Steven A. Jones

BIEN 501 Physiological Modeling

Midterm Exam

April 7, 2004


Circle the most correct answer to each question.  An answer is considered to be “correct” if it is within 1% of the correct answer.

1. According to a Poiseuille flow estimate, what is the flow rate in an artery that has a radius of 0.3 cm, a dynamic viscosity of 0.035 cm2/s and a wall shear stress of 15 dynes/cm2?
a. 5.33 ml/s
b. 9.09 ml/s

c. 7.20 ml/s

d. 2.01 ml/s
e. none of the above

(note: dynamic viscosity is 
[image: image1.wmf]m

, and kinematic viscosity is 
[image: image2.wmf]n

, so as noted during the test, the units of dynamic viscosity should be g/(cm-s) rather than cm2/).

This question is designed to test the students ability to apply a simple fluid mechanical relationship to a biomedical problem.  The Poiseuille equation for velocity is:
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and the equation for shear stress at the wall and flow rate are:
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Substituting the equation for 
[image: image6.wmf]u

 into the equation for 
[image: image7.wmf]t

 provides the equation:


[image: image8.wmf](

)

(

)

(

)

088

.

9

)

035

.

0

4

15

3

.

0

14

.

3

3

.

0

14

.

3

035

.

0

4

4

4

3

3

3

2

=

-

=

Þ

-

=

-

=

-

=

Q

Q

R

Q

R

u

p

m

m

t

 ml/s
This answer is within 1 percent of choice b.
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2. Using the Poiseuille approximation for wall shear stress, what pressure drop will cause a cross-sectional averaged velocity of 32.1 cm/s in an artery with a radius of 0.3 cm and a length of 20 cm, assuming that the blood has a constant dynamic viscosity of 0.035 cm2/s?

a. 200 mm Hg

b. 2000 mm Hg

c. 2000 dynes/cm2
d. 1340 dynes/cm2
e. none of the above

This question is a variation on problem 1.  In this case it is the pressure drop that is sought.  The correct equation is given in the book (eq. 2.3-20).
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.  This result is within 1% of answer c.
3. [image: image219.wmf]f

A sphere of radius 
[image: image10.wmf]R

 rotates in the 
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 direction (about the 
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 axis) in an otherwise stagnant fluid.  A correct boundary condition for this problem is:
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e. none of the above

This question is designed to test the ability to specify correct boundary conditions.  Answer a is correct because the radial velocity must be zero at 
[image: image21.wmf]R
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 (the fluid cannot pass through the solid sphere).  Answer b is incorrect because the sphere is rotating in the 
[image: image22.wmf]-

f

direction.  Therefore there is a component of velocity in that direction at the sphere surface.  Answer c is also correct since 
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 is the component of velocity in the 
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direction and for any other value of 
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, the 
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 plane.  Answer d is incorrect because the fluid is stationary at 
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, so all components of velocity must be zero.

I unintentionally provided two correct answers to this question.  Anyone who chose either a or c got the problem correct.  If you circled both correct answers, you received an extra point.

4. An additional boundary condition for the rotating sphere problem is:
a. 
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e. none of the above

In this case, answer a is incorrect since the velocity at 
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 is irrelevant to the problem.  Answer b is correct since the fluid is stationary far from the sphere.  Answer c is incorrect, again because velocity at 
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 is irrelevant.  Answer d is incorrect since 
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 takes on a multitude of non-zero values at 
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5. The choice of coordinate systems in a fluid mechanical problem is dictated by:
a. The continuity equation.

b. The momentum equation.

c. The energy equation.

d. The boundary conditions.

e. none of the above

The student should know that it is always the boundary conditions that determine the coordinate system to be used in these problems.  For example, it is simple to write down the boundary condition 
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, which is why cylindrical coordinates are used in the Poiseuille flow problem.

6. The stream function is derived from:
a. The momentum balance.

b. The continuity equation.

c. Poiseuille’s law.

d. Newton’s law of viscosity.

e. none of the above.

Whereas the book begins its discussion of the stream function by taking the curl of the momentum equation, it is the continuity equation from which the stream function is derived.  The stream function was designed such that its appropriate derivatives uniquely satisfy the equation of continuity.

I emphasize this point because the student may not otherwise appreciate the importance of the continuity equation.  That is, one might otherwise think that in solving problems with the stream function one is ignoring the continuity equation.  In reality, one is not ignoring the equation, but has already carefully considered this equation in writing down the expression for the stream function.


7. Use of the stream function in a fluid mechanical problem:

a. Increases the number of variables while increasing the order of the equation.

b. Decreases the number of variables while increasing the order of the equation.

c. Increases the number of variables while decreasing the order of the equation.

d. Decreases the number of variables while decreasing the order of the equation.

e. Has no effect on the number of variables or the order of the equation.

The use of the stream function is similar to the kind of back substitution that one does in solving simultaneous equations.  In simultaneous equations, one solves one equation for one variable in terms of the others and then back substitutes into the other equations, thus reducing the number of variables by one.  Similarly, the stream function reduces two variables 
[image: image44.wmf]x
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 and 
[image: image45.wmf]y

v

 to a single variable 
[image: image46.wmf]y

.  However, the cost of this decrease in the number of variables is an increase in the order of the momentum equation by 1.  The momentum equation then becomes a 3rd order equation rather than a second order equation (it has 3rd derivatives in place of the 2nd derivatives).  The next stage of the problem, elimination of the pressure term between the two momentum equations (the 
[image: image47.wmf]x
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-momentum and the 
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v

-momentum) decreases the number of variables by one more and increases the order of the equations by 1 more, to a 4th order, as in table 4.2-1.
Therefore, the correct answer is b.


8. The stream function is useful when:

a. The flow is three-dimensional.

b. The flow is two-dimensional (i.e. planar or axisymmetric).

c. All components of velocity are zero at one of the boundaries.

d. Pressure is negligible.

e. none of the above.

It is the ability of the stream function to completely solve the equation of continuity that makes it useful in the solution of fluid mechanical problems.  In order for the stream function to do this, there must be one coordinate direction in which there is neither a velocity component nor a change of any of the other velocity components in that direction.  For example, in the case of Stokes flow around a sphere (with flow approaching from the 
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 direction), there is no component of velocity in the 
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direction and for any constant value of 
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 and 
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 there is no change in any of the other two velocity components with 
[image: image53.wmf]f

.  
Answer c is clearly not correct since, in the sphere problem, if the sphere is moving all components of velocity are not zero at the boundary.

Answer d is incorrect.  Pressure is not negligible for the stokes flow problem.

Therefore, the correct answer is b.


9. Assuming that there are no changes in the 
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-direction, the expression for 
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 in cylindrical coordinates reduces to:
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c. 
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d. 0

e. none of the above

One need first look up the expression for 
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 in cylindrical coordinates (appendix b, equation B.1-11).  The equation is:
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If there are no changes in the 
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, so that the second term in the expression above becomes zero.  Therefore answers a and c are clearly incorrect since they still have terms with 
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 in them.  Answer d is not correct because it ignores the component with 
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 (note that nothing was said in the problem statement to indicate that the 
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component of velocity is zero).  The correct answer is b.

10. On taking the limit of the following expression as 
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one obtains:

a. 
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e. none of the above

This question comes from the standard result from differential calculus that:
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 It is thus necessary to determine what 
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Therefore, the correct answer is d.

11. A primary reason for the non-Newtonian properties of blood is:

a. The formation of rouleax by the red blood cells.

b. The presence of albumen.

c. Repulsive forces between red blood cells.

d. Dark energy.

e. none of the above

This question was designed to see if the student was paying attention in class.  It was mentioned that the primary reason for the non-Newtonian properties of blood is the formation of rouleaux by the red blood cells.  Red blood cells tend to stack on top of one another and stick together when they are under stagnant conditions.  Shearing tends to unstuck the cells, thus making it easier to move layers of fluid with respect to one another.  The presence of albumen may have some influence, but is minimal in terms of non-Newtonian properties and was never mentioned in the lecture.  Repulsive forces between the cells are not important in the context of non-Newtonian viscosity.  Dark energy is a concept in astronomy and is not relevant to the question.

The correct answer is therefore a.


12. The equation of continuity states that:

a. Force is continuous throughout the volume of interest.

b. Density is constant throughout a control volume.

c. Velocity is zero on any non-moving boundary.

d. The net amount of matter entering a control volume through the surface is equal to the gain in matter within that volume.

e. None of the above.

The equation of continuity is a statement that mass is conserved.  It does describe forces on the flow, and so answer a is incorrect.  It also does not explicitly state that density is constant throughout a control volume.  If, however, one adds the assumption of incompressible flow, then the density will be constant, but this is an additional restriction on continuity and therefore not the basis for the continuity equation, so answer b is incorrect.  Answer c is also incorrect.  The statement that velocity is zero on a non-moving boundary is called the “no-slip” condition, and it is entirely independent of the formulation for the continuity equation.

Answer d is correct.  The continuity equation states that the amount of matter entering a control volume minus the amount leaving the control volume (i.e. the net amount of matter entering the control volume) must cause an incrase in the total amount of matter within the volume.


13. Consider a flat disk of infinite radius rotating at constant angular velocity above a stationary surface, as shown to the right.  The equation for momentum for the Newtonian fluid between the plates in the 
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 direction is:

a. non-linear

b. dependent on 
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c. 
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d. all of the above

e. none of the above

While the equations of momentum are non-linear in general, the lack of changes in the 
[image: image81.wmf]-
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direction and lack of velocity components in the 
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 and 
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directions cause the non-linear terms on the left hand side of the momentum equations to disappear.  Therefore the equations turn out to be linear in this case, so a is not a correct answer.
The symmetry of the problem with respect to 
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direction causes the equation to be independent of 
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, so that answer b is incorrect.

Since a and be are incorrect, d is obviously incorrect.
It remains to be seen if c is a correct answer.  The momentum equation for 
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 in cylindrical coordinates is found in appendix B, table B.5 (equation B.5-5).  This is:
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In this case, gravity is in the 
[image: image88.wmf]-
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direction, so the gravity term is zero.  The terms on the left hand side of the equation disappear because:
term 1: flow is unsteady.

term 2: no velocity in the 
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direction.

term 3: no changes in the 
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direction (
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).

term 4: no velocity in the 
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direction.

term 5: no velocity in the 
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direction.

The pressure term goes to zero because there are no changes in the 
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term) is zero because there are no changes in the 
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The last term in 
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Consequently, the only terms left are:
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From table B.1 for stresses in cylindrical coordinates, 
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Again, with no changes in 
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, the expression for 
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and with no 
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component of velocity, the expression for 
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.  When these two shear stresses are introduced into Eq. 13-1, the result is:
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On dividing through by 
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 (allowable because the fluid is Newtonian), this becomes:

[image: image111.wmf]ú

û

ù

ê

ë

é

¶

¶

¶

¶

+

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

¶

¶

¶

¶

=

z

v

z

r

v

r

r

r

r

q

q

3

2

1

0

.
The second term matches answer c, but the first term does not.

The correct answer is e. none of the above.


14. Assuming that the momentum balance in the 
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 direction for a rotating flow is:
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let 
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a. non-linear

b. 
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e. None of the above.

This question illustrates the technique of “separation of variables” for solving partial differential equations.  Separation of variables can be used when the boundary conditions are separable, meaning that they have the form:
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For example, consider the Stokes-sphere problem in which the boundary conditions are:
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The first two of these boundary conditions are separable because 0 can be expressed as 
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Problem 14 therefore assumes that we have examined the boundary conditions and found them to be separable.  The next step is to substitute the separated version of 
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v

 into the differential equation to obtain:
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Since 
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 depends on 
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 only, it can be treated as constant with respect to the derivative in 
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.  Similarly, 
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 is constant with respect to derivatives in 
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.  These functions can be taken out of the derivatives with respect to the variables they do not depend on to yield:
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The next step is to divide the entire equation by 
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Now something interesting has happened.  The first term depends only on the variable 
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, and the second term depends only on the variable 
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.  How can something that does not depend on 
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 (the first term) be equal to something (the second term) that is a function of 
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?  Similarly, how can something that does not depend on 
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 (the second term) be equal to something that is a function of 
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?  The answer is that they cannot unless they are both constant (i.e. neither dependent on 
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.  We can therefore say that:
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which means that
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Now the 
[image: image155.wmf]-

z

equation can be multiplied by 
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 to obtain:
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Since 
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 does not depend on any other variables except 
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, the partial derivatives can be turned into normal derivatives, and the equation simplifies to:
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The correct answer is supposed to be b.  However, if you had e. none of the above, I will have to accept it since I mistakenly wrote 
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 instead of 
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.
Question: How do I know to use 
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 in the equation for 
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 and 
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 in the equation for 
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?  The answer is that I do not know which to use.  However, it does not matter which one I use because I have said that 
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 is an arbitrary constant.  Constants can be positive and negative.  When the boundary conditions are applied, they will tell us what the true value of 
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 is.  (It may also turn out to be complex).


15. A monocyte of radius 10 (m and density 
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 g/cm3 is suspended in saline (
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 g/cm3, 
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 g/(cm-s)) and centrifuged at 50 x g (50 times the acceleration of gravity).  Assuming that the Stokes flow relationship for flow over a sphere is appropriate for this situation, how long does it take for the monocyte to travel 4.9 cm (to the bottom of the centrifuge tube)?
a. 0.09 seconds

b. 4.28 seconds

c. 90 seconds

d. 21 minutes

e. none of the above

This problem is similar in philosophy to problems 1 and 2.  It uses the Stokes relationship for flow around a sphere to calculate something that is relevant to a biomedical problem.  The equation to use is 4.2-20:
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This equation is readily inverted to obtain:
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The force is the net buoyancy force on the sphere, which is 
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, in which 
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 is density, 
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 is volume, 
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 is the acceleration due to gravity, and the subscript 
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 refers to the monocyte and the subscript 
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 refers to the fluid.  It follows that the velocity of the monocyte will be:
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Since distance is velocity x time, the time required for the monocyte to move 4.9 cm is 
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 s, which is within 1% of answer c.
The correct answer is c.


16. You have an instrument that can directly measure velocity, but cannot directly measure acceleration.  If you need to know the acceleration of a fluid in the 
[image: image182.wmf]x

 direction at a given point you should:

a. Measure velocity as a function of time and take the derivative of the output of your instrument.

b. Measure velocity at two nearby points, 
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 and 
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acceleration as 
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c. Add the result of a. above to the result of b. above.

d. Multiply the result of a. above by the result of b. above.

e. None of the above.

This question relates to the fundamentals of an Eulerian frame of reference.  We discussed this in class, where we noted that if we were to measure rate of change of velocity measured at a fixed location on the on-ramp of a freeway and then took the time derivative, we would conclude that the cars were not accelerating onto the freeway even though we know they are.  The answer to this question can be found in the left hand side of the momentum equation in which we see the term 
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 and the term 
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.  Answer a relates only to the time derivative term.  Answer b relates only to the 
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 term.  To obtain true acceleration, one must add these two terms together.  Therefore, the correct answer is c.

Answer d is nonsense.


17. The flux of momentum per unit volume through a surface is:

a. Equal to the flux of momentum per unit volume out of the surface.

b. Normal to the surface.

c. Equal to the momentum per unit volume times the velocity normal to the surface integrated over the surface.

d. The cause of the nonlinear terms in the momentum equation.

e. Both c and d.

The key lesson for this question is that the momentum passing through a surface is not necessarily perpendicular to that surface.

Answer a is incorrect since the momentum within a volume can increase or decrease (just as mass within a volume can increase or decrease).  Momentum flux is balanced by the net forces on a volume.

Answer b is also incorrect.  Refer to Table 1.7-1 which demonstrates that the direction of the momentum flux is the same as the direction of the velocity vector.  Since the surface itself can be arbitrarily selected, the velocity vector, and hence the momentum flux may not be perpendicular to the surface.

Answer c is correct since it is the definition of momentum flux.

Answer d is also correct.  The nonlinear terms (on the left hand side of the momentum equations) have the form 
[image: image189.wmf]u
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, and this is a nonlinear term.

Therefore, both c and d are true, so the correct answer is e.


18. The momentum equation used in the book and typically used in fluid mechanical applications:
a. is written in terms of a Lagrangian frame of reference.

b. is written in terms of an Eulerian frame of reference.

c. is linear in all practical applications.

d. contains 3 unknown variables.

e. none of the above.

In solid mechanics, the equations are typically written in a Lagrangian frame of reference, where the coordinate system follows the motion of materials.  A classic example is the equation for a falling body 
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.  Note that the coordinate 
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 is chaging in time.  In fluid mechanics, however, the equations are written with respect to a stationary coordinate system and measurements are made at a point in space.  This frame of references is the reason for the use of the substantial derivative rather than the time derivative in the momentum equations.
The momentum equation is certainly not linear in all practical applications.  It is inherently non-linear, but sometimes reduces to a linear equation under special circumstances.

The momentum equation contains 4 unknown variables.  In Cartesian coordinates these are 
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, 
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[image: image194.wmf]z

v

, and 
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Therefore the correct answer is b.


19. The expression 
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a. is the continuity equation for incompressible flow.

b. is a single equation.

c. involves 3 unknown variables.

d. contains 
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 as one term.
e. all of the above.

I confess, this is another mistake on my part.  The statement of the equation should have been, “The expression 
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 ….”  In this case, it is the continuity equation for incompressible flow, and it is a single equation since the dot product of the vector 
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 and the vector 
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 yields a scalar. (The expression contrasts with that in question 20 below, where the vector formulation of the momentum equation is three separate equations, one for 
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However, since some of you may have been confused by my suggesting that 
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 is a complete equation, I accepted also either answer c. or answer d.


20. The expression 
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a. contains 3 separate vector components

b. contains 9 separate vector components

c. reduces to one scalar component

d. becomes zero for incompressible flows

e. none of the above

This question is directed at identifying the vector character of the nonlinear terms in the momentum equation.  The expression 
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 is a scalar that is equivalent to:
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When this operator is applied to the vector 
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, it results in three components, which are:
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Consequently, the correct answer is a.  There are three separate vector components.  Note that answer d is not true.  This term is independent of the assumption of incompressibility.
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