (R), which satisfies the (1,0) boundary condi-
tions, to the basis. This results in a second right-hand side to
Eq. (8), whose solution yields the desired function.

The fact that a matrix inversion (which scales as N 3 for
a direct method) is required to evaluate the Green’s func-
tion, is certainly a disadvantage of this approach. However,
note that Eq. (5) is a variational expression, and therefore,
promises to yield highly accurate solutions for relatively
modest basis sizes. Nevertheless, in a multichannel problem,
if the distortion potential U, couples several channels, the
order of this matrix will be quite large. With this in mind, we
are at present, exploring different ways of calculating dis-
torted wave Green’s functions in an efficient manner.*’

To evaluate the Green’s functions for the collinear
H + H, problem, we proceed as follows. For the basis set
{u,}V, we choose an N member Lagrange polynomial set
defined over the nodes of an (N + 1) point Gauss—Lobatto
quadrature rule, in an interval (R ,R...) = (Ry,Ry).
The function u, (R) that goes to unity at R, is not included
in the basis. At the quadrature points, the basis satisfies
u;(R;) = §;, where the quadrature points are labeled in the
increasing order from 0 corresponding to R,, to N corre-
sponding to R . This results in a discrete variable represen-
tation (DVR) of the reference problem, identical to the one
employed by Manolopoulos and Wyatt in their first applica-
tion of the Y-KVP." The following simplification can be
made immediately: since in the Lobatto DVR, the functions
{u,} form an orthogonal set, the potential U,, is diagonal in
this representation. Therefore, the only integrals that re-
quire summation over the quadrature nodes are those in-
volving the derivatives of the basis functions.

In the discrete variable representation, the Green’s
function at a point (R,R’) = (R,,R;) is given by

G°(R,R)=—(A"Y,; ij=1.,N—1

Since GP(Ry,R) = G®(R,R,) = G°(R,,R)
= GP(R,Ry) =0,%° this completely defines the Green’s
functions. The regular solution to the reference problem,
recognizing the orthonormal nature of the basis in the DVR,
is given by

P(R)) =6, +Ci(1 =6y) j=1,.,N.

The accuracy of this treatment can be illustrated by
computing the free wave Green’s functions G°(R,R’) for
the special case of the hard sphere distortion potential:
Uy (0) = 0,U,(R) =0 elsewhere. In this case, the refer-

_ence problem can be solved analytically’! and the results are

x>0 (10)
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where (R _,R_ ) are the lesser and greater, respectively, of
(R,R"). Theresults of computing G°(R,R ') using Eq. (5) is
shown in Fig. 1 for a certain value of R . It is clear that the
variational expression of Eq. (5) is very accurate every-
where, except for the small differences at the “kink” in the
Green’s functions, at R = R '. These errors can of course, be
made smaller by choosing a larger basis (i.e., a finer grid) to
represent the Green’s function. However, our convergence
checks show that the present grid is sufficient to satisfactori-
ly converge the matrix elements of the functional.

B. The Y-NVP functional for reactive scattering

Derivations of the Y-NVP functional for potential and
inelastic scattering are given in Ref. 21. A derivation starting
from Kohn’s variational functional for the ¥ matrix'>'6? ig
also provided in Appendix A of the present paper. The treat-
ment below explicitly considers the case of reactive scatter-
ing.
forms the basis for Miller’s exchange formalism.?®

As in any quantum mechanical problem, our aim is to
find solutions to the problem

(a)
0.3
0.2
0.1
0.0-‘
_0_1 J
-o.zﬁ
T T T T T RN T 1
2 3 4 s 6 7 8 9 10
R
0.10 (
0.05-
0.00
-.05
T T T T T T T T
2 3 4 5 6 7 8 9 10

FIG. 1. Reference energy Green’s functions. The circles represent the vari-
ational expression of Eq. (5) at the nodes of a 101 point Gauss—Lobatto
quadrature rule, whereas the curve represents the analytic solutions of Eq.
(10). (a) Anopen channel Green’s function. (b) A closed channel Green’s
function.

(H— E)Y =0. (1)

We begin by writing the Hamiltonian in arrangement a as
H,(R,,r,) —E =T,(R,,r,) +h,(r,)

+ V, (R,,r,) —E, (12)

where the first three terms on the right-hand side are, respec-
tively, the kinetic, internal and potential terms, E is the scat-
tering energy and the coordinates (R,,7,) are the mass-
weighted, isoinertial®? Jacobi coordinates commonly used in
reactive scattering. We expand the wave function for scatter-
ing initiated in, say, the internal state n of arrangement @, in
terms of all the internal states and all the arrangements:

‘I,arz =zﬁr=z¢ﬁm(rﬂ)fZT(RB)’ (13)
Bm Bm

where the ¢, satisfy hzds,, = €5,,@p.,. This type of expan-
sion for the scattering wave function has also been called the
Fock coupling scheme,'” because it is similar in spirit to the
Hartree-Fock method for electronic structure calculations.
[A few comments about the notation are in order. We use
Greek superscripts and subscripts to denote arrangements,
and lower case italic letters for internal state labels. For com-
pactness of notation, the quantity f5,,. ., (Rgz) is written
above as f27(R,). We use the same convention for all func-
tions and matrix elements. So, for example, Z_, 5, (see be-
low) is written as Z 3, , i.e., the row index is the superscript,
and the column index is the subscript. ]

The next step is to identify the reference problem for the
Green’s functions. As mentioned in Sec. I, the reference en-
ergy Green’s functions (the REGFs) for the Y-NVP may be
defined with or without reference to the asymptotic internal
energies. In this section, we derive our equations using a set
of channel dependent REGFs. In Sec. II C, we discuss the
channel independent REGFs and the advantages that they
promise. Thus, we now define the reference problem in ar-
rangement & as

[T (Rour.) + ho(70) — Erg1fon (Ra)$an (1) =0, (14)

where E_; is a reference energy (a constant, as far as this
development is concerned). The functions /2, (R, ) satisfy
the (0,1) boundary conditions. Note that the distortion po-
tential used is that of the hard sphere problem. For later use,
we identify the remainder of the full problem, i.e., the part of
Eq. (12) that was excluded from the reference problem of

Eq. (14), as

Z,(R,,r,) =U,(Ryo1,) — 4, (15)
where

U,(R,,r,) =2uV, (R, r,)/#
and

A=2u(E — E )/ =k*— i,

The reference energy Green’s functions GY, (R,,7;R ;7 })
ire now calculated as®
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G?xn = z lu(¢an)
i

X(<¢anui|K2 - ha - Taluj¢an> B l)<¢anujl
= |#an) G on{Ban s (16)

where the functions {u,} are the same as those described in
Sec. IT A.
We now define the projected amplitude densities'” as

Fon (R =3 Zf 3 (R,),
vi

where if @ = ¥, Z 5] is the direct interaction potential

Z(R,) =fdra b (r)Zo(Ror)bua(r)  (IT)

and if a#7,
given by

ar,
sz(Ra’Ry) = - (3RY )Ra¢an(ra)[Kil - Ty

—Z,(R,,r)19,(r,), (18)

where «2, = 2u(E,« —€,)/#, and the Jacobian factor
(dr,/3R.) R, results from the transformations r
—r,(R,,R,)and r,—r, (R, ,R,) for each value of R,,.

The Y-NVP functional for the ¥ matrix element Y, 4,,
can now be written as

o1 is the exchange interaction, whose kernel is

a

Yan.Bm cw ,Bm + z {(f?m lZanGO; lF};ﬁn)
+AF G YZ B ) — (FIGUIF )}
+2 ; (FGIGSL,ZY G [FELY,  (19)
¥
where

I an
Yanﬁm =5aﬁ6nm( fﬂ ) + (fgn|Zg:ln V(/;m> (20)
R=a

R,

We expand the amplitude densities in a set of L ? basis
functions {v, }

N
FIR) =3 [viXvIFg). 1)
i=1
We require the functions with /<N to satisfy the (0,0)
boundary conditions, while the function |v,) satisfies the
(0,1) conditions. The reason for this choice of functions for
the basis is that unlike the GNVP amplitude densities, the Y-
NVP amplitude densities do not vanish asymptotically. (See
Sec. II D, below.) Substituting the expansion of Eq. (21)
into the functional of Eq. (19) and extremizing the func-
tional with respect to the expansion coefficients {(v,|F %}
we arrive at the relationship

Yan,ﬁm = Y(;nﬁm + (BTA* IB)an,ﬁmr (22)
where
Bam‘,Bm (V lGO Zan V%m (23)

and
Aam‘,ﬂmj = (Vi ‘G ?xn lvj>6aﬂ6nm
— lG L Z 5. GV (24)

To arrive at the final “working equations” of the log-deriva-
tive Newton method, we now recognize the following. Sub-
stituting Eq. (15) into Eqgs. (17) and (18), we see that

Z‘/};’; = (Ug::. —ﬂﬂmanm )5aB
+ (1 =8, S ([K2, — Ts] + Agm) — U},
(25)
where
Shm = — (ar“ ) Ban (o )b (75) (26)
AR, ) x,

and the definitions of U g, and A4, follow from Egs. (15),
(17), and (18). We also recognize that the kinetic energy
operator in the second term of Eq. (25) does not appear in
our calculations since

zs = (U ~ ApmOrm 825G om
+ (1= 8,:){S5m (1 4+ 45,G3,)
—UsGpnt (27)
and
Z o = (U — A8 VB S
— (1 =8, ) UGS (28)

Splitting matrices Y°, A and Bin Eq. (22) into “direct” and
“exchange” parts, and using Egs. (25), (27), and (28), we
get the direct terms

( Yg dangm = 5aﬁ5nm (%%)R _ + 6a/3 ( (fgm [ Uﬁm Bm )
— S Fan o Y pm ) » (29)
(B anipm = 5aﬁ ( (v, |Go UZ,'l. %m>
— B V|G o B Y ) > (30)

(Ad )ani,ﬁmj = <Vi 'ng |vj)6a5‘5nm
— 6043((1"[\G?1n UZ'J, G%m i'Vj))
+6aﬂ(5nm<vi|G?1n %ml‘lj)llﬁm)’. (31)

and the exchange terms
(Yg)an,ﬁm =(1 a[)‘)(g-gnl Bm ﬁm>

- an Brn lf‘(l)?m )ABm 3 (32)
(Be)am',ﬁm = (1 - 6116)(<Vi'ng UZ:’n Lf%m)
- (Vingn g:‘n V??m)le) » (33)

(Ae)ani,ﬂmj = (1 —5aﬁ)(<vingnS§:‘nlvj)
— ilGenUpn G pm|v;))

+ (1= 8,5) (V|G oS 5. G G [V YA )

(34)

Equations (29)-(34) completely define the quantities

that enter the extremized functional of Eq. (22) and are the

equations used for the calculations reported in Sec. II1. One

important property of these equations is that since the scat-

tering energy enters the functional only through the quanti-
ties
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Apm = (Kb — K ) = 2u(E — E 0 ) /77, (35)

the matrix elements of the Y-NVP functional are completely
independent of the scattering energy and need be evaluated
only once.

C. Channel independent reference energy Green’s
functions

The reference problem for the REGFs can be made in-

dependent of the asymptotic channel energies by simply re- -

moving the Hamiltonian for the internal degrees of freedom
from the reference problem. This leads to a REGF of the

type™

<¢an|G?1|¢am> =6nm z lui)((uile— Taluj>_l)(uj|9
’ (36)

so that the matrix to be inverted is independent of the inter-
nal channels. Therefore the matrix inversion needs to be per-
formed only once, regardiess of the number of channels used
in the problem. This is a great advantage when three-dimen-
sional scattering calculations are to be done, since the num-
ber of rovibrational channels are usually very large for such
problems. However, it is clear that this approach imposes
certain restrictions on the type of distortion potentials that
may be included in the reference problem. A distortion po-
tential that couples the internal channels would render these
REGFs once again channel dependent.

Note that the quantities A, of Eq. (35) are actually
independent of the internal channel, since the internal ener-
gy cancels in the difference k2, — «2,. On the other hand,
when the channel independent REGFs are defined as in Eq.
(36), the quantities 1., become explicitly channel depen-
dent, as

Agn =k, — k2 =2u[(E —€,,) —E]/#. (37

D. The L? Basis for the Y-NVP amplitude densities

As mentioned in Sec. I, the present numerical imple-
mentation of the Y-NVP differs from the previous one in
that a function |v, ), which satisfies the (0,1) boundary con-
ditions is now added to the L * basis used to expand the am-
plitude densities. It is instructive to briefly discuss the rea-
sons for the inclusion of this function, and the implications
this has for some of the results reported in Ref. 21, where a
basis that did not contain such a function was used. Consider
a one-dimensional potential scattering case, for example. In
constrast to the GNVP amplitude density, the Y-NVP am-
plitude density F(R) does not vanish as R—-»R,,,, [where
R, is large enough that U(R,_,,, ) =0], since

HmF(R) =lim[U(R) —A JAAR) = — 4, (38)
R—a

R—a
since f(a) = 1. Therefore, the amplitude density does not
vanish asymptotically except when A =0, i.e., E = E ;. By
including the function |v,) in the basis, we ensure that the
proper boundary conditions can be satisfied. Note that for-
mally, since the functions |v; ); i < N vanish at the boundary
R = g, the expansion coefficient of |v, ) is identically equal
to — A. Then, the system of linear algebraic equations for
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the expansion coefficients may be rewritten by pulling all
terms containing (v} to the right-hand side [similar to our
procedure in Eq. (7)]. However, in the present work, we
have not done so. The present implementation of the Y-NVP
treats all expansion coefficients on an equal footing.

This raises certain questions concerning the numerical
results reported in Ref. 21, for cases where E # E,;. In that
work, the basis used to expand the amplitude density did not
contain the function |v, ). Therefore, the basis satsified the
(0,0) boundary conditions even when the amplitude densi-
ties did not. In spite of this, however, the calculations using
the basis converged rapidly to the correct values. The reason
for this can be found in the mathematical relationship be-
tween the Kohn and Newton variational methods. As shown
in Appendix A, the Kohn functional for the log-derivative
Y(a) can be written in the form ‘

d
1G4 =(22) v aumg-E),

(39)

where £, and f,, are two trial functions that satisfy the (0,1)
boundary conditions. Provided that the Lippmann—
Schwinger equation is used as a basis for generating succes-
sive orders of approximationf,, f, . , etc., for a trial function
/. Appendix A shows that the functional I(f, f; ) is the Kohn
variational principle, the functional I(f,.f,) is the
Schwinger principle, and the functional I(f, ,f; ) is the New-
ton variational principle. In each case, f; is expanded in an
appropriate L 2 basis set {v, }?' that satisfies the (0,1) bound-
ary conditions. The reason for the convergence of calcula-
tions for which A #£0in Ref. 21, in the absence of the function
|vy ), is due to the fact that the function f, satisfies the (0,1)
boundary conditions, regardless of the nature of the basis
used to expand f;. This can be easily verified by examining
the boundary conditions satisfied by Eq. (AS) of Appendix
A for arbitrary choices of f;,. However, for arbitrary choices
of f,, the Kohn functional 7(f; ./, ) does not yield a Y matrix,
since the correct boundary conditions are not satisfied. The
functional I(f; f; ), on the other hand, converges at the same
rate as a Kohn calculation where f;, is expanded in a basis
that satisfies the (0,1) boundary conditions:

h=f+'S GLU-21w).

In this sense, the calculations of Ref. 21 for which E £ E
are actually Kohn calculations using a reference energy de-
pendent basis. The functional /(f, /] ) with the expansion of
Eq. (40) for f; rigorously becomes the Y-NVP functional
only when A = 0, or E = E,. On the other hand, the inclu-
sion of the function | v, ) ensures that the proper relationship
between the Kohn and the Newton functionals are main-
tained at all values of E.

(40)

1il. CALCULATIONS AND RESULTS

In this section, we briefly outline the details of the calcu-
lations performed on the collinear H + H, system on the
PK2 potential surface, and present the results. In what fol-
lows, all distances are in Bohr, and all energies in eV. The
asymptotic problem for the diatomic vibrational energies
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€, issolved at R, = 10, using a 40 point Lobatto DVR in
the interval (7,7 max) = (0.50,4.0). This is sufficient to
converge the €, of the lowest seven states to five or six sig-
nificant figures. The reference problem for the REGFs is
solved in the domain (R, ,R,,..) = (1.0,10.0) using a Lo-
batto DVR of 101 points, as described in Sec. II A. The low-
er and upper limits of the integrations in the  and R coordi-
nates used here are comparable to the values used by
previous workers. The 101 point DVR used for the reference
problem also defines the quadrature rule for evaluating all
the matrix elements of the functional.

The basis set used to expand the projected amplitude
densities F 37 consists of a set of 1-d box energy eigenfunc-
tions

) =(£)1/zsin[Ml]; j=1,.,N—1, (41)
a

a
where a = (R,,,, — R, )> and
|vy) = sinh[a@(R — R,,;,)]/sinh(aa), (42)
or
|va) = (R — Rpyin)/a. (43)

Both choices of |v, ) satisfy the (0,1) boundary conditions.
The function of Eq. (42) behaves like a damping function,
and is actually the regular solution for the reference problem
corresponding to a reference energy of — #’a>/2u. Except
for very small (<0.10) values of the parameter a, the func-
tion of Eq. (42) remains small for R €R,,,,, and gradually
approaches unity as R— R, . The parameter « thus deter-
mines the range of R=R,,, over which the function |v,)
assumes appreciable values; smaller the value of , the larger
the range. The function of Eq. (43) is of course, a straight
line, or a “ramp” function. We shall see below that the con-
vergence characteristics of the Y-NVP functional is remark-
ably insensitive to the choice of & or even the type of function
chosen to represent |vy). Unless otherwise specified, we
take |vy) to be the function of Eq. (42), with a = 3.

We calculate the reactive transition probabilities
P g{f (E) at several energies in the range 0.40<£<1.65. Many
previous investigations of the collinear H 4 H, system have
examined this energy range. The majority of our calculations
have been at scattering energies previously studied by Dardi,
Shi, and Miller (DSM).?¢

We first discuss the calculations performed using the
channel dependent REGFs. To test the convergence of the
PB(E) with respect to the number of closed channels in-
cluded in the calculations, we set &V, the number of L ? basis
functions per channel, to 40 and perform calculations using
4, 5, 6 and 7 channels. The value of E,.; in these calculations
are chosen to be 1.00 eV, which approximately corresponds
to the middle of the energy range examined. The results are
summarized in Table I. As expected, the lower energy results
converge with as few as four channels while the highest ener-
gies require up to six channels. The remainder of our calcula-
tions are done with six channels at all energies.

The convergence of the Y-NVP with respect to the num-
ber of L * functions per channel is investigated next, in Table
II. Compared to the fully converged P& of Table I, we see
that the reactive transition probabilities are converged to

TABLEI. Convergence of the Y-NVP (v = 01 = 0) reaction probabili-
ties in the range 0.40< £<1.65 eV, with respect to the number of vibrational
channels. N=40; E,; = 1.00 eV.

Number of vibrational channels

E (eV) 4 5 6 7

0.4028 250(—3) 250(—3) 250(—3) 250(-3)
0.4334 2.65(—2) 2.65(—2) 265(—2) 265(-—-2)
0.4546 1.01(—-1) 101(-1) 101(—-1) 101(—-1)
0.4826 3.70(—-1) 370(-1) 3.70(—-1) 370(-—-1)
0.5000 6.01(—1) 601(—1) 601(—1) 601(-—-1)
0.5376 9.13(—-1) 9.13(—-1) 914(—-1) 9.14(-1)
0.6000 999(—-1) 999%(—1) 999(—1) 999(-—-1)
0.7000 991(—1) 991(—1) 991(—1) 991(-—-1)
0.8000° 9.50( —1) 950(—1) 950(—1) 9.50(—-1)
0.8706 1.84(—-1) 1.82(—-1) 1.82(—-1) 182(-1)
0.8976 6.64(—1) 6.66(—1) 666(—1) 6.66(—1)
1.0000 596(—1) 595(—1) 595(—-1) 595(-1)
1.2026 227(—1) 2.28(—1) 228(—1) 228(-—-1)
1.3000° 560(—-1) 628(—1) 630(—1) 630(-1)
1.3966 1.26(—-1) 130(—-1) 130(—-1) 130(-—-1)
1.6466 871(—2) 7.55(—2) 742(—-2) 742(-2)

*The v = 1 channel becomes open.
®The v = 2 channel becomes open.

within 1% or better with about 25 functions per channel for
E<1.00eV. The higher energies require up to 35 functions to
reach the same level of convergence. Recall that when the
channel dependent REGFs are used, as in Tables I and I1,
the Y-NVP converges at the same rate as the GNVP for
E = E_;.*' This means that the GNVP would converge this
problem to within 1% error with approximately 25 func-
tions at £ = 1.00 eV. Using the Y-NVP, however, we are
able to converge the results for all £<1.00 eV, with no addi-
tional effort for matrix element evaluations.

We now examine the results of using the channel inde-
pendent REGFs. Calculations analogous to those of Table
I1, using the channel independent REGFs are presented in
Table I11. It is interesting that P 2(1.00) is better converged
with N = 25 here than in Table II. However, with the excep-
tion of E = 0.60, this approach requires N = 30 before the
other P3#(E)s converge to within 1%. Another interesting
point to note is that the channel independent REGFs appear
to be more efficient at converging the results slightly above
E.. The nprobabilitiess PZ(E) in the range
1.2026< E<1.3966 are better converged with N = 30 in Ta-
ble III than in Table II. Considering the significant savings
promised by this approach (see Sec. IV), we believe that the
Y-NVP calculations using channel independent REGFs of-
fer a very attractive alternative to using the Kohn methods,
which generally converge slower.

We now examine two more issues associated with the
present approach, viz., the dependence of the PZ(E)s for a
fixed value of Non (a) E,, and (b) the nature of the func-
tion |vy) used in the L 2 basis. Table IV addresses the first
issue, by calculating P3P(E)s for several energies in the
range 0.40<E<1.63, with N = 30, for five values of E,.
This Table indicates that for E_; = 0.0, 0.50, and 1.00, the
method achieves fairly similar levels of accuracy with
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TABLEII. Convergence of the Y-NVP (v = 0—+/ = 0) reaction probabilities in the range 0.40<E<1.65 eV,
when channel dependent REGFs are used. A total of six channels are used in these calculations. E,, = 1.00eV.

Number of L 2 functions

E (eV) 15 20 25 30

35 40
0.4028 275(-3) 2.61(—3) 2.51(—3) 2.51(—3) 2.50(—-3) 2.50(-3)
0.4334 3.66( —2) 2.98(—-2) 2.67(—-2) 2.65(—2) 2.65(—2) 2.65(—2)
0.4546 7.06( —2) 9.24( -2) 1.06(—-1) 101(-1 1.01(—-1)° 1.01(—-1)
0.4826 224(-1) 3.3(-1) 3.66(—1) 3.69(—1) 370( - 1) 3.70( - 1)
0.5000 8.09(—-1) 6.80( — 1) 6.05( —1) 6.02(—1) 6.01( —1) 6.01(—1)
0.5376 9.85(—1) 9.51(—1) 9.16(—1) 9.14(—1) 9.14(—-1) 9.14(—-1)
0.6000 3.01(—-1) 1.00 9.99(—1) 9.99(—1) 9.99(—-1) 9.99(—1)
0.7000 5.55(-3) 8.68( —1) 9.90( — 1) 9.90( — 1) 991(—-1) 991(—1)
0.8000% 423(—-1) 9.99( - 1) 9.51(— 1) 9.50(—1) 9.50(—-1) 9.50(—-1)
0.8706 3.55(-2) 215(-1) 1.83(—-1) 1.82(—-1) 1.82(-1) 1.82(—-1)
0.8976 9.26( — 4) 5.31(—2) 6.67(—1) 6.66( — 1) 6.66( — 1) 6.66( — 1)
1.0000 3.38(—4) 7.99( —2) 6.00( — 1) 595(—-1) 595(—-1) 595(—1)
1.2026 6.13(—3) 1.73(=2) 1.39(-1) 229(-1) 228(—1) 2.28(—-1)
1.3000° 1.16( —3) 3.87(—-2) 405(—1) 6.31(—1) 6.30( — 1) 6.30(—-1)
1.3966 4.78(—-3) 4.86( — 2) 2.12(-2) 1.37( -1 1.30(—- 1) 1.30(—1)
1.6466 1.56(—1) 1.10( — 2) 2.82(—-2) 6.76( — 2) 7.38(—2) 7.42(—2)

#The v = 1 channel becomes open.
®The +/ = 2 channel becomes open.

N = 30, except at the two highest energies examined. How-
ever, the convergence at all energies are very poor when
E.; = 1.65. A tentative explanation for this rather puzzling
behavior is as follows. Note that when E, > 0, the channel
independent REGFs resemble the open channel Green’s
functions of Fig. 1(a). The larger the value of E,;, the more
oscillatory this function becomes. When such highly oscilla-
tory functions are present in the functional, the basis func-
tions have to be sufficiently oscillatory as well, in order to
cancel out the unwanted oscillations in the Green’s func-

TABLEIII Convergence of the Y-NVP (v = 0—+' = 0) reaction probabi-
lities in the range 0.40< £<1.65 eV, when channel independent REGFs are
used. A total of six channels are used in these calculations. £, = 1.00 eV.

tions. Apparently, the sine functions |v; ), with i<29 are not
able to fulfill this role. In support of this explanation, we also
present, in Table IV, the results of performing these calcula-
tions with E_, = — 1.65. The negative value of E_; yields a
nonoscillatory, closed channel REGF of the type shown in
Fig. 1 (b). It is clear that the results using such a Green’s
function are much better converged than those using the
highly oscillatory REGF that results from a large, positive
Eref .

The second issue raised above is potentially more impor-

TABLEIV. Dependence of the Y-NVP (v = 0—+/ = 0) reaction probabil-
ities in the range 0.40< E<1.65 eV, on the reference energy. The basis con-
sists of 30 L? functions in each of six channels. Channel independent
REGFs are used.

Number of L ? functions

Reference energy E ¢ (eV)

E (eV) 20 25 30 35 40 E (eV) 0.0 0.5 1.0 1.65 — 1.65

0.4028 2.62( —3) 2.55(-3) 2.51(—=3) 2.50(—3) 2.50(—-3) 0.4028 2.50( —3) 2.50( —3) 2.51(—3) 2.54(—3) 251(—3)
0.4334 2.99( —2) 2.78( —2) 2.66( —2) 2.65(—2) 2.65( —2) 0.4334 2.65( —2) 2.65(—2) 2.66( —2) 2.75( —2) 2.66( —2)
0.4546 9.28(—2) 949(—2) 100{—1) 1OI(—-1) LOI(—-1) 0.4546 1.01( —2) LO1(—2) L00( —1) 9.90( —2) 1.01(—1)
0.4826 3.11(—1) 3.39(—1) 3.68(—1) 3.69(—1) 3.70(—-1) 0.4826 3.70( —1) 3.70( - 1) 3.68(—1) 3.52(—1) 3.67(—-1)
0.5000 6.81(—1) 6.36(—1) 603(—1) 6.02(—1) 601(—1) 0.5000 6.01(—1) 601(—1) 6.03(—1) 624(—1) 6.03(—-1)
0.5376 9.53(—1) 932(—=1) 9.15(=1) 9.14(—1) 9.14(—1) 0.5376 9.14(— 1) 9.14(—1) 9.15(—1) 927(—1) 9.14(-1)
0.6000 1.00 1.00 9.99( —1) 9.99(—1) 9.99(—1) 0.6000 9.99( — 1) 9.99( — 1) 9.99(—1) 9.99( —1) 9.99(~1)
0.7000 8.63(—1) 9.62( —1) 990(—1) 990(—1) 991(—-1) 0.7000 9.90( — 1) 9.91(—1) 9.90( —1) 9.76( — 1) 9.90( —- 1)
0.8000" 9.99( —1) 9.70( —1) 9.51(—1) 9.50(—1) 9.50(—1) 0.8000* 9.51(—1) 9.51(—1) 9.51(—1) 9.59( —1) 951(~-1)
0.8706 1.98(—1) 1.41(—1) 1.81(—1) 182(—1) 1.82(—1) 0.8706 1.81( —1) 1.82(—1) 1.81(—1) 1.60( —1) 1L79(—-1)
0.8976 3.86( —2) 6.86( —1) 6.66( —1) 6.66( —1) 6.66( —1) 0.8976 6.66( — 1) 6.66( —1) 6.66( —1) 6.80( —1) 6.68(—1)
1.0000 296(—1) 593(—1) 595(—1) 595(—1) 595(—1) 1.0000 5.96( —1) 595(—1) 595(—1) 6.03(—1) 5.98(—~1)
1.2026 6.84( —4) 4.13(—2) 2.28(—1) 2.28(—1) 2.28(-1) 1.2026 231(—1) 230(—1) 2.28(—1) 231(—1) 2.33(—- D)
1.3000° 1.06( — 1) 6.94( —1) 6.30( —1) 6.30( —1) 6.30( —1) 1.3000° 6.33(—1) 6.32(—1) 6.30(—1) 620(—1) 6.35(—1)
1.3966 6.44( —2) 1.68( —2) 1.32(—1) 1L30(—1) 1.30(—1) 1.3966 1.45(—1) 1.39(—1) 1.32(—1) 1.93(—1) 1.55(-1)
1.6466 6.85( —3) 3.64( —2) 9.06( —2) 740(—2) 741(-2) 1.6466 512( —2) 6.41(—2) 9.06( —2) 1.97(—2) 3.99(—-2)

*The v/ = 1 channel becomes open.
®The v = 2 channel becomes open.

2The v' = 1 channel becomes open.
®The v = 2 channel becomes open.
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tant for the routine application of the Y-NVP to scattering
problems. Table V summarizes the results of computing the
P35(E)s with N = 30, where the damping function of Eq.
(43) with several choices of the parameter & and the ramp
function of Eq. (44) have been used for the function |v, ).
The reference energy is chosen to be 0. Table V indicates that
the convergence rate of the Y-NVP is remarkably insensitive
to the value of the parameter a, or even to the nature of the
function chosen for |vy ).

Finally, to summarize the results of our calculations and
to compare them to those of DSM,?¢ we present in Fig. 2, the
results of performing the Y-NVP calculations at 32 energies
in the range 0.40<E<1.65. For these calculations, channel
independent REGFs are used, N =35 and E,; = 1.00 eV.
The solid line is a smooth curve drawn through the results of
these calculations. The results of DSM?® are plotted as dots.
Clearly the agreement is very good at all energies. This figure
also illustrates the power of the present method. We are able
to generate all the results shown in this figure as the solid
line, with essentially no more effort than a Y-KVP calculation
to compute the same results.

IV. DISCUSSION

We have applied the Newton variational method for the
log-derivative matrix (the Y-NVP) to the case of the collin-
ear H + H, reaction on the PK2 surface. An important fea-
ture of the Y-NVP is that the matrix elements of the vari-
ational functional are independent of the scattering energy,
and therefore, need be calculated only once. This feature
allows us to perform scattering calculations over a wide
range of scattering energies with substantially less computa-
tional effort than the GNVP. The energy independence of
the Y-NVP matrix elements arise as follows: the log-deriva-
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FIG. 2. Reactive transition probabilities PZ( E) for the collinear H + H,
problem on the PK2 surface. The curve passes through the Y-NVP results
calculated at 32 energies between 0.40 and 1.65eV. E_; = 1.00eV. The dots
are the results of Dardi, Shi, and Miller, taken from Ref. 26.

tive boundary conditions, unlike the X, S or 7' matrix bound-
ary conditions, are energy independent. This means that the
Green’s functions of the Y-NVP functional can be defined
with respect to a ‘‘reference energy” (a constant). The refer-
ence problem for these reference energy Green’s functions
REGFs could be restricted to a purely one-dimensional
problem—which would mean that the REGFs are indepen-
dent of the asymptotic internal channels—or it may be made
to contain the Hamiltonian for the internal degrees of free-
dom—which would result in the channel-dependent
REGFs.

The results of the present investigation indicate that the

TABLE V. Dependence of the Y-NVP (v = 0—+' = 0) reaction probabilities in the range 0.40<E<1.65 eV,
on the basis function that satisfies the (0,1) boundary conditions. The basis consists of 30 Z ? functions in each

of six channels. Channel independent REGFs are used. E, = 0.00 eV.

Value of parameter a

E(eV) Ramp 1.0 20 3.0 4.0 5.0
0.4028 2.50( - 3) 2.50(—-3) 2.50( —3) 2.50( - 3) 2.50( —3) 2.50( - 3)
0.4334 2.65(—-2) 2.65(—~2) 2.65(—2) 2.65(—2) 2.65(—2) 2.65(—2)
0.4546 1.01(—1) 1.01( - 1) 1.01(-1) 1.01(—-1) 1L.O1(—-1) 1.01(—1)
0.4826 3.70( - 1) 370( - 1) 3.70(—-1) 3.70( - 1) 3.70( - 1) 370(-1)
0.5000 6.01(—1) 6.01( —1) 6.01(—1) 6.01(—1) 6.01(—1) 6.01( —1)
0.5376 9.14(— 1) 9.13(-1) 9.14(-1) 9.14( - 1) 9.14(—1) 9.14(—-1)
0.6000 9.99( -1 9.99(—1) 9.99(—1) 9.99(—-1) 9.99( - 1) 999(-1)
0.7000 9.90(—1) 9.91(—1) 9.91(—1) 9.90( - 1) 9.90( — 1) 9.90( - 1)
0.80007 9.51(—-1) 9.51(—1) 951(—1) 9.51(—-1) 9.51(—1) 951(—1)
0.8706 1.82( - 1) 1.82(-1) 1.82( —1) 1.81(—1) 1.81(—-1) 1L.81(—1)
0.8976 6.66( — 1) 6.66( — 1) 6.66( — 1) 6.66( —1) 6.66( — 1) 6.66( — 1)
1.0000 5.96(—1) 596(—1) 5.96( —1) 596(—1) 596(—1) 596(—-1)
1.2026 231(—-1) 231(—1) 231(-1 231(—-1) 231(—-1) 231(-1)
1.3000° 6.33(—1) 6.33(—1) 6.33(—-1) 6.33(—-1) 6.34( — 1) 6.34(—1)
1.3966 144(--1) 1.44(—1) 1.44(— 1) 1.45(-1) 1.46( — 1) 1.46(—-1)
1.6466 526(—1) 5.24(—2) 5.19(—2) 5.12(—-2) 501(—2) 4.90( —2)

*The v' = 1 channel becomes open.
®The v = 2 channel becomes open.
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channel-dependent REGFs offer slightly faster convergence
as the number of L 2 functions are increased, while the chan-
nel-independent REGFs offer an even further reduction in
the computational effort, compared to the GNVP. The con-
vergence tests summarized in Tables II and III show that
either approach is capable of achieving rapid convergence
over a wide range of energy, even when scattering resonances
are encountered. The range of energy over which the REGFs
are effective appear to be at least about 1.00 eV, since the
method achieves rapid convergence in the range
0.40< E<1.40¢V. This is a sizeable range for atom—molecule
scattering studies, and is quite sufficient to bring out the
details of “interesting” features such as scattering reson-
ances. The possibility remains open that distorted wave
Green’s functions may be effective over an even larger range
of scattering energies.

We have stated that the computational effort involved in
implementing the Y-NVP is quite comparable to that of the
Y-KVP. The following execution times, on one processor of
a Cray X-MP/24, substantiate this claim. Using the chan-
nel-dependent REGFs—which means that the Green’s
functions are found in each channel—in a six-channel calcu-
lation, it takes a total of 2.4 s to evaluate the REGFs G°  in
all six channels. Computation of the direct matrices U5,
the exchange matrices Uj,;, and the overlap matrices S5,
take a total of 43 s. It takes another 0.68 s to evaluate all the
matrix elements of the Y-NVP functional. The total “over-
head” before the linear algebraic problem is solved for the Y-
matrix is, therefore, 46 s. However, 91% of this overhead,
i.e., evaluation of the U, , U5, and Sz, are common to
both the Y-NVP and the Y-KVP. Therefore, the Y-NVP
requires, at the most, only 3 s more than the Y-K VP to calcu-
late the transition probabilities at several energies. Using
channel independent REGFs reduces this difference even
further, since the evaluation of the Green’s functions now
take only one-sixth the time reported above, i.e., 0.39 s. This
means that 95% of the total overhead is shared by the Y-
NVP and the Y-KVP. The actual difference in the time tak-
en for these calculations is almost certainly much less for the
following reasons. One, we have not included in the above,
the time required to evaluate the matrix elements of the Y-
KVP functional. Two, the linear algebraic problem solved in
the Y-KVP is often much larger than that in the Y-NVP for
the same level of convergence.

We believe that the results presented in Sec. III and the
execution times quoted above convincingly demonstrate the
usefulness of the Y-NVP. Several aspects concerning the ex-
tension of the present method to three dimensional scatter-
ing problems are currently under investigation.
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APPENDIX A: THE RELATIONSHIP BETWEEN THE
KOHN, SCHWINGER, AND NEWTON VARIATIONAL
FUNCTIONALS FOR THE LOG-DERIVATIVE MATRIX

Consider the functional (|H — E |¢) in the domain
(0,a), which, with simple manipulations, leads to

QuARNYIH — E|g) = — gidprdn|s + f " (dyrdrydr

+ f YLUr) — k21gdr. (AL
0

Comparing this to the variational expression for the log-de-
rivative ¥(a), given by Kohn,'>?*

Y(a) = Jm (dy/dr)’dr + -r Yl U(r) — k*1ydr (A2)
0 0

we see that an alternate expression for Y(a) is given by
Y(a) = (dy/dr),_, + Qu/®)(Y|H - E|¢), (A3)

where the solution ¥(r) is required to satisfy the (0,1)
boundary conditions. We denote the functional of Eq. (A3)
as I(¢,¥). This expression may be further generalized as

I($, ) = (dy/dr), ., + Qu/#*){$|H — E |{), (Ad)

where both trial functions satisfy the usual (0,1) conditions.
The accuracy of the functional of Eq. (A4), of course, de-
pends on how well the trial functions approximate the exact
solution. The Lippmann-Schwinger equation provides a
systematic way of improving a given trial function f, (#), as
in

fi =2+ G°Uf,, (AS)

where f? is the regular solution to the reference problem
(H, — E)f° =0 (the irregular solution being denoted as
Y, U=2uV /#, where ¥ = H — H,, and

Gorr ) =f2(r Q™ fAr.), (A6)

where (r_,r_ ) are the lesser and greater, respectively, of (7,
7). The constant () is given by the Wronskian

Q = f£(dfi/dr) — f2(df}/dr). (AT)

Now, from Eq. (A3), we see that 7(f;, /i ) isthe Y-KVP. The
functional I{f;,f; ) simplifies to

daf;
106 =(T2)  + vl + hlop)

— (LlU-UGUIfy), . (A8)
which is the Y-SVP. The following results are used in this
simplification:

Q- N(dfi/dn), ., =1,
@)._.~(7)
L = Ulf,),
(dr r—a dr ,=a+<f(:l Vo)
(H, — E)f? =0,
and
(H, —E)G°= — L
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Similarly, it is easy to show that

: |
100 =(%) o + giveuyy

+ (FAIUGU )
— HL|UG° = GUG)U|f,), (A9)

which is the Y-NVP for the wave function (as opposed to the
amplitude density). Defining the amplitude density as
F, = Uf;,, the amplitude density form of the functional is
easily obtained. This establishes the explicit mathematical
relationships between the Kohn, Schwinger and Newton
methods for the log-derivative matrix. Equations (A8) and
(A9) also represent somewhat more illuminating deriva-
tions of the respective variational methods than the ones pre-
sented in Ref. 21. We also note that similar relationships
between the Kohn, Schwinger and Newton variational
methods for the K matrix has been derived by Takatsuka et
al>*

APPENDIX B: ANOMALOUS SINGULARITIES IN THE
NEWTON VARIATIONAL FUNCTIONAL FOR THE LOG-
DERIVATIVE MATRIX

The presence of spurious singularities have been ob-
served in the Kohn** and Schwinger®® variational methods
for the K matrix. Such singularities usually occur when the
matrix A of linear system of equations AC = B, becomes
singular for some choice of the parameters that characterize
the equations. These singularities, of course, have nothing to
do with the scattering phenomena the method is supposed to
describe.

From the functional (A4) of Appendix A, it is easy to
see that the basis of the variational methods for the log-deriv-
ative is in finding a solution (once again considering a one-
dimensional problem as example) f, () to the Dirichlet
problem

(H—-E),(r)=0, 0<r<a, (B1)

£, (0)=0, f,(a)=1. (B2)
A necessary and sufficient condition for the existence of

/. (r) isthat E'not be an eigenvalue of the homogenous prob-
lem

(H—E)A(r) =0, 0<r<a, (B3)

S0) =0, fla) =0. (B4)
Therefore, whenever the scattering energy E becomes identi-
cally equal to one of the eigenvalues of the problem in Eq.
(B3), the solution £, () and the log-derivative Y(a) do not
exist. However, as pointed out by Manolopoulos et al.,'® this
does not cause any problems in practice. Since the discrete
eigenvalues of the problem of Eq. (B3) are of zero measure
on the real axis, the chances of choosing a scattering energy
that matches an eigenvalue exactly is exceedingly small.

In the case of the Y-NVP, we should also be concerned
about the existence of the solutions f° and f° of the reference
problem. The arguments are similar to those above, except
that now we are concerned with the reference energy E,

ref

being identical to one of the eigenvalues of the homogenous
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problem. Once again, this would be a very rare coincidence
in actual practice, and can easily be avoided by changing the
reference energy by a small amount.

It should be noted that any method that depends on the
solution of a real linear system of equations which depend on
some parameter, can become unstable for particular choices
of the parameter. For example, the S-KVP of Zhang and
Miller™* avoids this problem*’ only in principle. The argu-
ment is that in this method, the matrix inverted is complex
symmetric rather than real symmetric, as in the other meth-
ods discussed above. This means that the matrix cannot be-
come singular for any value of the purely real scattering en-
ergy. In practice however, the Lowdin—Feshbach
partitioning'* separates out the complex part, and the ma-
trix actually inverted is a real symmetric one that depends
parametrically on the (real) scattering energy. However,
due to the reasons mentioned above, no difficulties are en-
countered in practice.!*!>
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